<algorithm>
adjacent_find
· binary_search
· copy
· copy_backward
· count
· count_if
· equal
· equal_range
· fill
· fill_n
· find
· find_end
· find_first_of
· find_if
· for_each
· generate
· generate_n
· includes
· inplace_merge
· iter_swap
· lexicographical_compare
· lower_bound
· make_heap
· max
· max_element
· merge
· min
· min_element
· mismatch
· next_permutation
· nth_element
· partial_sort
· partial_sort_copy
· partition
· pop_heap
· prev_permutation
· push_heap
· random_shuffle
· remove
· remove_copy
· remove_copy_if
· remove_if
· replace
· replace_copy
· replace_copy_if
· replace_if
· reverse
· reverse_copy
· rotate
· rotate_copy
· search
· search_n
· set_difference
· set_intersection
· set_symmetric_difference
· set_union
· sort
· sort_heap
· stable_partition
· stable_sort
· swap
· swap_ranges
· transform
· unique
· unique_copy
· upper_bound
Include the STL
standard header <algorithm>
to define numerous template functions that perform
useful algorithms. The descriptions that follow
make extensive use of common template parameter names
(or prefixes) to indicate the least powerful category
of iterator permitted as an actual argument type:
OutIt
--
to indicate an output iteratorInIt
--
to indicate an input iteratorFwdIt
--
to indicate a forward iteratorBidIt
--
to indicate a bidirectional iteratorRanIt
--
to indicate a random-access iteratorThe descriptions of these templates employ a number of conventions common to all algorithms.
namespace std { template<class InIt, class Fn1> Fn1 for_each(InIt first, InIt last, Fn1 func); template<class InIt, class Ty> InIt find(InIt first, InIt last, const Ty& val); template<class InIt, class Pr> InIt find_if(InIt first, InIt last, Pr pred); template<class FwdIt1, class FwdIt2> FwdIt1 find_end(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2, FwdIt2 last2); template<class FwdIt1, class FwdIt2, class Pr> FwdIt1 find_end(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2, FwdIt2 last2, Pr pred); template<class FwdIt1, class FwdIt2> FwdIt1 find_first_of(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2, FwdIt2 last2); template<class FwdIt1, class FwdIt2, class Pr> FwdIt1 find_first_of(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2, FwdIt2 last2, Pr pred); template<class FwdIt> FwdIt adjacent_find(FwdIt first, FwdIt last); template<class FwdIt, class Pr> FwdIt adjacent_find(FwdIt first, FwdIt last, Pr pred); template<class InIt, class Ty, class Dist> typename iterator_traits<InIt>::difference_type count(InIt first, InIt last, const Ty& val); template<class InIt, class Pr, class Dist> typename iterator_traits<InIt>::difference_type count_if(InIt first, InIt last, Pr pred); template<class InIt1, class InIt2> pair<InIt1, InIt2> mismatch(InIt1 first1, InIt1 last1, InIt2 first2); template<class InIt1, class InIt2, class Pr> pair<InIt1, InIt2> mismatch(InIt1 first1, InIt1 last1, InIt2 first2, Pr pred); template<class InIt1, class InIt2> bool equal(InIt1 first1, InIt1 last1, InIt2 first2); template<class InIt1, class InIt2, class Pr> bool equal(InIt1 first1, InIt1 last1, InIt2 first2, Pr pred); template<class FwdIt1, class FwdIt2> FwdIt1 search(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2, FwdIt2 last2); template<class FwdIt1, class FwdIt2, class Pr> FwdIt1 search(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2, FwdIt2 last2, Pr pred); template<class FwdIt1, class Diff2, class Ty> FwdIt1 search_n(FwdIt1 first1, FwdIt1 last1, Diff2 count, const Ty& val); template<class FwdIt1, class Diff2, class Ty, class Pr> FwdIt1 search_n(FwdIt1 first1, FwdIt1 last1, Diff2 count, const Ty& val, Pr pred); template<class InIt, class OutIt> OutIt copy(InIt first, InIt last, OutIt dest); template<class BidIt1, class BidIt2> BidIt2 copy_backward(BidIt1 first, BidIt1 last, BidIt2 dest); template<class Ty> void swap(Ty& left, Ty& right); template<class FwdIt1, class FwdIt2> FwdIt2 swap_ranges(FwdIt1 first1, FwdIt1 last1, FwdIt2 last2); template<class FwdIt1, class FwdIt2> void iter_swap(FwdIt1 left, FwdIt2 right); template<class InIt, class OutIt, class Fn1> OutIt transform(InIt first, InIt last, OutIt dest, Fn1 func); template<class InIt1, class InIt2, class OutIt, class Fn2> OutIt transform(InIt1 first1, InIt1 last1, InIt2 first2, OutIt dest, Fn2 func);
template<class FwdIt, class Ty> void replace(FwdIt first, FwdIt last, const Ty& oldval, const Ty& newval); template<class FwdIt, class Pr, class Ty> void replace_if(FwdIt first, FwdIt last, Pr pred, const Ty& val); template<class InIt, class OutIt, class Ty> OutIt replace_copy(InIt first, InIt last, OutIt dest, const Ty& oldval, const Ty& newval); template<class InIt, class OutIt, class Pr, class Ty> OutIt replace_copy_if(InIt first, InIt last, OutIt dest, Pr pred, const Ty& val); template<class FwdIt, class Ty> void fill(FwdIt first, FwdIt last, const Ty& val); template<class OutIt, class Diff, class Ty> void fill_n(OutIt first, Diff count, const Ty& val); template<class FwdIt, class Fn0> void generate(FwdIt first, FwdIt last, Fn0 func); template<class OutIt, class Diff, class Fn0> void generate_n(OutIt first, Diff count, Fn0 func); template<class FwdIt, class Ty> FwdIt remove(FwdIt first, FwdIt last, const Ty& val); template<class FwdIt, class Pr> FwdIt remove_if(FwdIt first, FwdIt last, Pr pred); template<class InIt, class OutIt, class Ty> OutIt remove_copy(InIt first, InIt last, OutIt dest, const Ty& val); template<class InIt, class OutIt, class Pr> OutIt remove_copy_if(InIt first, InIt last, OutIt dest, Pr pred); template<class FwdIt> FwdIt unique(FwdIt first, FwdIt last); template<class FwdIt, class Pr> FwdIt unique(FwdIt first, FwdIt last, Pr pred); template<class InIt, class OutIt> OutIt unique_copy(InIt first, InIt last, OutIt dest); template<class InIt, class OutIt, class Pr> OutIt unique_copy(InIt first, InIt last, OutIt dest, Pr pred); template<class BidIt> void reverse(BidIt first, BidIt last); template<class BidIt, class OutIt> OutIt reverse_copy(BidIt first, BidIt last, OutIt dest); template<class FwdIt> void rotate(FwdIt first, FwdIt mid, FwdIt last); template<class FwdIt, class OutIt> OutIt rotate_copy(FwdIt first, FwdIt mid, FwdIt last, OutIt dest); template<class RanIt> void random_shuffle(RanIt first, RanIt last); template<class RanIt, class Fn1> void random_shuffle(RanIt first, RanIt last, Fn1& func); template<class BidIt, class Pr> BidIt partition(BidIt first, BidIt last, Pr pred); template<class BidIt, class Pr> BidIt stable_partition(BidIt first, BidIt last, Pr pred); template<class RanIt> void sort(RanIt first, RanIt last); template<class RanIt, class Pr> void sort(RanIt first, RanIt last, Pr pred); template<class BidIt> void stable_sort(BidIt first, BidIt last); template<class BidIt, class Pr> void stable_sort(BidIt first, BidIt last, Pr pred); template<class RanIt> void partial_sort(RanIt first, RanIt mid, RanIt last); template<class RanIt, class Pr> void partial_sort(RanIt first, RanIt mid, RanIt last, Pr pred); template<class InIt, class RanIt> RanIt partial_sort_copy(InIt first1, InIt last1, RanIt first2, RanIt last2); template<class InIt, class RanIt, class Pr> RanIt partial_sort_copy(InIt first1, InIt last1, RanIt first2, RanIt last2, Pr pred);
template<class RanIt> void nth_element(RanIt first, RanIt nth, RanIt last); template<class RanIt, class Pr> void nth_element(RanIt first, RanIt nth, RanIt last, Pr pred); template<class FwdIt, class Ty> FwdIt lower_bound(FwdIt first, FwdIt last, const Ty& val); template<class FwdIt, class Ty, class Pr> FwdIt lower_bound(FwdIt first, FwdIt last, const Ty& val, Pr pred); template<class FwdIt, class Ty> FwdIt upper_bound(FwdIt first, FwdIt last, const Ty& val); template<class FwdIt, class Ty, class Pr> FwdIt upper_bound(FwdIt first, FwdIt last, const Ty& val, Pr pred); template<class FwdIt, class Ty> pair<FwdIt, FwdIt> equal_range(FwdIt first, FwdIt last, const Ty& val); template<class FwdIt, class Ty, class Pr> pair<FwdIt, FwdIt> equal_range(FwdIt first, FwdIt last, const Ty& val, Pr pred); template<class FwdIt, class Ty> bool binary_search(FwdIt first, FwdIt last, const Ty& val); template<class FwdIt, class Ty, class Pr> bool binary_search(FwdIt first, FwdIt last, const Ty& val, Pr pred); template<class InIt1, class InIt2, class OutIt> OutIt merge(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest); template<class InIt1, class InIt2, class OutIt, class Pr> OutIt merge(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest, Pr pred); template<class BidIt> void inplace_merge(BidIt first, BidIt mid, BidIt last); template<class BidIt, class Pr> void inplace_merge(BidIt first, BidIt mid, BidIt last, Pr pred); template<class InIt1, class InIt2> bool includes(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2); template<class InIt1, class InIt2, class Pr> bool includes(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, Pr pred); template<class InIt1, class InIt2, class OutIt> OutIt set_union(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest); template<class InIt1, class InIt2, class OutIt, class Pr> OutIt set_union(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest, Pr pred); template<class InIt1, class InIt2, class OutIt> OutIt set_intersection(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest); template<class InIt1, class InIt2, class OutIt, class Pr> OutIt set_intersection(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest, Pr pred); template<class InIt1, class InIt2, class OutIt> OutIt set_difference(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest); template<class InIt1, class InIt2, class OutIt, class Pr> OutIt set_difference(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest, Pr pred); template<class InIt1, class InIt2, class OutIt> OutIt set_symmetric_difference(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest); template<class InIt1, class InIt2, class OutIt, class Pr> OutIt set_symmetric_difference(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest, Pr pred); template<class RanIt> void push_heap(RanIt first, RanIt last); template<class RanIt, class Pr> void push_heap(RanIt first, RanIt last, Pr pred); template<class RanIt> void pop_heap(RanIt first, RanIt last); template<class RanIt, class Pr> void pop_heap(RanIt first, RanIt last, Pr pred); template<class RanIt> void make_heap(RanIt first, RanIt last); template<class RanIt, class Pr> void make_heap(RanIt first, RanIt last, Pr pred); template<class RanIt> void sort_heap(RanIt first, RanIt last); template<class RanIt, class Pr> void sort_heap(RanIt first, RanIt last, Pr pred); template<class Ty> const Ty& max(const Ty& left, const Ty& right); template<class Ty, class Pr> const Ty& max(const Ty& left, const Ty& right, Pr pred); template<class Ty> const Ty& min(const Ty& left, const Ty& right); template<class Ty, class Pr> const Ty& min(const Ty& left, const Ty& right, Pr pred); template<class FwdIt> FwdIt max_element(FwdIt first, FwdIt last); template<class FwdIt, class Pr> FwdIt max_element(FwdIt first, FwdIt last, Pr pred); template<class FwdIt> FwdIt min_element(FwdIt first, FwdIt last); template<class FwdIt, class Pr> FwdIt min_element(FwdIt first, FwdIt last, Pr pred); template<class InIt1, class InIt2> bool lexicographical_compare(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2); template<class InIt1, class InIt2, class Pr> bool lexicographical_compare(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, Pr pred); template<class BidIt> bool next_permutation(BidIt first, BidIt last); template<class BidIt, class Pr> bool next_permutation(BidIt first, BidIt last, Pr pred); template<class BidIt> bool prev_permutation(BidIt first, BidIt last); template<class BidIt, class Pr> bool prev_permutation(BidIt first, BidIt last, Pr pred); };
adjacent_find
template<class FwdIt> FwdIt adjacent_find(FwdIt first, FwdIt last); template<class FwdIt, class Pr> FwdIt adjacent_find(FwdIt first, FwdIt last, Pr pred);
The first template function determines the lowest N
in the range [0, last - first)
for which
N + 1 < last - first
and the predicate
*(first + N) == *(first + N + 1)
is true.
Here, operator==
must perform a
pairwise comparison
between its operands.
It then returns first + N
.
If no such value exists, the function returns last
.
If the sequence contains fewer than two elements, the function
never evaluates the predicate. Otherwise, if it returns
last
, it evaluates the predicate exactly
last - first - 1
times. Otherwise,
it evaluates the predicate exactly N + 1
times.
The second template function behaves the same, except that
the predicate is pred(*(first + N), *(first + N + 1))
.
binary_search
template<class FwdIt, class Ty> bool binary_search(FwdIt first, FwdIt last, const Ty& val); template<class FwdIt, class Ty, class Pr> bool binary_search(FwdIt first, FwdIt last, const Ty& val, Pr pred);
The first template function determines whether
a value of N
exists
in the range [0, last - first)
for which
*(first + N)
has
equivalent ordering
to val
, where the elements designated by iterators
in the range [first, last)
form a sequence
ordered by operator<
.
If so, the function returns true.
If no such value exists, it returns false.
Yhe function evaluates the ordering predicate X < Y
at most
ceil(log(last - first)) + 2
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
copy
template<class InIt, class OutIt> OutIt copy(InIt first, InIt last, OutIt dest);
The template function evaluates *(dest + N) = *(first + N))
once for each N
in the range [0, last - first)
,
for strictly increasing values of N
beginning with
the lowest value. It then returns dest + N
.
If dest
and first
designate regions of storage,
dest
must not be in the range [first, last)
.
copy_backward
template<class BidIt1, class BidIt2> BidIt2 copy_backward(BidIt1 first, BidIt1 last, BidIt2 dest);
The template function evaluates
*(dest - N - 1) = *(last - N - 1))
once for
each N
in the range [0, last - first)
,
for strictly oncreasing values of N
beginning with
the lowest value. It then returns dest - (last - first)
.
If dest
and first
designate regions of storage,
dest
must not be in the range [first, last)
.
count
template<class InIt, class Ty> typename iterator_traits<InIt>::difference_type count(InIt first, InIt last, const Ty& val);
The template function sets a count count
to zero. It then
executes ++count
for
each N
in the range [0, last - first)
for which the predicate *(first + N) == val
is true.
Here, operator==
must perform a
pairwise comparison
between its operands.
The function returns count
.
It evaluates the predicate exactly last - first
times.
count_if
template<class InIt, class Pr, class Dist> typename iterator_traits<InIt>::difference_type count_if(InIt first, InIt last, Pr pred);
The template function sets a count count
to zero. It then
executes ++count
for
each N
in the range [0, last - first)
for which the predicate pred(*(first + N))
is true.
The function returns count
.
It evaluates the predicate exactly last - first
times.
equal
template<class InIt1, class InIt2> bool equal(InIt1 first1, InIt1 last1, InIt2 first2); template<class InIt1, class InIt2, class Pr> bool equal(InIt1 first1, InIt1 last1, InIt2 first2, Pr pred);
The first template function returns true only if, for
each N
in the range [0, last1 - first1)
,
the predicate *(first1 + N) == *(first2 + N)
is true.
Here, operator==
must perform a
pairwise comparison
between its operands.
The function evaluates the predicate at most once
for each N
.
The second template function behaves the same, except that
the predicate is pred(*(first1 + N), *(first2 + N))
.
equal_range
template<class FwdIt, class Ty> pair<FwdIt, FwdIt> equal_range(FwdIt first, FwdIt last, const Ty& val); template<class FwdIt, class Ty, class Pr> pair<FwdIt, FwdIt> equal_range(FwdIt first, FwdIt last, const Ty& val, Pr pred);
The first template function effectively returns
pair(
lower_bound(first, last, val),
upper_bound(first, last, val))
,
where the elements designated by iterators
in the range [first, last)
form a sequence
ordered by operator<
.
Thus, the function determines the largest range of positions
over which val
can be inserted in the sequence
and still preserve its ordering.
The function evaluates the ordering predicate X < Y
at most
ceil(2 * log(last - first)) + 1
.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
fill
template<class FwdIt, class Ty> void fill(FwdIt first, FwdIt last, const Ty& val);
The template function evaluates *(first + N) = val
once for
each N
in the range [0, last - first)
.
fill_n
template<class OutIt, class Diff, class Ty> void fill_n(OutIt first, Diff count, const Ty& val);
The template function evaluates *(first + N) = val
once for
each N
in the range [0, count)
.
find
template<class InIt, class Ty> InIt find(InIt first, InIt last, const Ty& val);
The template function determines the lowest value of N
in the range [0, last - first)
for which the predicate
*(first + N) == val
is true.
Here, operator==
must perform a
pairwise comparison
between its operands.
It then returns first + N
.
If no such value exists, the function returns last
.
It evaluates the predicate at most once
for each N
.
find_end
template<class FwdIt1, class FwdIt2> FwdIt1 find_end(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2, FwdIt2 last2); template<class FwdIt1, class FwdIt2, class Pr> FwdIt1 find_end(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2, FwdIt2 last2, Pr pred);
The first template function determines the highest value of
N
in the range [0,
last1 - first1 - (last2 - first2))
such that for each M
in the range
[0, last2 - first2)
,
the predicate *(first1 + N + M) == *(first2 + N + M)
is true.
Here, operator==
must perform a
pairwise comparison
between its operands.
It then returns first1 + N
.
If no such value exists, the function returns last1
.
It evaluates the predicate at most (last2 - first2) *
(last1 - first1 - (last2 - first2) + 1)
times.
The second template function behaves the same, except that
the predicate is pred(*(first1 + N + M), *(first2 + N + M))
.
find_first_of
template<class FwdIt1, class FwdIt2> FwdIt1 find_first_of(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2, FwdIt2 last2); template<class FwdIt1, class FwdIt2, class Pr> FwdIt1 find_first_of(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2, FwdIt2 last2, Pr pred);
The first template function determines the lowest value of
N
in the range [0, last1 - first1)
such that
for some M
in the range [0, last2 - first2)
,
the predicate *(first1 + N) == *(first2 + M)
is true.
Here, operator==
must perform a
pairwise comparison
between its operands.
It then returns first1 + N
.
If no such value exists, the function returns last1
.
It evaluates the predicate at most
(last1 - first1) * (last2 - first2)
times.
The second template function behaves the same, except that
the predicate is pred(*(first1 + N), *(first2 + M))
.
find_if
template<class InIt, class Pr> InIt find_if(InIt first, InIt last, Pr pred);
The template function determines the lowest value of N
in the range [0, last - first)
for which the predicate
pred(*(first + N))
is true.
It then returns first + N
.
If no such value exists, the function returns last
.
It evaluates the predicate at most once
for each N
.
for_each
template<class InIt, class Fn1> Fn1 for_each(InIt first, InIt last, Fn1 func);
The template function evaluates func(*(first + N))
once for
each N
in the range [0, last - first)
.
It then returns func
.
generate
template<class FwdIt, class Fn0> void generate(FwdIt first, FwdIt last, Fn0 func);
The template function evaluates *(first + N) = func()
once for
each N
in the range [0, last - first)
.
generate_n
template<class OutIt, class Pr, class Fn0> void generate_n(OutIt first, Diff count, Fn0 func);
The template function evaluates *(first + N) = func()
once for
each N
in the range [0, count)
.
includes
template<class InIt1, class InIt2> bool includes(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2); template<class InIt1, class InIt2, class Pr> bool includes(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, Pr pred);
The first template function determines whether
a value of N
exists
in the range [0, last2 - first2)
such that,
for each M
in the range [0, last1 - first1)
,
*(first1 + M)
and *(first2 + N)
do not have
equivalent ordering,
where the elements designated by iterators
in the ranges [first1, last1)
and [first2, last2)
each form a sequence
ordered by operator<
.
If so, the function returns false.
If no such value exists, it returns true.
Thus, the function determines whether the ordered sequence
designated by iterators in the range
[first2, last2)
all have equivalent ordering with some
element designated by iterators in the range
[first1, last1)
.
The function evaluates the predicate at most
2 * ((last1 - first1) + (last2 - first2)) - 1
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
inplace_merge
template<class BidIt> void inplace_merge(BidIt first, BidIt mid, BidIt last); template<class BidIt, class Pr> void inplace_merge(BidIt first, BidIt mid, BidIt last, Pr pred);
The first template function reorders the
sequences designated by iterators in the ranges [first, mid)
and [mid, last)
, each
ordered by operator<
,
to form a merged sequence of length last - first
beginning at first
also ordered by operator<
.
The merge occurs without altering the relative order of
elements within either original sequence. Moreover, for any two elements
from different original sequences that have
equivalent ordering,
the element from the ordered range [first, mid)
precedes the other.
The function evaluates the ordering predicate
X < Y
at most
ceil((last - first) * log(last - first))
times.
(Given enough temporary storage, it can evaluate the predicate at most
(last - first) - 1
times.)
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
iter_swap
template<class FwdIt1, class FwdIt2> void iter_swap(FwdIt1 left, FwdIt2 right);
The template function leaves the value originally stored in
*right
subsequently stored in *left
,
and the value originally stored in *left
subsequently stored in *right
.
lexicographical_compare
template<class InIt1, class InIt2> bool lexicographical_compare(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2); template<class InIt1, class InIt2, class Pr> bool lexicographical_compare(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, Pr pred);
The first template function determines K
,
the number of elements to compare as the smaller of
last1 - first1
and last2 - first2
.
It then determines the lowest value of N
in the range [0, K)
for which
*(first1 + N)
and *(first2 + N)
do not have
equivalent ordering.
If no such value exists, the function returns true only if
K < (last2 - first2)
. Otherwise, it returns
true only if *(first1 + N) < *(first2 + N)
.
Thus, the function returns true only if the sequence designated
by iterators in the range [first1, last1)
is
lexicographically less than the other sequence.
The function evaluates the ordering predicate
X < Y
at most 2 * K
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
lower_bound
template<class FwdIt, class Ty> FwdIt lower_bound(FwdIt first, FwdIt last, const Ty& val); template<class FwdIt, class Ty, class Pr> FwdIt lower_bound(FwdIt first, FwdIt last, const Ty& val, Pr pred);
The first template function determines the highest value of N
in the range (0, last - first]
such that,
for each M
in the range [0, N)
the predicate *(first + M) < val
is true,
where the elements designated by iterators
in the range [first, last)
form a sequence
ordered by operator<
.
It then returns first + N
.
Thus, the function determines the lowest position
before which val
can be inserted in the sequence
and still preserve its ordering.
The function evaluates the ordering predicate X < Y
at most
ceil(log(last - first)) + 1
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
make_heap
template<class RanIt> void make_heap(RanIt first, RanIt last); template<class RanIt, class Pr> void make_heap(RanIt first, RanIt last, Pr pred);
The first template function reorders the sequence
designated by iterators in the
range [first, last)
to form a heap
ordered by operator<
.
The function evaluates the ordering predicate
X < Y
at most
3 * (last - first)
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
max
template<class Ty> const Ty& max(const Ty& left, const Ty& right); template<class Ty, class Pr> const Ty& max(const Ty& left, const Ty& right, Pr pred);
The first template function returns right
if
left < right
. Otherwise it returns left
.
Ty
need supply only a single-argument constructor and a
destructor.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
max_element
template<class FwdIt> FwdIt max_element(FwdIt first, FwdIt last); template<class FwdIt, class Pr> FwdIt max_element(FwdIt first, FwdIt last, Pr pred);
The first template function determines the lowest value of N
in the range [0, last - first)
such that,
for each M
in the range [0, last - first)
the predicate *(first + N) < *(first + M)
is false.
It then returns first + N
.
Thus, the function determines the lowest position
that contains the largest value in the sequence.
The function evaluates the ordering predicate
X < Y
exactly
max((last - first) - 1, 0)
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
merge
template<class InIt1, class InIt2, class OutIt> OutIt merge(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest); template<class InIt1, class InIt2, class OutIt, class Pr> OutIt merge(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest, Pr pred);
The first template function determines K
,
the number of elements to copy as (last1 - first1) +
(last2 - first2)
. It then alternately
copies two sequences, designated by iterators
in the ranges [first1, last1)
and [first2, last2)
and each
ordered by operator<
,
to form a merged sequence of length K
beginning
at dest
, also ordered by operator<
.
The function then returns dest + K
.
The merge occurs without altering the relative order of
elements within either sequence. Moreover, for any two elements
from different sequences that have
equivalent ordering,
the element from the ordered range [first1, last1)
precedes the other. Thus, the function merges two ordered
sequences to form another ordered sequence.
If dest
and first1
designate regions of storage,
the range [dest, dest + K)
must not
overlap the range [first1, last1)
.
If dest
and first2
designate regions of storage,
the range [dest, dest + K)
must not
overlap the range [first2, last2)
.
The function evaluates the ordering predicate X < Y
at most
K - 1
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
min
template<class Ty> const Ty& min(const Ty& left, const Ty& right); template<class Ty, class Pr> const Ty& min(const Ty& left, const Ty& right, Pr pred);
The first template function returns right
if
right < left
. Otherwise it returns left
.
Ty
need supply only a single-argument constructor and a
destructor.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
min_element
template<class FwdIt> FwdIt min_element(FwdIt first, FwdIt last); template<class FwdIt, class Pr> FwdIt min_element(FwdIt first, FwdIt last, Pr pred);
The first template function determines the lowest value of N
in the range [0, last - first)
such that,
for each M
in the range [0, last - first)
the predicate *(first + M) < *(first + N)
is false.
It then returns first + N
.
Thus, the function determines the lowest position
that contains the smallest value in the sequence.
The function evaluates the ordering predicate
X < Y
exactly
max((last - first) - 1, 0)
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
mismatch
template<class InIt1, class InIt2> pair<InIt1, InIt2> mismatch(InIt1 first1, InIt1 last1, InIt2 first2); template<class InIt1, class InIt2, class Pr> pair<InIt1, InIt2> mismatch(InIt1 first1, InIt1 last1, InIt2 first2, Pr pred);
The first template function determines the lowest value of
N
in the range [0, last1 - first1)
for which the predicate
!(*(first1 + N) == *(first2 + N))
is true.
Here, operator==
must perform a
pairwise comparison
between its operands.
It then returns
pair(first1 + N, first2 + N)
.
If no such value exists, N has the value last1 - first1
.
The function evaluates the predicate at most once
for each N
.
The second template function behaves the same, except that
the predicate is pred(*(first1 + N), *(first2 + N))
.
next_permutation
template<class BidIt> bool next_permutation(BidIt first, BidIt last); template<class BidIt, class Pr> bool next_permutation(BidIt first, BidIt last, Pr pred);
The first template function determines a repeating
sequence of permutations, whose initial permutation occurs when
the sequence designated by iterators
in the range [first, last)
is
ordered by operator<
.
(The elements are sorted in ascending order.)
It then reorders the elements in the sequence, by evaluating
swap(X, Y)
for the elements
X
and Y
zero or more times,
to form the next permutation. The function returns true only if the resulting
sequence is not the initial permutation. Otherwise, the resultant
sequence is the one next larger lexicographically than the original
sequence. No two elements may have
equivalent ordering.
The function evaluates swap(X, Y)
at most (last - first) / 2
.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
nth_element
template<class RanIt> void nth_element(RanIt first, RanIt nth, RanIt last); template<class RanIt, class Pr> void nth_element(RanIt first, RanIt nth, RanIt last, Pr pred);
The first template function reorders the sequence
designated by iterators in the
range [first, last)
such that for each N
in the range [0, nth - first)
and for each M
in the range [nth - first, last - first)
the predicate
!(*(first + M) < *(first + N))
is true. Moreover, for N
equal to
nth - first
and for each M
in the range (nth - first, last - first)
the predicate
!(*(first + M) < *(first + N))
is true. Thus, if nth != last
the element *nth
is in its proper position if elements of the entire sequence
were sorted in ascending order,
ordered by operator<
.
Any elements before this one belong before it in the sort sequence,
and any elements after it belong after it.
The function evaluates the ordering predicate X < Y
a number of times proportional to
last - first
, on average.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
partial_sort
template<class RanIt> void partial_sort(RanIt first, RanIt mid, RanIt last); template<class RanIt, class Pr> void partial_sort(RanIt first, RanIt mid, RanIt last, Pr pred);
The first template function reorders the sequence
designated by iterators in the
range [first, last)
such that for each N
in the range [0, mid - first)
and for each M
in the range (N, last - first)
the predicate
!(*(first + M) < *(first + N))
is true. Thus, the smallest mid - first
elements of the entire sequence are sorted in ascending order,
ordered by operator<
.
The order of the remaining elements is otherwise unspecified.
The function evaluates
the ordering predicate X < Y
a number of times proportional to at most
ceil((last - first) * log(mid - first))
.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
partial_sort_copy
template<class InIt, class RanIt> RanIt partial_sort_copy(InIt first1, InIt last1, RanIt first2, RanIt last2); template<class InIt, class RanIt, class Pr> RanIt partial_sort_copy(InIt first1, InIt last1, RanIt first2, RanIt last2, Pr pred);
The first template function determines K
,
the number of elements to copy as the smaller of
last1 - first1
and last2 - first2
. It then
copies and reorders K
elements of the sequence
designated by iterators in the
range [first1, last1)
such that
the K
elements copied to first2
are
ordered by operator<
.
Moreover, for each N
in the range [0, K)
and for each M
in the range (0, last1 - first1)
corresponding
to an uncopied element, the predicate
!(*(first2 + M) < *(first1 + N))
is true. Thus, the smallest K
elements of the entire sequence designated by iterators
in the range [first1, last1)
are copied and sorted in ascending order to the range
[first2, first2 + K)
.
The function evaluates
the ordering predicate X < Y
a number of times proportional to at most
ceil((last - first) * log(K))
.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
partition
template<class BidIt, class Pr> BidIt partition(BidIt first, BidIt last, Pr pred);
The template function reorders the sequence designated by iterators in the
range [first, last)
and determines the value
K
such that for each N
in the range
[0, K)
the predicate pred(*(first + N))
is true, and for each N
in the range
[K, last - first)
the predicate pred(*(first + N))
is false. The function then returns first + K
.
The predicate must not alter its operand.
The function evaluates pred(*(first + N))
exactly
last - first
times, and swaps at most
(last - first) / 2
pairs of elements.
pop_heap
template<class RanIt> void pop_heap(RanIt first, RanIt last); template<class RanIt, class Pr> void pop_heap(RanIt first, RanIt last, Pr pred);
The first template function reorders the sequence
designated by iterators in the
range [first, last)
to form a new heap,
ordered by operator<
and
designated by iterators in the range
[first, last - 1)
, leaving the original
element at *first
subsequently at *(last - 1)
.
The original sequence must designate an existing heap,
also ordered by operator<
. Thus, first !=
last
must be true and *(last - 1)
is the
element to remove from (pop off) the heap.
The function evaluates the ordering predicate
X < Y
at most
ceil(2 * log(last - first))
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
prev_permutation
template<class BidIt> bool prev_permutation(BidIt first, BidIt last); template<class BidIt, class Pr> bool prev_permutation(BidIt first, BidIt last, Pr pred);
The first template function determines a repeating
sequence of permutations, whose initial permutation occurs when
the sequence designated by iterators
in the range [first, last)
is the reverse of one
ordered by operator<
.
(The elements are sorted in descending order.)
It then reorders the elements in the sequence, by evaluating
swap(X, Y)
for the elements
X
and Y
zero or more times,
to form the previous permutation.
The function returns true only if the resulting
sequence is not the initial permutation. Otherwise, the resultant
sequence is the one next smaller lexicographically than the original
sequence. No two elements may have
equivalent ordering.
The function evaluates swap(X, Y)
at most (last - first) / 2
.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
push_heap
template<class RanIt> void push_heap(RanIt first, RanIt last); template<class RanIt, class Pr> void push_heap(RanIt first, RanIt last, Pr pred);
The first template function reorders the sequence
designated by iterators in the
range [first, last)
to form a new heap
ordered by operator<
.
Iterators in the range
[first, last - 1)
must designate an existing heap,
also ordered by operator<
. Thus, first !=
last
must be true and *(last - 1)
is the
element to add to (push on) the heap.
The function evaluates the ordering predicate
X < Y
at most
ceil(log(last - first))
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
random_shuffle
template<class RanIt> void random_shuffle(RanIt first, RanIt last); template<class RanIt, class Fn1> void random_shuffle(RanIt first, RanIt last, Fn1& func);
The first template function evaluates
swap(*(first + N), *(first + M))
once for
each N
in the range [1, last - first)
,
where M
is a value from some uniform random distribution
over the range [0, N]
.
Thus, the function randomly shuffles
the order of elements in the sequence.
The function evaluates M
and calls swap
exactly last - first - 1
times.
The second template function behaves the same, except that
M
is (Diff)func((Diff)N)
, where
Diff
is the type
iterator_traits<RanIt>::
difference_type
.
remove
template<class FwdIt, class Ty> FwdIt remove(FwdIt first, FwdIt last, const Ty& val);
The template function effectively assigns first
to
X
, then executes the statement:
if (!(*(first + N) == val)) *X++ = *(first + N);
once for each N
in the range
[0, last - first)
.
Here, operator==
must perform a
pairwise comparison
between its operands.
It then returns X
.
Thus, the function removes from the resulting sequence all elements for
which the predicate *(first + N) == val
is true,
without altering the relative order of remaining elements,
and returns the iterator value that designates the end of the
resulting sequence.
remove_copy
template<class InIt, class OutIt, class Ty> OutIt remove_copy(InIt first, InIt last, OutIt dest, const Ty& val);
The template function effectively executes the statement:
if (!(*(first + N) == val)) *dest++ = *(first + N);
once for each N
in the range
[0, last - first)
.
Here, operator==
must perform a
pairwise comparison
between its operands.
It then returns dest
.
Thus, the function removes from the resulting sequence all elements for
which the predicate *(first + N) == val
is true,
without altering the relative order of remaining elements,
and returns the iterator value that designates the end of the
resulting sequence.
If dest
and first
designate regions of storage,
the range [dest, dest + (last - first))
must not
overlap the range [first, last)
.
remove_copy_if
template<class InIt, class OutIt, class Pr> OutIt remove_copy_if(InIt first, InIt last, OutIt dest, Pr pred);
The template function effectively executes the statement:
if (!pred(*(first + N))) *dest++ = *(first + N);
once for each N
in the range
[0, last - first)
. It then returns dest
.
Thus, the function removes from the resulting sequence all elements for
which the predicate pred(*(first + N))
is true,
without altering the relative order of remaining elements,
and returns the iterator value that designates the end of the
resulting sequence.
If dest
and first
designate regions of storage,
the range [dest, dest + (last - first))
must not
overlap the range [first, last)
.
remove_if
template<class FwdIt, class Pr> FwdIt remove_if(FwdIt first, FwdIt last, Pr pred);
The template function effectively assigns first
to
X
, then executes the statement:
if (!pred(*(first + N))) *X++ = *(first + N);
once for each N
in the range
[0, last - first)
. It then returns X
.
Thus, the function removes from the resulting sequence all elements for
which the predicate pred(*(first + N))
is true,
without altering the relative order of remaining elements,
and returns the iterator value that designates the end of the
resulting sequence.
replace
template<class FwdIt, class Ty> void replace(FwdIt first, FwdIt last, const Ty& oldval, const Ty& newval);
The template function executes the statement:
if (*(first + N) == oldval) *(first + N) = newval;
once for each N
in the range
[0, last - first)
.
Here, operator==
must perform a
pairwise comparison
between its operands.
replace_copy
template<class InIt, class OutIt, class Ty> OutIt replace_copy(InIt first, InIt last, OutIt dest, const Ty& oldval, const Ty& newval);
The template function executes the statement:
if (*(first + N) == oldval) *(dest + N) = newval; else *(dest + N) = *(first + N)
once for each N
in the range
[0, last - first)
.
Here, operator==
must perform a
pairwise comparison
between its operands. The function returns the iterator value that
designates the end of the resulting sequence.
If dest
and first
designate regions of storage,
the range [dest, dest + (last - first))
must not
overlap the range [first, last)
.
replace_copy_if
template<class InIt, class OutIt, class Pr, class Ty> OutIt replace_copy_if(InIt first, InIt last, OutIt dest, Pr pred, const Ty& val);
The template function executes the statement:
if (pred(*(first + N))) *(dest + N) = val; else *(dest + N) = *(first + N)
once for each N
in the range
[0, last - first)
.
If dest
and first
designate regions of storage,
the range [dest, dest + (last - first))
must not
overlap the range [first, last)
. The function returns the iterator
value that designates the end of the resulting sequence.
replace_if
template<class FwdIt, class Pr, class Ty> void replace_if(FwdIt first, FwdIt last, Pr pred, const Ty& val);
The template function executes the statement:
if (pred(*(first + N))) *(first + N) = val;
once for each N
in the range
[0, last - first)
.
reverse
template<class BidIt> void reverse(BidIt first, BidIt last);
The template function evaluates
swap(*(first + N), *(last - 1 - N)
once for
each N
in the range [0, (last - first) / 2)
.
Thus, the function reverses the order of elements in the sequence.
reverse_copy
template<class BidIt, class OutIt> OutIt reverse_copy(BidIt first, BidIt last, OutIt dest);
The template function evaluates
*(dest + N) = *(last - 1 - N)
once for
each N
in the range [0, last - first)
.
It then returns dest + (last - first)
.
Thus, the function reverses the order of elements in the sequence
that it copies.
If dest
and first
designate regions of storage,
the range [dest, dest + (last - first))
must not
overlap the range [first, last)
.
rotate
template<class FwdIt> void rotate(FwdIt first, FwdIt mid, FwdIt last);
The template function leaves the value originally stored in
*(first + (N + (mid - first)) % (last - first))
subsequently stored in *(first + N)
for
each N
in the range [0, last - first)
.
Thus, if a ``left'' shift by one element leaves the element
originally stored in *(first + (N + 1) % (last - first))
subsequently stored in *(first + N)
, then the function
can be said to rotate the sequence either left by
mid - first
elements or right by last - mid
elements. Both [first, mid)
and [mid, last)
must be valid ranges. The function swaps at most last - first
pairs of elements.
rotate_copy
template<class FwdIt, class OutIt> OutIt rotate_copy(FwdIt first, FwdIt mid, FwdIt last, OutIt dest);
The template function evaluates
*(dest + N) = *(first + (N + (mid - first)) % (last - first))
once for each N
in the range [0, last - first)
.
Thus, if a ``left'' shift by one element leaves the element
originally stored in *(first + (N + 1) % (last - first))
subsequently stored in *(first + N)
, then the function
can be said to rotate the sequence either left by
mid - first
elements or right by last - mid
elements as it copies.
Both [first, mid)
and [mid, last)
must be valid ranges. The function returns the iterator value
that designates the end of the resulting sequence.
If dest
and first
designate regions of storage,
the range [dest, dest + (last - first))
must not
overlap the range [first, last)
.
search
template<class FwdIt1, class FwdIt2> FwdIt1 search(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2, FwdIt2 last2); template<class FwdIt1, class FwdIt2, class Pr> FwdIt1 search(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2, FwdIt2 last2, Pr pred);
The first template function determines the lowest value of
N
in the range [0,
(last1 - first1) - (last2 - first2))
such that
for each M
in the range [0, last2 - first2)
,
the predicate *(first1 + N + M) == *(first2 + M)
is true.
Here, operator==
must perform a
pairwise comparison
between its operands.
It then returns first1 + N
.
If no such value exists, the function returns last1
.
It evaluates the predicate at most (last2 - first2) *
(last1 - first1)
times.
The second template function behaves the same, except that
the predicate is pred(*(first1 + N + M), *(first2 + M))
.
search_n
template<class FwdIt1, class Diff2, class Ty> FwdIt1 search_n(FwdIt1 first1, FwdIt1 last1, Diff2 count, const Ty& val); template<class FwdIt1, class Diff2, class Ty, class Pr> FwdIt1 search_n(FwdIt1 first1, FwdIt1 last1, Diff2 count, const Ty& val, Pr pred);
The first template function determines the lowest value of
N
in the range [0,
(last - first) - count)
such that
for each M
in the range [0, count)
,
the predicate *(first + N + M) == val
is true.
Here, operator==
must perform a
pairwise comparison
between its operands.
It then returns first + N
.
If no such value exists, the function returns last
.
It evaluates the predicate at most count * (last - first)
times.
The second template function behaves the same, except that
the predicate is pred(*(first + N + M), val)
.
set_difference
template<class InIt1, class InIt2, class OutIt> OutIt set_difference(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest); template<class InIt1, class InIt2, class OutIt, class Pr> OutIt set_difference(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest, Pr pred);
The first template function alternately
copies values from two sequences designated by iterators in the ranges
[first1, last1)
and [first2, last2)
, both
ordered by operator<
,
to form a merged sequence of length K
beginning
at dest
, also ordered by operator<
.
The function then returns dest + K
.
The merge occurs without altering the relative order of
elements within either sequence. Moreover, for two elements
from different sequences that have
equivalent ordering
that would otherwise be copied to adjacent elements,
the function copies only
the element from the ordered range [first1, last1)
and skips the other. An element from one sequence that has
equivalent ordering with no element from the other sequence
is copied from the ordered range [first1, last1)
and skipped from the other.
Thus, the function merges two ordered
sequences to form another ordered sequence that is effectively
the difference of two sets.
If dest
and first1
designate regions of storage,
the range [dest, dest + K)
must not
overlap the range [first1, last1)
.
If dest
and first2
designate regions of storage,
the range [dest, dest + K)
must not
overlap the range [first2, last2)
.
The function evaluates the ordering predicate X < Y
at most
2 * ((last1 - first1) + (last2 - first2)) - 1
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
set_intersection
template<class InIt1, class InIt2, class OutIt> OutIt set_intersection(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest); template<class InIt1, class InIt2, class OutIt, class Pr> OutIt set_intersection(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest, Pr pred);
The first template function alternately
copies values from two sequences designated by iterators in the ranges
[first1, last1)
and [first2, last2)
, both
ordered by operator<
,
to form a merged sequence of length K
beginning
at dest
, also ordered by operator<
.
The function then returns dest + K
.
The merge occurs without altering the relative order of
elements within either sequence. Moreover, for two elements
from different sequences that have
equivalent ordering
that would otherwise be copied to adjacent elements,
the function copies only
the element from the ordered range [first1, last1)
and skips the other. An element from one sequence that has
equivalent ordering with no element from the other sequence
is also skipped.
Thus, the function merges two ordered
sequences to form another ordered sequence that is effectively
the intersection of two sets.
If dest
and first1
designate regions of storage,
the range [dest, dest + K)
must not
overlap the range [first1, last1)
.
If dest
and first2
designate regions of storage,
the range [dest, dest + K)
must not
overlap the range [first2, last2)
.
The function evaluates the ordering predicate X < Y
at most
2 * ((last1 - first1) + (last2 - first2)) - 1
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
set_symmetric_difference
template<class InIt1, class InIt2, class OutIt> OutIt set_symmetric_difference(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest); template<class InIt1, class InIt2, class OutIt, class Pr> OutIt set_symmetric_difference(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest, Pr pred);
The first template function alternately
copies values from two sequences designated by iterators in the ranges
[first1, last1)
and [first2, last2)
, both
ordered by operator<
,
to form a merged sequence of length K
beginning
at dest
, also ordered by operator<
.
The function then returns dest + K
.
The merge occurs without altering the relative order of elements within either sequence. Moreover, for two elements from different sequences that have equivalent ordering that would otherwise be copied to adjacent elements, the function copies neither element. An element from one sequence that has equivalent ordering with no element from the other sequence is copied. Thus, the function merges two ordered sequences to form another ordered sequence that is effectively the symmetric difference of two sets.
If dest
and first1
designate regions of storage,
the range [dest, dest + K)
must not
overlap the range [first1, last1)
.
If dest
and first2
designate regions of storage,
the range [dest, dest + K)
must not
overlap the range [first2, last2)
.
The function evaluates the ordering predicate X < Y
at most
2 * ((last1 - first1) + (last2 - first2)) - 1
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
set_union
template<class InIt1, class InIt2, class OutIt> OutIt set_union(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest); template<class InIt1, class InIt2, class OutIt, class Pr> OutIt set_union(InIt1 first1, InIt1 last1, InIt2 first2, InIt2 last2, OutIt dest, Pr pred);
The first template function alternately
copies values from two sequences designated by iterators in the ranges
[first1, last1)
and [first2, last2)
, both
ordered by operator<
,
to form a merged sequence of length K
beginning
at dest
, also ordered by operator<
.
The function then returns dest + K
.
The merge occurs without altering the relative order of
elements within either sequence. Moreover, for two elements
from different sequences that have
equivalent ordering
that would otherwise be copied to adjacent elements,
the function copies only
the element from the ordered range [first1, last1)
and skips the other.
Thus, the function merges two ordered
sequences to form another ordered sequence that is effectively
the union of two sets.
If dest
and first1
designate regions of storage,
the range [dest, dest + K)
must not
overlap the range [first1, last1)
.
If dest
and first2
designate regions of storage,
the range [dest, dest + K)
must not
overlap the range [first2, last2)
.
The function evaluates the ordering predicate X < Y
at most
2 * ((last1 - first1) + (last2 - first2)) - 1
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
sort
template<class RanIt> void sort(RanIt first, RanIt last); template<class RanIt, class Pr> void sort(RanIt first, RanIt last, Pr pred);
The first template function reorders the sequence
designated by iterators in the
range [first, last)
to form a sequence
ordered by operator<
.
Thus, the elements are sorted in ascending order.
The function evaluates
the ordering predicate X < Y
a number of times proportional to at most
ceil((last - first) * log(last - first))
.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
sort_heap
template<class RanIt> void sort_heap(RanIt first, RanIt last); template<class RanIt, class Pr> void sort_heap(RanIt first, RanIt last, Pr pred);
The first template function reorders the sequence
designated by iterators in the
range [first, last)
to form a sequence
that is
ordered by operator<
.
The original sequence must designate a heap, also
ordered by operator<
.
Thus, the elements are sorted in ascending order.
The function evaluates the ordering predicate
X < Y
at most
ceil((last - first) * log(last - first))
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
stable_partition
template<class BidIt, class Pr> BidIt stable_partition(BidIt first, BidIt last, Pr pred);
The template function reorders the sequence designated by iterators in the
range [first, last)
and determines the value
K
such that for each N
in the range
[0, K)
the predicate pred(*(first + N))
is true, and for each N
in the range
[K, last - first)
the predicate pred(*(first + N))
is false. It does so without altering the relative order of either
the elements designated by indexes
in the range [0, K)
or
the elements designated by indexes
in the range [K, last - first)
.
The function then returns first + K
.
The predicate must not alter its operand.
The function evaluates pred(*(first + N))
exactly
last - first
times, and swaps at most
ceil((last - first) * log(last - first))
pairs of elements. (Given enough temporary storage, it can
replace the swaps with at most
2 * (last - first)
assignments.)
stable_sort
template<class BidIt> void stable_sort(BidIt first, BidIt last); template<class BidIt, class Pr> void stable_sort(BidIt first, BidIt last, Pr pred);
The first template function reorders the sequence
designated by iterators in the
range [first, last)
to form a sequence
ordered by operator<
.
It does so without altering the relative order of
elements that have
equivalent ordering.
Thus, the elements are sorted in ascending order.
The function evaluates
the ordering predicate X < Y
a number of times proportional to at most
ceil((last - first) * (log(last - first))^2)
.
(Given enough temporary storage, it can evaluate the predicate
a number of times proportional to at most
ceil((last - first) * log(last - first))
.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
swap
template<class Ty> void swap(Ty& left, Ty& right);
The template function leaves the value originally stored in
right
subsequently stored in left
,
and the value originally stored in left
subsequently stored in right
.
swap_ranges
template<class FwdIt1, class FwdIt2> FwdIt2 swap_ranges(FwdIt1 first1, FwdIt1 last1, FwdIt2 first2);
The template function evaluates
swap(*(first1 + N), *(first2 + N))
once for
each N
in the range [0, last1 - first1)
.
It then returns first2 + (last1 - first1)
.
If first2
and first1
designate regions of storage,
the range [first2, first2 + (last1 - first1))
must not
overlap the range [first1, last1)
.
transform
template<class InIt, class OutIt, class Fn1> OutIt transform(InIt first, InIt last, OutIt dest, Fn1 func); template<class InIt1, class InIt2, class OutIt, class Fn2> OutIt transform(InIt1 first1, InIt1 last1, InIt2 first2, OutIt dest, Fn2 func);
The first template function evaluates
*(dest + N) = func(*(first + N))
once for each N
in the range [0, last - first)
.
It then returns dest + (last - first)
. The call
func(*(first + N))
must not alter
*(first + N)
.
The second template function evaluates
*(dest + N) = func(*(first1 + N), *(first2 + N))
once for each N
in the range [0, last1 - first1)
.
It then returns dest + (last1 - first1)
. The call
func(*(first1 + N), *(first2 + N))
must not alter
either *(first1 + N)
or *(first2 + N)
.
unique
template<class FwdIt> FwdIt unique(FwdIt first, FwdIt last); template<class FwdIt, class Pr> FwdIt unique(FwdIt first, FwdIt last, Pr pred);
The first template function effectively assigns first
to
X
, then executes the statement:
if (N == 0) ++X; else if (!(*X == *(first + N))) *X++ = V;
once for each N
in the range
[0, last - first)
. It then returns X
.
Thus, the function repeatedly removes from the resulting sequence
the second of a pair of elements for
which the predicate *(first + N) == *(first + N + 1)
is true,
until only the first of a sequence of elements survives
that satisfies the comparison.
Here, operator==
must perform a
pairwise comparison
between its operands.
It does so without altering the relative order of remaining elements,
and returns the iterator value that designates the end of the
resulting sequence. For a non-empty sequence,
the function evaluates the predicate
last - first - 1
times.
The second template function behaves the same, except that it executes the statement:
if (N == 0) ++X; else if (!pred(*X, *(first + N))) *X++ = V;
Note that for a sequence designated by the range [first, last)
and ordered by pred
,
you can remove all but the first of a sequence of elements that have
equivalent ordering by calling
unique(first, last,
not2(pred))
.
unique_copy
template<class InIt, class OutIt> OutIt unique_copy(InIt first, InIt last, OutIt dest); template<class InIt, class OutIt, class Pr> OutIt unique_copy(InIt first, InIt last, OutIt dest, Pr pred);
The first template function effectively executes the statement:
if (N == 0 || !(*(first + N) == V)) V = *(first + N), *dest++ = V;
once for each N
in the range
[0, last - first)
. It then returns dest
.
Thus, the function repeatedly removes from the resulting sequence
the second of a pair of elements for
which the predicate *(first + N) == *(first + N - 1)
is true,
until only the first of a sequence of equal elements survives.
Here, operator==
must perform a
pairwise comparison
between its operands.
It does so without altering the relative order of remaining elements,
and returns the iterator value that designates the end of the
copied sequence. For a non-empty sequence,
the function evaluates the predicate
last - first - 1
times.
If dest
and first
designate regions of storage,
the range [dest, dest + (last - first))
must not
overlap the range [first, last)
.
The second template function behaves the same, except that it executes the statement:
if (N == 0 || !pred(*(first + N), V)) V = *(first + N), *dest++ = V;
upper_bound
template<class FwdIt, class Ty> FwdIt upper_bound(FwdIt first, FwdIt last, const Ty& val); template<class FwdIt, class Ty, class Pr> FwdIt upper_bound(FwdIt first, FwdIt last, const Ty& val, Pr pred);
The first template function determines the highest value of N
in the range (0, last - first]
such that,
for each M
in the range [0, N)
the predicate !(val < *(first + M))
is true,
where the elements designated by iterators
in the range [first, last)
form a sequence
ordered by operator<
.
It then returns first + N
.
Thus, the function determines the highest position
before which val
can be inserted in the sequence
and still preserve its ordering.
The function evaluates the ordering predicate X < Y
at most
ceil(log(last - first)) + 1
times.
The second template function behaves the same, except that
it replaces operator<(X, Y)
with
pred(X, Y)
.
See also the Table of Contents and the Index.
Copyright © 1994-2002 by P.J. Plauger. Portions derived from work copyright © 1994 by Hewlett-Packard Company. All rights reserved.