QNX" Momentics ~ Development
Suite

High Availability Toolkit
Developer’'s Guide

For QNX” Neutrind’ 6.3

0 2005, QNX Software Systems

[J 2001 - 2005, QNX Software Systems. All rights reserved.
Printed under license by:

QNX Software Systems Co.

175 Terence Matthews Crescent
Kanata, Ontario

K2M 1w8

Canada

Voice: +1 613 591-0931

Fax: +1 613 591-3579

Email: i nf o@nx. com

Web: htt p: // www. gnx. conf

Electronic edition published 2005.
Technical support options

To obtain technical support for any QNX product, visit tfiechnical Support section in theServices area on our website
(www. gnx. com). You'll find a wide range of support options, including our free web-bd3ead oper Support Center.

QNX, Momentics, Neutrino, and Photon microGUI are registered trademarks of QNX Software Systems in certain jurisdictions. All other trademarks and
trade names belong to their respective owners.

Contents

About This Guide IX

1 Introduction 1
Where’s the problem? 3
A software foundation for HA 3

2 What’s in the HAT? 7
What you get 9

3 The QNX Approachto HA 11
The reset “solution” 13
Traditional RTOS architecture 13
Modularity means granularity 14
Intrinsic HA 15

4 Using the High Availability Manager 17
Introduction 19
HAM hierarchy 20

Entities 20
Conditions 22
Actions 24

Action Fail actions 27
Multistaged recovery 29
State of the HAM 29
Example of the view shown ihpr oc/ ham 30

October 6, 2005 Contents i

0 2005, QNX Software Systems

iv

Contents

HAM API 33

Connect/disconnect functions
Attach/detach functions 34
Entity functions 39

Condition functions 40
Action functions 43

Action fail functions 46
Functions to operate on handles

A clientexample 49
Starting and stopping a HAM 53

StoppingaHAM 54
Control functions 54
Verbosity control 55

49

Publishing autonomously detected conditions 56

Publish state transitions 57
Publish other conditions 57

Subscribing to autonomously published conditions 58

Trigger based on state transitions

58

Trigger based on specific published condition 58

HA-awareness functions 63
I/O covers 63
Convenience functions 65

A simple example 66
State-reconstruction example 69

HAM API Reference 73
hamactioncontrol() 80
hamactionexecute() 83

Using the Client Recovery Library
Introduction 61

MsgSend*(Yunctions 62
Other covers and convenience functions

63

59

October 6, 2005

[0 2005, QNX Software Systems

October 6, 2005

hamaction fail_execute() 87
hamactionfail_log() 90

ham.action fail_notify_pulse() hamaction fail_notify_pulsenode()
93

ham.action fail_notify_signal(), hamaction fail _notify_signalL.node()
96

hamaction fail_waitfor() 99

hamaction handle() hamaction handlenode() 102
hamaction handlefree() 105

hamaction heartbeathealthy() 107

hamactionlog() 109

ham.action.notify_pulse() hamaction.notify_pulsenode() 112
ham action notify signal(), ham action notify_signalnode() 116
hamactionremove() 120

hamactionrestart() 122

hamactionwaitfor() 126

hamattach() hamattachnode() 129

hamattachself() 134

ham.condition() 137

hamentity control() 141

ham.conditionhandle() hamconditionhandlenode() 144
ham conditionhandlefree() 147

ham.conditionraise() 149

hamconditionremove() 152

ham.conditionstate() 154

ham.connect() ham.connectnd(), hamconnectnode() 157
hamdetach() 160

hamdetachname() hamdetachnamenode() 162
hamdetachself() 164

hamdisconnect()hamdisconnecind(), hamdisconnecinode()
166

hamentity() hamentitynode() 168
hamentity.conditionraise() 171

Contents V

0 2005, QNX Software Systems

ham entity conditionstate() 173

hamentity control() 175

ham.entity handle() hamentity handlenode() 178
hamentity handlefree() 181

hamheartbeat() 183

hamstop() hamstopnd(), hamstopnode() 185
ham _verbose() 187

7 Client Recovery Library Reference 189
ha attach() 193
haclose() 196
ha_connectionctrl() 198
ha ConnectAttach()ha_ ConnectAttachr() 201
ha_ConnectDetach(ha ConnectDetach() 204
ha_creat() ha.creat64() 206
ha detach() 208
hadup() 210
hafclose() 212
hafopen() 214
ha open() haopen64() 216
ha_ ReConnectAttach() 218
hareopen() 220

A Examples 223
Simple restart 225
Compound restart 226
Death/condition notification 228
Heartbeating clients (liveness detection) 231
The process is made to heartbeat 236
Process starvation 238
Thread 2 is made to heartbeat 242

Glossary 245

Vi Contents October 6, 2005

[0 2005, QNX Software Systems

Index 251

October 6, 2005 Contents Vil

About This Guide

October 6, 2005 About This Guide iX

[0 2005, QNX Software Systems

The QNX High Availability Toolkit (HAT) Developer’'s Guide
describes the components of the HAT and how to build robust
HA-aware software running on the QNM\eutrind” realtime
operating system.

The following table may help you find information quickly in this
guide:

If you want to: Goto:

Find the introduction Introduction
Know the main components of the HAT ~ What'’s in the HAT?

Understand the benefits of a The QNX Approach to HA
software-oriented approach to HA

Get an overview of the HAM and Using the High Availability Manager
Guardian “watchdogs”

Find out which standard QNX library Using the Client Recovery Library
functions have HA covers

Look up a convenience function (e.g. Client Recovery Library Reference
ha_recover()

Look up a HAM API function (e.g. HAM API Reference
hamattach()

See sample code listings for handling The Examples appendix
various HA scenarios

Look up a special term used in this Glossary
guide

U For an overview of the QNX Neutrind’ RTOS, see th&ystem
Architecturemanual in the OS documentation set.

October 6, 2005 About This Guide Xi

Chapter 1
Introduction

In this chapter...

Where’s the problem? 3
A software foundation for HA 3

October 6, 2005 Chapter 1 e Introduction 1

0 2005, QNX Software Systems Where’s the problem?

Where’s the problem?

The ideal High Availability (HA) system is one that remains up and
runningcontinuouslyuninterrupted for an indefinite period of time.

In practical terms, HA systems strive for “five nines” availability, a
metric referring to the percentage of uptime a system can sustain in a
year — 99.999% uptime amounts to about five minutes downtime per
year.

Obviously, systems fail. For one reason or another, systems aren't as
available for use as their users and designers would like them to be.
Of all the possible causes of system failure — power outages,
component breakdowns, operator errors, software faults, etc. — the
lion’s share belongs to software faults.

Many HA systems try to address the problem of system failure by
turning tohardwaresolutions such as:

e rugged hardware

e redundant systems/components

e hot-swap CompactPCl components
e cClustering

But if so many system crashes are causeddifjwarefaults, then
throwing more hardware at the problem may not solve it at all. What
if the system’s memory state isn't properly restored after recovery?
What if yours is an HA system (e.g. a consumer appliance) where
redundant hardware simply isn’t an option? Or what if your particular
HA system is based on a custom chassis for which a PCl-based HA
“solution” would be pointless?

A software foundation for HA

October 6, 2005

Most system designers wouldn't think of using a “standard” desktop
PC as the foundation for an effective HA system. Apart from the
reliability issues arising from the hardware itself, thaderlying
softwareisn’'t meant for continuous operation. When desktop

Chapter 1 e Introduction 3

A software foundation for HA 0 2005, QNX Software Systems

4

operating systems and applications need to be patched or upgraded,
most users expect to reboot their machines. Unfortunately, they might
also have become accustomed to rebooting as part of their daily
operations!

But in an HA system, various software components may need to be
upgradedn a live systemindividual modules should be readily
accessible for analysis and repair, without jeopardizing the
availability of the system itself.

In our view, effective HA systems must address the main problem —
software faults — through a modular approach to system design and
implementation. Based on a microkernel architecture, the ONX
Neutrind’ RTOS not only helps isolate problem areas throughout the
system, but also ensures complete independence of system
components. Each component enjoys full MMU-based memory
protection. And system-level modules such as device drivers benefit
from the same isolation and protection as any other process. You can
start and stop a driver, networking protocol, filesystem, etc., without
touching the kernel. A microkernel RTOS inherently keepssihgle
point of failure(SPOF) number as low as possible.

The QNX High Availability Toolkit (HAT) provides a reliable
software infrastructure on which to build highly effective HA
systems. In addition to support for hardware-oriented HA solutions
(e.g. CompactPCl as well as custom hardware), you also have the
tools to isolate and even repair software faults before they occur
throughout your entire system.

For example, suppose a device driver crashes because it tried to write
to memory that was allocated to another process. The MMU will alert
the QNX-' Neutrind® microkernel, which in turn will alert the High
Availability Manager (HAM). A HAM can then restart the driver. In
addition, a dump file can be generated for postmortem analysis.

Viewing this dump file, you can immediately determine which line of
code is the culprit and then prepare a fix that you can download to all
other units in the field before they run into the same bug. With a
conventional OS, a rogue driver may run for days before the system

Chapter 1 e Introduction October 6, 2005

0 2005, QNX Software Systems A software foundation for HA

October 6, 2005

becomes corrupted enough to fail — and then it's too late to identify
the problem, let alone dynamically install an upgraded driver!

A HAM can perform a multistage recovery, executing several actions

in a certain order. This technique is useful whenever strict
dependencies exist between various actions in a sequence, so that the
system can restore itself to the state it was in before a failure.

Equipped with the QNX Neutrind’ RTOS itself, as well as the

special tools and API in the HAT, you should be able to anticipate the
kinds of problems that are likely to happen, isolate them, and then
plan accordingly. In other words, assuming that failure will occur, you
can now design for it and build systems that can recover intelligently.

Chapter 1 e Introduction 5

Chapter 2
What's in the HAT?

In this chapter...
What you get 9

October 6, 2005 Chapter 2 e What's in the HAT? 7

0 2005, QNX Software Systems What you get

What you get

The QNX High Availability Toolkit (HAT) consists of the following
main components:

QNX" Neutrind’ realtime operating system

We're not just trying to be thorough by listing the OS
itself here! And it’s first in the list for good reason —
the QNX-' Neutrind® microkernel architecture
inherently provides a robust environment for building
highly reliable applications. Many of the particular
features required in an HA application — system
stability, isolation of software modules, dynamic
upgrading of software components, etc. — are already
included in the OS.

The QNX Neutrina® microkernel provides
system-wide stability by offering full memory
protection to all processes. And there’s very little code
running in kernel mode that could cause the
microkernel itself to fail. All individual processes,
whether applications or OS services — including
device drivers — can be started and stopped
dynamically, without jeopardizing system uptime.

For more on the suitability of the QNXNeutrind”
RTOS for HA, see the next chapter in this guide.

High Availability Manager (HAM)

A HAM is a “smart watchdog” — a highly resilient
manager process that can monitor your system and
perform multistage recovery whenever system services
or processes fail or no longer respond.

As a self-monitoring manager, a HAM is resilient to
internal failures. If, for whatever reason, the HAM
itself is stopped abnormally, it can immediately and
completelyreconstruct its own statiey handing over
to a mirror process called the Guardian.

October 6, 2005 Chapter 2 » What's in the HAT? 9

What you get 0 2005, QNX Software Systems

For details on the HAM, see the chapter Using the
High Availability Manager in this guide.

HAM API The HAM API library of more than 3%ham*()
functions gives you a simple mechanism to talk to a
HAM. This API is implemented as a thread-safe
library you can link against.

You use the API to interact with a HAM in order to
begin monitoring processes and to set up the various
conditions (e.g. the death of a server) that will trigger
certain recovery actions.

For descriptions of the functions in the HAM API, see
the HAM API Reference chapter in this guide.

Client Recovery Library

The client recovery library provides a drop-in
enhancement solution for many standairdc 1/0
operations. The HA library’s cover functions provide
automatic recovery mechanisms for failed connections
that can be recovered from in an HA scenario.

For descriptions of the client library functions, see the
Client Recovery Library Reference chapter in this
guide.

Examples You'll find several sample code listings (and source)
that illustrate such tasks as restarting, heartbeating,
and more. Since the examples deal with some typical
fault-recovery scenarios, you may be able to easily
tailor this source for your HA applications.

For details, see the Examples appendix in this guide.

N You should purchase the source code for HAT, available separately in
the Automotive and Networking bundles.

10 Chapter 2 e« What's in the HAT? October 6, 2005

Chapter 3
The QNX Approach to HA

In this chapter...

The reset “solution” 13
Modularity means granularity 14

October 6, 2005 Chapter 3 « The QNX Approachto HA 11

0 2005, QNX Software Systems The reset “solution”

The reset “solution”

Traditional approaches to dealing with software malfunctions have
included such mechanisms as:

Hardware/software watchdog

This is a piece of hardware that's known to be fault-free. It
triggers code to check the sanity of the system. This sanity
check usually involves examining a set of registers that are
continuously updated by properly functioning software
components. But when one of the components isn’t working
properly, the system is reset.

Manual operator intervention

Many systems aren’t designed to include an automatic fault
detection, but rely instead on a manual approach — an operator
who monitors the health of the system. If the system state is
deemed invalid, then the operator takes the appropriate action,
which usually includes a system reset.

Memory constraint faulting

Several operating systems (and hardware platforms) include
features that let you generate a fault when a program accesses
memory that isn’'t yours. Once this occurs, the program
becomes unreliable. With most realtime executives, the result is
that the system must be reset in order to return to a sane
operating state.

All of these approaches are relatively successful at detecting a
software fault. But the net result of this detection, especially when
faced with a multitude of faults in several potentially separate
software components, is the rather drastic action of a system reset.

Traditional RTOS architecture

One of the principal reasons for this lack of graceful recovery is the
monolithic architecture of a traditional realtime embedded system. At
the heart of most of these systems ligealtime executive— a single

October 6, 2005 Chapter 3 « The QNX Approach to HA 13

Modularity means granularity 0 2005, QNX Software Systems

memory image consisting of the RTOS itself and often numerous
tasks.

Since all tasks — including critical system-level services — share the
very same address space, when the integrity of one task is called into
guestion, the integrity of the entire system is at risk. If a single
component such as a device driver fails, the RTOS itself could fail. In
HA terms, each software component becomes a single point of failure
(SPOF).

The only sure recovery mechanism in such an environment is to reset
the system and start from scratch.

Such realtime systems present a very low granularity of fault recovery,
making the HA procedure of planning for and dealing with failure
seemingly straightforward (a system reset), yet often very costly (in
terms of downtime, system restoration, etc.). For some embedded
applications, a reset may involve a specialized, time-consuming
procedure in order to restore the system to full operation in the field.

Modularity means granularity

What is really needed here is a more modular approach. System
architects often de-couple and modularize their systems from a
design/implementation point of view. Ideally, these modules would be
the focus not only of the design, but also of the fault-recovery process,
so that if one module malfunctions, then only that module would
require a reset — the integrity of the rest of the system would remain
intact. In other words, that particular module wouldn’t be a SPOF.

This modular approach would also help us address the fact that the
mean time to repair (MTTR) for a system reboot is a magnitude larger
than the MTTR for replacing a single running task.

This type of increased granularity on the recovery of individual tasks
is precisely what the QNX Neutrind’ microkernel offers. The
architecture of the QNX Neutrind” realtime operating system itself
provides so many intrinsic HA features that many QNX users take
them for granted and often design recoverability into their systems
without giving it a second thought.

14 Chapter 3 e« The QNX Approach to HA October 6, 2005

0 2005, QNX Software Systems Modularity means granularity

Let’s look briefly at the key features of the QNXNeutrind’ RTOS
and see how system designers can easily make use of these builtin
HA-ready features to build effective HA systems.

Intrinsic HA

Three key factors of the QNXNeutrind” architecture contribute
directly to intrinsic HA:

QNX" Neutrind® microkernel

Only a few essential services are provided (e.g. message
passing and realtime scheduling). The result is a robust,
dependable system — fewer lines of code in the kernel reduce
the probability of OS errors.

Also, the kernel’s fixed-priority preemptive scheduler ensures a
predictablesystem — there are fewer HA software paths to
analyze and deal with separately.

POSIX process model

This means full MMU-supported memory protection between
system processes, making it easy to isolate and protect
individual tasks.

The process model also offestgnamicprocess creation and
destruction, which is especially important for HA systems,
because you can more readily perform fault detection, recovery,
and live upgrades in the field.

The POSIX API provides a standard programming environment
and can help achieve system simplification, validation, and
verification.

In addition, the process model lets you easily monitor external
tasks, which not only aids in fault detection and diagnosis, but
also in service distribution.

Message passing

In the QNX Neutrind” realtime operating system, all
interprocess communication happens through standard message

October 6, 2005 Chapter 3 « The QNX Approachto HA 15

Modularity means granularity 0 2005, QNX Software Systems

passing. For HA systems, this facilitates task decoupling, task
simplification, and service distribution.

Local and network-remote messagingdsnticaland
practically transparent for the application. In a
network-distributed HA system, the QNX message-based
approach fosters replication, redundancy, and system
simplification.

These represent some of the more prominent HA-oriented features
that become readily apparent when the QN¥eutrina® RTOS
forms the basis of an HA design.

16 Chapter 3 « The QNX Approach to HA October 6, 2005

Chapter 4
Using the High Availability Manager

In this chapter. ..

Introduction 19

HAM hierarchy 20

State of the HAM 29

HAM API 33

A clientexample 49

Starting and stopping a HAM 53

October 6, 2005 Chapter 4 ¢ Using the High Availability Manager 17

0 2005, QNX Software Systems Introduction

Introduction

October 6, 2005

The High Availability Manager (HAM) provides a mechanism for
monitoring processes and services on your system. The goal is to
provide a resilient manager (or “smart watchdog”) that can perform
multistage recovery when system services or processes fail, do not
respond, or provide an unacceptable level of service. The HA
framework, including the HAM, uses a simple publish/subscribe
mechanism to communicate interesting system events between
interested components in the system. By automatically integrating
into the native networking mechanism (QNET), this framework
transparently extends a local monitoring mechanism to a network.

The HAM acts as a conduit through which the rest of the system can
both obtain and deliver information regarding the state of the system
as a whole. The system could be a single node or a collection of
nodes connected via QNET. The HAM can monitor specific processes
and can control the behavior of the system when specific components
fail and need to be recovered. The HAM also permits external
detectors to report interesting events to the system, and can associate
actions with the occurrence of these events.

In many HA systems, single points of failure (SPOFs) must be
identified and dealt with carefully. Since the HAM maintains
information about the health of the system and also provides the basic
recovery framework, the HAM itself must never become a SPOF.

As a self-monitoring manager, the HAM is resilient to internal
failures. If, for whatever reason, the HAM itself is stopped
abnormally, it can immediately and completely reconstruct its own
state. A mirror process called the Guardian perpetually stands ready
and waiting to take over the HAM's role. Since all state information is
maintained in shared memory, the Guardian can assume the exact
same state that the original HAM was in before the failure.

But what happens if the Guardian terminates abnormally? The
Guardian (now the new HAM) creates a new Guardian for itself
before taking the place of the original HAN®Practically speaking,

therefore, one can't exist without the other.

Chapter 4 » Using the High Availability Manager 19

HAM hierarchy 0 2005, QNX Software Systems

Since the HAM/Guardian pair monitor each other, the failure of either
one can be completely recovered from. The only way to stop HAM is
to explicitly instruct it to terminate the Guardian and then to terminate
itself.

HAM hierarchy

HAM consists of three main components:
e Entities
e Conditions

e Actions

Entities

Entitiesare the fundamental units of observation/monitoring in the
system. Essentially, an entity is a procgssl), As processes, all

entities are uniquely identifiable by theiids. Associated with each

entity is a symbolic name that can be used to refer to that specific
entity. Again, the names associated with entities are unique across the
system. Managers are currently associated with a node, so uniqueness
rules apply to a node. As we’'ll see later, this uniqueness requirement

is very similar to the naming scheme used in a hierarchical filesystem.

There are three basic entity types:
e Self-attached

e Externally attached

e Global

Self-attachedkntities

These are processes that explicitly choose to be
HA-aware. These processes use the
hamattachself()andhamdetachself() functions
to connect to and disconnect from a HAM.

20 Chapter 4 e Using the High Availability Manager October 6, 2005

[0 2005, QNX Software Systems

HAM hierarchy

Self-attached processes are compiled against the
HAM API library, and the lifetime of the
monitoring is from the time of thhamattach.self()
call to the time of thdhamdetachself() call.

Self-attached entities can also choose to send
heartbeats to a HAM, which will then monitor them
for failure. Since arbitrary processes on the system
aren’t necessarily “trackable” for failure (i.e.

they’re not in session 1, not child processes, etc.),
you can use this heartbeat mechanism to monitor
such processes.

Self-attached entities can, on their own, decide at
exactly what point in their lifespan they want to be
monitored, what conditions they want acted upon,
and when they want to stop the monitoring. In other
words, this is a situation where a process says, “Do
the following if | die.”

Externally attacheantities

Global entity

October 6, 2005

These are generic processes in the system that are
being monitored. These could be arbitrary
daemons/service providers whose health is deemed
important. This method is useful for the case where
Process A says, “Tell me when Process B dies” but
Process B needn’t know about this at all.

A global entity is really just a place holder for
matching any entity. It can be used to associate
actions that will be triggered when an interesting
event is detected with respect to any entity on the
system. The term global refers to the set of entities
being monitored in the system. This permits one to
say things like “when any process dies or when any
process misses a heartbeat, do the following”. The
global entity is never added or removed, but is only
referred to. Conditions can be added/removed to the

Chapter 4 » Using the High Availability Manager 21

HAM hierarchy [2005, QNX Software Systems

global entity as usual, and actions added/removed
from any of the conditions.

Thedunper process is normally used to obtain core images of
processes that terminate abnormally as a result of performing any
illegal operations. A HAM receives natification of such terminations
from dunper . In addition the HAM also receives notification, from

the system, of the termination of any process that is in session 1. This
includes daemon processes that paticmgrdaemon(thereby

detaching themselves from their controlling terminal.

Conditions

Conditionsare associated with entities. These conditions represent
the state of the entity. Here are some examples of conditions:

Condition Description

CONDDEATH The entity has died.

CONDABNORMALDEATH The entity has died an abnormal
death. This condition is triggered
whenever an entity dies by a
mechanism that results in the
generation of a core file (seenper
in the Utilities Referencéor details).

CONDDETACH The entity that was being monitored
is detaching. This ends HAM’s
monitoring of that entity.

CONDATTACH An entity for whom a place holder
was previously created (someone
has subscribed to events relating to
this entity), has joined the system.
This is also the start of the
monitoring of the entity by a HAM.

continued. ..

22 Chapter 4 « Using the High Availability Manager October 6, 2005

0 2005, QNX Software Systems HAM hierarchy

October 6, 2005

Condition Description

CONDHBEATMISSEDHIGH The entity missed sending a
heartbeat message specified for a
condition of “high” severity.

CONDHBEATMISSEDLOW The entity missed sending a
heartbeat message specified for a
condition of “low” severity.

CONDRESTART The entity was restarted. This
condition is trueafter the entity is
successfully restarted.

CONDRAISE An externally detected condition is
reported to a HAM. Subscribers can
associate actions with these
externally detected conditions.

CONDSTATE An entity reports a state transition to
a HAM. Subscribers can associate
actions with specific state
transitions.

CONDANY This condition type matches any
condition type. It can be used to
associate the same actions with one
of many conditions.

The conditions described above with the exceptioGONDSTATE
CONDRAISEandCONDANY are automatically detected and/or
triggered by a HAM (i.e. the HAM is the publisher of the conditions).
The CONDSTATEandCONDRAISEconditions are published to a

HAM by external detectors. For all conditions, subscribers can
associate with lists of actions that will be performed in sequence
when the condition is triggered. Both tR®NDSTATEand
CONDRAISEconditions provide filtering capabilities so the
subscribers can selectively associate actions with individual
conditions, based on the information published.

Chapter 4 » Using the High Availability Manager 23

HAM hierarchy

[2005, QNX Software Systems

Actions

Conditions are also associated with symbolic names, which also need
to be unique within an entity.

The HAM architecture igxtensible Several conditions are
automatically detected by a HAM. Also, by using fiendition Raise
mechanism other components in the system can notify a HAM of
interesting events in the system. These conditions can be fully
customized. Also, by studying the source code, it is possible to add
the capability of detecting other conditions into the HAM (e.g. low
memory, high CPU utilization, low disk space, etc.) to suit your HA
application.

Actionsare associated with conditions. A condition can contain
multiple actions. The actions are executed whenever the
corresponding condition is true. Actions within a condition execute in
FIFO order (the order in which they were added into the condition).
Multiple conditions that are true are triggered simultaneously in an
arbitrary order. Conditions specified d€ONDINDEPENDENTwill
execute in a separate thread of execution, in parallel with other
conditions. (See the section Condition functions in this chapter.)

The HAM API includes several functions for different kinds of
actions:

Action Description
hamactionrestart() This action restarts the entity.
hamactionexecute() Executes an arbitrary command

(e.g. to start a process).

continued. ..

24 Chapter 4 « Using the High Availability Manager October 6, 2005

0 2005, QNX Software Systems

HAM hierarchy

Action

Description

hamaction_notify_pulse()

hamaction_notify_signal()

hamaction_notify_pulsenode()

Notifies some process that this
condition has occurred. This
notification is sent using a
specificpulsewith a value
specified by the process that
wished to receive this notify
message. Pulses can be
delivered to remote nodes, by
specifying the appropriate node
specifier.

Notifies some process that this
condition has occurred. This
notification is sent using a
specificrealtime signalith a
value specified by the process
that wished to receive this
notify message. Signals can be
delivered to remote nodes, by
specifying the appropriate node
specifier.

This is the same as the
hamaction.notify_pulse()
described above, except that the
node name specified for the
recipient of the pulse can be
given using the fully qualified
node name instead of the node
identifier.

continued. ..

October 6, 2005 Chapter 4 » Using the High Availability Manager 25

HAM hierarchy 0 2005, QNX Software Systems

Action Description

hamaction.notify_signalLnode() This is the same as the
hamaction.notify_signal()
described above, except that the
node name specified for the
recipient of the signal can be
given using the fully qualified
node name instead of the node
identifier.

ham actionwaitfor() This action lets you insert
delays between consecutive
actions in a sequence. You can
also wait for certain names to
appear in the namespace.

hamaction heartbeathealthy() Resets the heartbeat mechanism
for an entity that had previously
missed sending heartbeats, and
had triggered a missed
heartbeat condition, but has
now recovered.

hamaction.log() This allows one to insert a
customizable verbosity message
into the activity log maintained
by a HAM.

Actions are also associated with symbolic names, which are unique
within a specific condition.

O Again, the HAM architecture is extensible, so you may add your own
action functions as you see fit.

26 Chapter 4 « Using the High Availability Manager October 6, 2005

[2005, QNX Software Systems HAM hierarchy

Action Fail actions

When an action in a list of actions fails, one can specify an alternate
list of actions that will be performed to recover from the failure of the
given action. These actions are referred taetson fail actions, and
are associated with each individual action. The acfahactions are
essentially the same set of actions that would normally be executed
with the exception ohamaction restart()and

hamaction heartbeathealthy(). Here’s the list of action fail actions:

Action Description

hamaction fail_execute() Executes an arbitrary
command (e.g. to start a
process).

hamaction fail _notify_pulse() Notifies some process that

this condition has occurred.
This notification is sent
using a specific pulse with
a value specified by the
process that wished to
receive this notify message.
Pulses can be delivered to
remote nodes by specifying
the appropriate node
specifier.

continued. ..

October 6, 2005 Chapter 4 » Using the High Availability Manager 27

HAM hierarchy

[2005, QNX Software Systems

Action

Description

hamaction fail _notify_signal()

ham action fail _notify_pulsenode()

hamaction fail _notify_signalLnode()

28 Chapter 4 e Using the High Availability Manager

Notifies some process that
this condition has occurred.
This notification is sent
using a specific realtime
signal with a value
specified by the process
that wished to receive this
notify message. Signals can
be delivered to remote
nodes by specifying the
appropriate node specifier.

This is the same as the
ham.action fail _notify_pulse()
described above, except
that the node name
specified for the recipient

of the pulse can be given
using the fully qualified
node name instead of the
node identifier.

This is the same as the
hamaction fail _notify_signal()
described above, except
that the node name
specified for the recipient

of the signal can be given
using the fully qualified

node name instead of the
node identifier.

continued. ..

October 6, 2005

0 2005, QNX Software Systems State of the HAM

Action Description

hamaction fail _waitfor() This action lets you insert
delays between consecutive
actions in a sequence. You
can also wait for certain
names to appear in the
namespace.

hamaction fail log() This allows one to insert a
customizable verbosity
message into the activity
log maintained by a HAM.

Multistaged recovery

This complete mechanism allows us to perform recovery of a failure
of a single service or process in a multi-staged fashion.

For example, suppose you've starfedd nf s2 (the NFS filesystem)
and then mounted a few directories from multiple sources. You can
instruct HAM to restart s- nf s2 upon failure, and also to remount
the appropriate directories as required after restarting the NFS
process. And if during the lifespan b§- nf s2 some directories are
unmounted, you can remove those particular actions from the set of
actions to be performed.

As another example, suppase- net (network I/O manager) were to
die. We can tell a HAM to restart it and also to load the appropriate
network drivers (and maybe a few more services that essentially
depend on network services in order to function).

State of the HAM

October 6, 2005

Effectively, a HAM's internal state is like a hierarchical filesystem,
where entities are like directories, conditions associated with those
entities are like subdirectories, and actions inside those conditions are
like leaf nodes of this tree structure.

Chapter 4 » Using the High Availability Manager 29

State of the HAM 0 2005, QNX Software Systems

A HAM also presents this state as a read-only filesystem under
/ proc/ ham As a result, arbitrary processes can also view the current
state (e.g. you can da / proc/ ham.

Besides presenting a view of the state as a filesystem, for each item
(entity/condition/action) a HAM can also display statistics and
information relating to it in a corresponding nf o file at each level

in a HAM filesystem undeft pr oc/ ham

Example of the view shown in / proc/ ham

30

Consider the following simple example where a HAM is monitoring
i net d and restarts it when it dies:

1s -al /proc/ham

total 2
“P-------- 1 root r oot 175 Aug 30 23:05 .info
dr-x------ 1 root r oot 1 Aug 30 23:06 inetd

The. i nf o file at the highest level provides information about the
HAM and the Guardian, as well as an overview of the entities and
other objects in the system:

cat /proc/hant.inf

Ham Pi d : 10993674
Guardi an Pid : 10997782
Ham Fai | ures 0
Guardi an Fail ures 0
Num Entities S
Num Condi ti ons 1
Num Acti ons 1

In this case the only entity being monitored iset d, which appears
as a directory at the top level undesr oc/ ham

|s -al /proc/haminetd

total 2
B 1 root r oot 173 Aug 30 23:06 .info
dr-x------ 1 root r oot 1 Aug 30 23:06 death

cat /proc/haminetd/.info

Pat h . inetd
Entity Pid . 11014167
Num conditions : 1

Chapter 4 ¢ Using the High Availability Manager October 6, 2005

0 2005, QNX Software Systems State of the HAM

October 6, 2005

Entity type . ATTACHED

Stats:

Created . 2001/ 08/ 30 23:04: 49: 930148650
Num Restarts 0

As you can see, the nf o provides information and statistics relating
to thei net d entity that is being monitored. The information is
generated dynamically and contains up-to-date data for each entity.

Thei net d entity has associated with it only ogendition(i.e.
death), which is triggered when the entity dies.

1s -al /proc/hanfinetd/ death

total 2
Bl e 1 root r oot 126 Aug 30 23:07 .info
O 1 root r oot 108 Aug 30 23:07 restart

cat /proc/hanlinetd/death/.info

Pat h : inetd/death
Entity Pid : 11014167
Num Acti ons B A

Condition ReArm: ON
Condition type : CONDDEATH

Similarly, there’s only on@actionassociated with this death condition:
therestartmechanism. Each action under the condition appears as a
file under the appropriate condition directory. The file contains details
about the action that will be performed when the condition is
triggered.

cat /proc/hanminetd/death/restart
Pat h . inetd/death/restart
Entity Pid . 11014167

Action ReArm: ON

Restart Line : /usr/sbin/inetd

Wheni net d dies, all the actions associated with a death condition
under it are executed:

slay inetd
cat /proc/haminetd/.info

Pat h . inetd
Entity Pid : 11071511 <- new pid of entity

Chapter 4 » Using the High Availability Manager 31

State of the HAM 0 2005, QNX Software Systems

Num conditions : 1

Entity type . ATTACHED

Stats:

Created : 2001/ 08/ 30 23:04: 49: 930148650
Last Death . 2001/08/30 23:10: 31: 889820814
Restarted : 2001/08/30 23:10: 31: 904818519
Num Restarts 1

As you can see, the statistics relating to the entityt d are updated.

Similarly, if a HAM itself is terminated, the Guardian takes over as
the new HAM, and creates a Guardian for itself.

cat /proc/hanm .info

Ham Pi d : 10993674 <----- This is the HAM
Guardi an Pid : 10997782 <----- This is the Guardian
Ham Fai | ures 0

Guardi an Fail ures 0

Num Entities 1

Num Condi ti ons 1

Num Acti ons 1

Kill the ham....
/bin/kill -9 10993674 <---- Sinulate failure

re-read the stats ...

cat /proc/ham .info

Ham Pi d : 10997782 <----- This is the new HAM
Guardian Pid : 11124746 <----- This is the Guardian
Ham Fai | ures o1
Guar di an Failures 0
Num Entities o1
Num Condi ti ons 1
Num Acti ons 1

As you can see, the old Guardian is now the new HAM, and a new
Guardian has been created. All entities and conditions remain as
before; the monitoring continues as usual. The HAM and the
Guardian ignore all signals that they can.

32 Chapter 4 Using the High Availability Manager October 6, 2005

[2005, QNX Software Systems HAM API

HAM API

A HAM provides an API for you to use in order to interact with it.
This API provides a collection of functions to:

e connectto and disconnect from a HAM

e add entities/conditions/actions to (and remove them from) the set
of things currently being monitored.

The APl is implemented as a library that you can link against. The
library is thread-safe and also cancellation-safe.

Connect/disconnect functions

October 6, 2005

The HAM API library maintains only one connection to the HAM.
The library itself is thread-safe, and multiple connections (from
different threads) or the same thread are multiplexed on the same
single connection to a HAM. The library maintains reference counts.

Here are the basic connect functions:

/* Basic connect functions
return success (0) or failure (-1, with errno set) */

i nt ham.connect (unsi gned fl ags);
i nt hameconnect _nd(int nd, unsigned flags);
i nt ham.connect _node(const char *nodenane, unsigned fl ags);

i nt ham.di sconnect (unsi gned fl ags);
i nt hamodi sconnect _nd(i nt nd, unsigned flags);
i nt ham.di sconnect _node(const char *nodenane, unsigned fl ags);

These functions are used to open or close connections to a HAM. The
first call toham.connect*()will open thefd, while subsequent calls
will increment the reference count.

Similarly, hamdisconnect(will decrement the count until zero; the

call that makes the count zero will close fide The functions return

-1 on error, and 0 on success. Simildngm.disconnect*(will

decrement the reference count until zero, with the call that makes the
count zero closing thel. The functions return -1 on error with errno
set, and 0 on success.

Chapter 4 » Using the High Availability Manager 33

HAM API

[J 2005, QNX Software Systems

In a multithreaded situation, there will exist only one open connection
to a given HAM at any given time, even if multiple threads were to
performham.connect*(Jhamdisconnect*(calls.

Theham* _nd() andham* _node()versions of the calls are used to
open a connection to a remote HAM across QNET. mtéhat is
passed to the function is the node identifier that refers to the remote
host at the instant the call is made. Since node identifiers are transient
values, it is essential that the node identifier is obtained just prior to
the call. The other option is to use the fully qualified node name
(FONN) of the host and to pass this as timelenamgarameter. An

nd of ND_LOCAL _NODE (a constant defined isys/ net ngr. h) or a
nodenamef NULL (or the empty string) are equivalent, and refer to
the current node. (This is also the same as caltiag.connect()or
ham.disconnect(Hirectly).

Calls toham.connect() ham.connectnd(), andham.connectnode()

can be freely mixed, as long as the number of connect calls equals the
number of disconnect calls for each connection to a specific (local or
remote) HAM before the connectiofd] is closed.

Attach/detach functions
For self-attached entities

hamentity_t *ham,attach_sel f (char *enanme, uint64_t hp, int hpdl,
int hpdh, unsigned flags);
int ham.det ach_sel f (ham,entity_t *ehdl, unsigned fl ags);

You use these two functions to attach/detach a process to/from a
HAM as a self-attached entity.

Theenameargument represents the symbolic name for this entity,
which needs to be unique in the system (of all monitored entities at
the instant the call is made).

Thehpargument represents time values in nhanoseconds for the
heartbeat periodHeartbeating can be used to ensure “liveness” of the
monitored entity. Liveness is a property that describes a component’s
useful progress. In many cases, the availability of a system component

34 Chapter 4 e Using the High Availability Manager October 6, 2005

[2005, QNX Software Systems HAM API

October 6, 2005

is compromised not because the component has necessarily died, but
because it isn’'t responding or making any progress. The heartbeating
mechanism lets you specify that a component will issue a heartbeat at
a given interval, and if it misses a certain number of heartbeats, then
that would constitute a heartbeat-missed condition.

Thehpdlandhpdhrepresent the number of heartbeats that can be
missed before the conditiohgartbeatmissedloand
heartbeatmissedhigdre triggered. The HAM API library registers
this request with a HAM and also creates a thread that keeps the
connection to a HAM open. If the entity were to abnormally
terminate, the connection to the HAM is closed, and the HAM wiill
know that this is an abnormal termination (sir@m detachself()
wasn't called first).

On the other hand, if a HAM were to abnormally fail (extremely
unlikely) and the Guardian takes over as the new HAM, the
connection to the old HAM will have gone stale. In that case, the
Guardian notifies all self-attached entities to reattach. The extra thread
mentioned above handles this reattach transparently. The thread also
sends the appropriate heartbeats at the correct intervals to the HAM.

If a connection to a HAM is already open, theam attach self()uses
the same connection, but increments the reference count of
connections opened by this client. A client that indicates that it will
heartbeat at a certain period must ¢elm heartbeat(to actually
transmit a heartbeat to the HAM.

The library also verifies whether tlemameprovided by the caller is
unique. If it doesn't already exist, then this request is forwarded to a
HAM, which also checks it again to avoid any race conditions in
creating new entities. THeamattachself()returns a generic handle,
which can be used to detach the process from the HAM later. Note
that this handle is an opaque pointer that's also used to add conditions
and actions as shown below.

Thehamdetachself()function is used to close the connection to a
HAM. From this point on, the HAM will no longer monitor this
process as a self-attached entity. The extra thread is canceled. The

Chapter 4 » Using the High Availability Manager 35

HAM API [J 2005, QNX Software Systems

ham.detachself()function takes as an argument the handle returned
by ham attach self().

Code snippet using self-attach/detach calls

The following snippet of code uses thamattachy detachself()
functions:

hameentity_t *ehdl; /* The entity Handle */
int status;

/*

connects to a HAMwith a heartbeat of 5 seconds
and an entity nane of "clientl", and no flags
it also specifies hpdh = 4, and hpdh = 8

*/

ehdl = ham.attach_sel f("clientl1", 5000000000, 4, 8, 0);

if (ehdl == NULL) {
printf("Could not attach to Hamin");
exit(-1);

}
/* Detach froma HAM using the original handle */

status = ham.det ach_sel f (ehdl, 0);

For attaching/detaching all other entities

hameentity_t *ham.attach(char *enane, int nd, pid_t pid, char *line,
unsi gned fl ags);

ham,entity_t *ham.attach_node(char *enanme, const char *nodenane, pid_t pid,
char *line, unsigned flags);

i nt ham.det ach(hameentity_t *ehdl, unsigned flags);

int hamedet ach_name(int nd, char *ename, unsigned fl ags);

i nt ham.det ach_nanme_node(const char *nodenane, char *enane, unsigned flags);

These attach/detach/detach-name functions are very similar to the
*_self()functions above, except here the calling process asks a HAM
to monitor a different process.

This mechanism allows for arbitrary monitoring of entities that
already exist and aren’t compiled against the HAM API library. In
fact, the entities that are being monitored needn’t even be aware that
they’re being monitored.

36 Chapter 4 e Using the High Availability Manager October 6, 2005

[2005, QNX Software Systems HAM API

You can use thbamattach()call either to:

e start an entity and continue to monitor it
or:

e begin monitoring an entity that’s already running.

In thehamattach()call, if pid is -1, then we assume that the entity
isn't running. The entity is started now usifige as the startup
command line for it. But ippid is greater than 0, thdime is ignored
and thepid given is attached to as an entity. Aga&nameneeds to be
unique across all entities currently registered.

Thend specifier inhamattach()andham.detachname() and the
nodenamepecifier in thdhamattachnode()and

ham detachnamenode()versions of the calls are used to refer to a
remote HAM across Qnet. Thed that is passed to the function is the
node identifier that refers to the remote host at the instant the call is
made. Since node identifiers are transient values, it is essential that
the node identifier is obtained just prior to the call. The other option is
to use the fully qualified node name (FQNN) of the host and to pass
this as thenodenamgarameter. Amd of ND_LOCAL NODE (a
constant defined igys/ net ngr . h or anodenamef NULL (or the
empty string) are equivalent, and refer to the current node.

Thehamdetach*()functions stop monitoring a given entity. The
hamdetach()call takes as an argument the original handle returned
by hamattach() You can also calhamdetachname() which uses

the entity’s name instead of the handle.

Note that the entity handle can also be used later tacadditionsto
the entity (described below).

Code snippet using attach/detach calls

October 6, 2005

hameentity_t *ehdl;

int status;

ehdl = ham.attach("inetd", 0, -1, "/usr/sbin/inetd", 0);
/* inetd is started, running and nonitored now */

Chapter 4 » Using the High Availability Manager 37

HAM API

[J 2005, QNX Software Systems

status = hamcdet ach(ehdl, 0);

Of course the attach and detach needn’t necessarily be performed by
the same caller:

hamentity_t *ehdl;

int status;

/* starts and begins nmonitoring inetd */

ehdl = ham.attach("inetd", 0, -1, "/usr/sbin/inetd", 0);

/* di sconnect fromHam (nonitoring still continues) */
exit(0);

And to detach net d:

int status;
/* stops nmonitoring inetd. */
status = hamdet ach_nanme(0, "inetd", 0);

exi t(0):

If i net d were already running, say withid 105328676, then we
can write the attach/detach code as follows:

hameentity_t *ehdl;
int status;
ehdl = ham.attach("inetd", 0, 105328676, NULL, 0);

status = hamcdet ach(ehdl, 0);
/* status = ham.detach_nane(0, "inetd",0); */

exi t(0):

For convenience, theamattach()andhamdetach()functions
connect to a HAM if such a connection doesn’t already exist. We do
this only to make the use of the functions easier.

38 Chapter 4 e Using the High Availability Manager October 6, 2005

[2005, QNX Software Systems HAM API

The connections to a HAM persist only for the duration of the
attach/detach calls; any subsequent requests to the HAM must be
preceded by the appropridtam.connect()calls.

The best way to perform a large sequence of requests to a HAM is to:
1 Call ham.connect(before the first request.
2 Call hamdisconnect(pfter the last request.

This is the most efficient method, because it guarantees that there’s
always the same connection open to the HAM.

Entity functions

October 6, 2005

Thehamattach*() functions are normally used when an entity is
either already running or will be started by a HAM, and monitoring
begins with the invocation of theam attach*() call. The HAM API

also provides two functions that allow users to create placeholders for
entities that are not yet running and that might be started in the future.
This allows subscribers of interesting events to indicate their interest
in these events, without necessarily waiting for a publisher (other
entity/HAM) to create the entity.

hameentity_t *ham,entity(const char *enane, int nd, unsigned flags);
hameentity_t *ham,entity_node(const char *enanme, const char *nodenane,
unsi gned fl ags);

These functions create entity place holders with the name specified
enameon the corresponding node described by either the node
identifiernd or the nodename given modenameOnce created,

these placeholders can be used to add conditions and actions to their
associated entities. When a subseqiamiattach*() call is made

that references the sareaameit will fill the entity place holder with

the appropriate process ID. From that time onwards, the entity is
monitored normally.

Chapter 4 » Using the High Availability Manager 39

HAM API [J 2005, QNX Software Systems

Condition functions

hamcondi ti on_t *ham.condition(hamentity_t *ehdl, int type,
const char *cnanme, unsigned flags);
i nt hamconditi on_renove(hamcondition_t *chdl, unsigned flags);

Each entity can be associated with various conditions. And for each
of these conditions there’s a set of actions that will be performed in
sequence when the condition is true. If an entity has multiple
conditions that are true simultaneously with different sets of actions
associated with each condition, then all the actions are performed for
each condition, in sequence.

This mechanism lets you combine actions together into sets and
choose to remove/control them as a single “group” instead of as
individual items.

Since conditions are associated with entitieseatity handlemust be
available in order to add conditions. Tham.condition*() functions

return an opague pointer that is a condition handle, which you can use
later to either remove a condition or add actions to the condition.

Condition types

You can specify any of the following fdype

CONDDEATH The entity has died.

CONDABNORMALDEATH

The entity has died an abnormal death. This
condition is triggered whenever an entity dies by a
mechanism that results in the generation of a core
file (seedunper in the Utilities Referencdor
details).

CONDDETACH The entity that was being monitored is detaching.
This ends HAM’s monitoring of that entity.

CONDATTACH An entity for whom a place holder was previously
created (someone has subscribed to events relating

40 Chapter 4 e Using the High Availability Manager October 6, 2005

[2005, QNX Software Systems HAM API

to this entity), has joined the system. This is also
the start of the monitoring of the entity by a HAM.

CONDHBEATMISSEDHIGH

The entity missed sending a heartbeat message
specified for a condition of “high” severity.

CONDHBEATMISSEDLOW

The entity missed sending a heartbeat message
specified for a condition of “low” severity.

CONDRESTART The entity was restarted. This condition is true
after the entity is successfully restarted.

CONDANY This condition type matches any condition type. It
can be used to associate the same actions with one
of many conditions.

The CONDATTACH, CONDDETACHandCONDRESTARTconditions

are triggered by the HAM, when entities attach, detach, or restart
respectively. Th€ ONDHBEATMISSEDHIGHand
CONDHBEATMISSEDLOWCconditions are triggered internally by the
HAM when it detects the missed heartbeat conditions, as defined by
the entities when they indicated their original intent to heartbeat.

CONDDEATH s triggered whenever an entity dies.
CONDABNORMALDEATH is triggered only when an abnormal death
takes place, but such an abnormal death also trigge@NDDEATH
condition.

You use thaletachcondition to perform some actions whenever a
monitored entity properly detaches from a HAM. After this point, the
HAM will no longer monitor the entity. In effect, you can use this to
“notify” interested clients when the HAM can no longer provide any
more information about the detaching entity.

Therestartcondition is asserted and triggered by a HAM
automatically if an entity dies and is restarted.

October 6, 2005 Chapter 4 o Using the High Availability Manager 41

HAM API [J 2005, QNX Software Systems

Condition flags

HCONDNOWAIT

Guarantees that there can be no “waitfor” statements in the list
of actions in this condition. All conditions that are flagged
HCONDNOWAIT are handled in a separate thread, and thus
aren't delayed in any way by the nature of the actions in other
conditions.

HCONDINDEPENDENT

If this flag is set, then all actions in this condition are executed
in a separate thread. This lets you insert delays into a condition,
without incurring any delays in other conditions.

If a condition is flagged with botCONDINDEPENDENTand
HCONDNOWAIT, thenHCONDNOWAIT takes precedence, and all
actions in this condition are executed in the same threadl asher
conditions that are also flagged a6 ONDNOWAIT. This is because

all HCONDNOWAIT conditions are guaranteed to have minimal delays
already.

If a condition is flagged with neithe# CONDNOWAIT nor
HCONDINDEPENDENT, it is treated as a®THER condition,
implying that it will be executed in the FIFO order among all
conditions that are true.

To sum up:

1 Whenever a condition (e. #ONDDEATH, CONDDETACH, etc.)
occurs, all conditions flaggadCONDNOWAIT are executed in
FIFO order in a single thread.

2 All conditions flaggedHCONDINDEPENDENT(but not
HCONDNOWAIT) are executed each in a separate thread.

3 All other conditions are executed in FIFO order in one single
thread.

This limits the number of threads in all to be at most:
(number of HCONDINDEPENDENT conditionsP

42 Chapter 4 e Using the High Availability Manager October 6, 2005

[2005, QNX Software Systems HAM API

That is, one for all the conditions flaggektONDNOWAIT, and one
for all OTHER conditions.

In addition, within a condition, all actions are also executed in FIFO
order. This is true irrespective of whether the conditions are
HCONDNOWAIT or HCONDINDEPENDENT

Action functions

October 6, 2005

/* action operations */

ham,acti on_t *ham.action_restart(hamcondition_t *chdl, const char *anane,
const char *path, unsigned flags);

ham.action_t *ham.action_execute(ham.condition_t *chdl, const char *aname,
const char *path, unsigned flags);

ham_action_t *ham.action_waitfor(hamecondition_t *chdl, const char *anane,
const char *path, int delay, unsigned flags);

ham,acti on_t *ham.acti on_notify_pul se(hamecondition_t *chdl, const char *anane,
int nd, int topid, int chid, int pulsecode, int value,
unsi gned flags);

ham,acti on_t *ham.action_notify_signal (hamecondition_t *chdl, const char *anane,
int nd, pid_t topid, int signum int code, int value,
unsi gned flags);

ham,acti on_t *ham.acti on_notify_pul se_node(hamcondi tion_t *chdl,
const char *aname, const char *nodenane, int topid, int chid,
int pul secode, int value, unsigned flags);

ham,acti on_t *ham.acti on_notify_si gnal _node(ham_condi ti on_t *chdl,
const char *aname, const char *nodenane, pid-t topid,
int signum int code, int value, unsigned flags);

ham,acti on_t *ham.acti on_heart beat _heal t hy(ham_condi ti on_t *chdl,
const char *aname, unsigned flags);

ham,action_t *ham.,action_l og(hamcondition_t *chdl, const char *anane,
const char *msg, unsigned attachprefix, int verbosity,
unsi gned fl ags);

/* renmove an action */
int ham.action_renove(ham,acti on_t *ahdl, unsigned flags);

As mentioned earlier, a HAM currently supports several different
types ofaction functionsbut note that you can add your own action
functions to suit your particular HA application.

hamactionrestart()

Provides a restart mechanism for the entity in the event that a
deathcondition has occurred. This implies that the entity in
question has terminated; thestartaction will restart the entity
and also keep track of the ngid that the entity will now be
associated with.

Chapter 4 » Using the High Availability Manager 43

HAM API

[J 2005, QNX Software Systems

Restartactions can be associated only withathconditions. And
across all conditions of typdeath there can be only a singtestart
action at any time. This ensures that the entity is restarted only if it
terminates, and only once. (Conditions of tygeathinclude
conditions of the typeSONDDEATH andCONDABNORMALDEATH.

hamactionexecute()

Executes an arbitrary command in the event that the condition is
true. This could be any executable command line. When the
condition in question is true, the list of actions is traversed and
executed in sequence.

This executes a command line as specified in the parameters.
The command line must contain the FULL path to the
executable along with all parameters to be passed to it. The
command line is in turn passed ontggawncommand by a
HAM to create a new process that will execute the command.

You'll find executeactions useful when you need to set up a
multistage recovery. For examplefi§- nf s2 dies and is
restarted, thbamactionexecute(Junction lets you remount
any directories that are required after- nf s2 is restarted.

You can have aexecuteaction take place immediately by
setting theHACTIONDONOW flag. Again, this is useful in
startup situations when an entity is created in many stages.

Note thatHACTIONDONOW is ignored forwaitfor actions. So

in order to insert delays into a sequence of actions flagged
HACTIONDONOW, you'll need to insert the delays in the client
program (between calls ttamaction*()).

hamaction waitfor()

Given a sequence of actions in a condition that will execute in
FIFO order, you can insert delays into the execution sequence
by usingham actionwaitfor() (as long as the condition permits
it — see the section Condition functions in this chapter). The
delay specified is in multiples of 100 msecs.

44 Chapter 4 e Using the High Availability Manager October 6, 2005

[2005, QNX Software Systems HAM API

October 6, 2005

The hamactionwaitfor() call takes as an argumenpath
component, which can be used to wait for a specific name to
appear in the name spacepHthis NULL, the waitfor is for
exactlydelaymsecs. But ipathis specified, the waitfor is for
eitherdelaymsecs or untipathappears in the namespace,
whichever occurs earlier. Note that the delay when a pathname
is specified is in integral multiples of 100 msecs.

If a pathname is specified, the delays will be the closest integral
multiple of 100 msecs, rounding up. A delay®éffectively
disables the waitfor, making thmathnamespecification

redundant.

ham action_notify_pulse() hamactionnotify_signal()

Thehamaction.notify_pulse()function sends the appropriate
pulse to the givemd/pid/chid.

Theaction.notify_signal() sends an appropriate realtime signal
with a value to thepid that requests it.

Actions can persist across a restart if the entity is restarted.
Similarly, conditions can also be set to persist (i.e. you can
rearm them) after a restart of the entity. You can do this by
ORiNgHREARMAFTERRESTARTInto the flags argument to
either theham.condition()call or to the appropriate action
statement.

If a condition persists when an entity is restarted, each
individual action is checked to see if it also persists. Actions
that needn’t be rearmed are performed once and removed. Any
actions that fail are also removed, even if they're set to be
rearmed.

If a condition isn't marked asearmed then all actions under it

are automatically removed, since the actions are associated only
with the condition and can’t be retained if the condition no

longer exists.

The persistence of conditions and actions across a restart
depends on the restart of the entity itself. So if the entity isn't
restarted (i.e. there's "RCTIONRESTARTor the

Chapter 4 o Using the High Availability Manager 45

HAM API

[J 2005, QNX Software Systems

ACTIONRESTARTfails for some reason), then the entity is
removed, along with all conditions and actions associated with
the entity as well.

ham.action notify_pulsenode()

This is the same as thiam action.notify_pulse()above, except
that the node name specified for the recipient of the pulse can
be given using the fully qualified node name instead of the node
identifier (d).

ham action_notify_signal.node()

This is the same as th@mm.action.notify_signal()above, except
that the node name specified for the recipient of the signal can
be given using the fully qualified node name instead of the node
identifier (hd).

Action fail functions

/* action fail operations */
int ham,action_fail _execut e(ham,acti on_t *ahdl, const char *anane,
const char *path, unsigned flags);
int hameaction_fail _waitfor(ham,acti on_t *ahdl, const char *anane,
const char *path, int delay, unsigned flags);
int ham.action_fail —_notify_pul se(ham,acti on_t *ahdl, const char *anane,
int nd, int topid, int chid, int pulsecode, int value, unsigned flags);
int ham.,action_fail _notify_signal (ham,action_t *ahdl, const char *anane,
int nd, pid_t topid, int signum int code, int value, unsigned flags);
int ham.action_fail _notify_pul se_node(ham,acti on_t *ahdl, const char *anane,
const char *nodenane, int topid, int chid, int pulsecode, int value,
unsi gned fl ags);
int ham.action_fail _notify_signal —_node(ham_acti on_t *ahdl, const char *anane,
const char *nodenane, pid_t topid, int signum int code, int value,
unsi gned fl ags);
int ham,action_fail _l og(ham,acti on_t *ahdl, const char *anane,
const char *message, unsigned attachprefix, int verbosity, unsigned flags);

/* renmove an action fail operation */
int ham,action_fail _rempve(ham.,acti on_t *ahdl, const char *anane,
unsi gned fl ags);

These actions are used to associate a list of actions that will be
executed when an action in a condition fails. These functions are
similar to the corresponding action functions described in the
previous section, the primary difference being the first parameter,
which in the case of these functions is a handle to an action (as
opposed to a handle to a condition).

46 Chapter 4 e Using the High Availability Manager October 6, 2005

[2005, QNX Software Systems HAM API

Example to monitor i net d

The following code snippet shows how to begin monitoring the
i net d process:

#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <stdlib. h>

#i ncl ude <unistd. h>

#i ncl ude <sys/stat.h>
#incl ude <sys/netngr. h>
#i ncl ude <fcntl.h>

#i ncl ude <ha/ ham h>

int main(int argc, char *argv[])
{
int status;
char *inetdpath;
hameentity_t *ehdl;
ham_condi ti on_t *chdl;
ham_action_t *ahdl;
int inetdpid;

inetdpath = strdup("/usr/sbin/inetd");

inetdpid = -1;

ham_connect (0) ;

ehdl = ham.attach("inetd", ND_LOCAL_NODE, inetdpid, inetdpath, 0);
if (ehdl !'= NULL)

chdl = hamccondi ti on(ehdl , CONDDEATH, "death", HREARVAFTERRESTART);

if (chdl !'= NULL) {

ahdl = ham,action_restart(chdl, "restart", inetdpath,

HREARMAFTERRESTART) ;
if (ahdl == NULL)
printf("add action failed\n");
}
el se
printf("add condition failed\n");

}
el se

printf("add entity failed\n");
ham.di sconnect (0) ;
exit(0);

Example to monitor f s-nfs2

October 6, 2005

The following code snippet shows how to begin monitoring the
f s- nf s2 process:

#include <stdio. h>
#incl ude <string. h>

Chapter 4 ¢ Using the High Availability Manager 47

HAM API [J 2005, QNX Software Systems

#i ncl ude <stdlib. h>
#incl ude <unistd. h>

#i ncl ude <sys/stat.h>
#i ncl ude <sys/netngr. h>
#include <fcntl. h>

#i ncl ude <ha/ ham h>

int main(int argc, char *argv[])
{
int status;

hameentity_t *ehdl;
ham_condi ti on_t *chdl;
ham_action_t *ahdl;
char *fsnfspath;
int fsnfs2pid;

fsnfspath = strdup(”/usr/sbin/fs-nfs2");
fsnfs2pid = -1;

ham_connect (0);
ehdl = ham.attach("Fs-nfs2", ND_LOCAL_NCDE, fsnfs2pid, fsnfspath, 0);
if (ehdl !'= NULL)

chdl = ham.condi ti on(ehdl , CONDDEATH, "Death", HREARMAFTERRESTART);
if (chdl !'= NULL) {
ahdl = ham.action_restart(chdl, "Restart", fsnfspath,
HREARVAFTERRESTART) ;
if (ahdl == NULL)
printf("add action failed\n");
el se {
ahdl = ham.action_waitfor(chdl, "Delayl", NULL, 2000,
HREARMAFTERRESTART) ;
if (ahdl == NULL)
printf("add action failed\n");
ahdl = ham_,action_execute(chdl, "MuntDirl1",
"/bin/mount -t nfs a.b.c.d:/dirl /dirl",
HREARMAFTERRESTART| HACTI ONDONOW) ;
if (ahdl == NULL)
printf("add action failed\n");
ahdl = ham.acti on_waitfor(chdl, "Delay2", NULL, 2000,
HREARMAFTERRESTART) ;
if (ahdl == NULL)
printf("add action failed\n");
ahdl = ham.action_execute(chdl, "Muntdir2",
"/bin/mount -t nfs a.b.c.d:/dir2 /dir2",
HREARMAFTERRESTART| HACTI ONDONOW ;
if (ahdl == NULL)
printf("add action failed\n");
}
}

el se
printf("add condition failed\n");
}
el se
printf("add entity failed\n");
ham_di sconnect (0) ;
exit(0);

48 Chapter 4 e Using the High Availability Manager October 6, 2005

0 2005, QNX Software Systems A client example

Functions to operate on handles

/* Get/Free handl es */
ham,entity_t *ham,entity_handl e(int nd, const char *enane, unsigned flags);
ham.condi ti on_t *ham.condi ti on_handl e(int nd, const char *enane,
const char *cname, unsigned flags);
ham_acti on_t *ham.action_handl e(int nd, const char *enane, const char *cnane,
const char *aname, unsigned flags);
hameentity_t *ham,entity_handl e_node(const char *nodenanme, const char *enane,
unsi gned flags);
ham.condi ti on_t *ham.condi ti on_handl e_node(const char * nodenane,
const char *enane, const char *cnane, unsigned flags);
ham,action_t *ham.action_handl e_node(const char * nodenane, const char *enane,
const char *cname, const char *aname, unsigned flags);
int hameentity_handl e_free(hameentity_t *ehdl);
int hamcondition_handl e_free(hamcondition_t *chdl);
int ham,action_handl e_free(ham,acti on_t *ahdl);

You use the handle functions to get/free handles based on entity,
condition, and action names. You can then use these handles later to
add or remove conditions and actions. As for all the other functions
the* _node*()variations are used to refer to a HAM that is not
necessarily local, using a fully qualified node name (FQNN).

A client example

October 6, 2005

Here’s an example of a client that obtains notifications via pulses and
signals about significant events from a HAM. It registers a
pulse-notification scheme in the event thaet d dies or detaches. It
also registers a signal-notification mechanism for the death of
fs-nfs2.

This example also demonstrates how the delayed notification occurs,
and shows how to overcome this usingtMONDINDEPENDENT
condition.

#i ncl ude <stdio. h>

#incl ude <string.h>
#include <stdlib. h>

#i ncl ude <unistd. h>

#i ncl ude <sys/stat.h>
#include <fcntl. h>

#i ncl ude <errno. h>

#i ncl ude <sys/neutrino. h>
#i ncl ude <sys/iomsg. h>
#incl ude <sys/netngr. h>

Chapter 4 » Using the High Availability Manager 49

A client example 0 2005, QNX Software Systems

50

#i ncl ude <signal . h>
#i ncl ude <ha/ ham h>

#def i ne PCODEI NETDDEATH —PULSE_CODE_M NAVAI L+1
#def i ne PCODElI NETDDETACH —PULSE_CODE_-M NAVAI L+2
#def i ne PCODENFSDELAYED —PULSE_CODE_M NAVAI L+3

#def i ne PCODEI NETDRESTART1 —PULSE_CODE_M NAVAI L+4
#defi ne PCODElI NETDRESTART2 —PULSE_CODE_-M NAVAI L+5

#define MYSI G SI GRTM N+1
int fsnfs_val ue;

/* Signal handler to handle the death notify of fs-nfs2 */
void MySigHandl er (i nt signo, siginfo_t *info, void *extra)
{
printf("Received signal %, with code = %, value %\ n",
signo, info->si _code, info->si_value.sival_int);

if (info->si _value.sival _int == fsnfs_val ue)
printf("FS-nfs2 died, this is the notify signal\n");
return;

}

int main(int argc, char *argv[])
{
int chid, coid, rcvid;
struct _pul se pul se;
pid_t pid;
int status;
int val ue;
hameentity_t *ehdl;
ham_condi tion_t *chdl;
ham,action_t *ahdl;
struct sigaction sa;
int scode;
int sval ue;

/* we need a channel to receive the pulse notification on */
chid = Channel Create(0);

/* and we need a connection to that channel for the pulse to be
delivered on */
coid = ConnectAttach(0, O, chid, _NTO-SIDE_CHANNEL, 0);

/* fill in the event structure for a pulse */
pid = getpid();
value = 13;

ham.connect (0) ;

/* Assumes there is already an entity by the name "inetd" */

chdl = ham.condi ti on_handl e(ND_LOCAL_NODE, "inetd","death",0);

ahdl = ham.action_notify_pul se(chdl, "notifypul sedeath", ND_LOCAL_NCDE, pid,
chi d, PCODEI NETDDEATH, val ue, HREARMAFTERRESTART) ;

ham,act i on_handl e_free(ahdl);
ham.condi ti on_handl e_free(chdl);

ehdl = ham.entity_handl e(ND_LOCAL_NCDE, "inetd", 0);

chdl = ham.condition(ehdl, CONDDETACH, "detach", HREARVAFTERRESTART);

ahdl = ham.action_notify_pul se(chdl, "notifypul sedetach", ND_LOCAL_NCDE, pid,
chi d, PCODEI NETDDETACH, val ue, HREARVAFTERRESTART);

Chapter 4 ¢ Using the High Availability Manager October 6, 2005

0 2005, QNX Software Systems A client example

ham,act i on_handl e_free(ahdl);
ham_condi ti on_handl e_free(chdl);
ham,entity_handl e_free(ehdl);

fsnfs_value = 18; /* value we expect when fs-nfs dies */
scode = 0;

sval ue = fsnfs_val ue;

sa. sa_sigaction = MySi gHandl er;

si genpt yset (&sa. sa_mask) ;

sa.sa_flags = SA_SI G NFO

sigaction(MYSIG &sa, NULL);

/*

Assumes there is an entity by the name "Fs-nfs2".

We use "Fs-nfs2" to synbolically represent the entity
fs-nfs2. Any nane can be used to represent the

entity, but it's best to use a readabl e and neani ngful nane.
*/

ehdl = ham.entity_handl e(ND_.LOCAL_NODE, "Fs-nfs2", 0);

/*
Add a new condition, which will be an "independent" condition.
This means that notifications/actions inside this condition
are not affected by "waitfor" delays in other action
sequence threads
*/
chdl = ham.condi ti on(ehdl , CONDDEATH, "Deat hSep",
HCONDI NDEPENDENT| HREARMAFTERRESTART) ;
ahdl = ham.action_notify_signal (chdl, "notifysignal death", ND_LOCAL _NOCDE,
pid, MYSIG scode, svalue, HREARVAFTERRESTART);
ham,acti on_handl e_free(ahdl);
ham_condi ti on_handl e_free(chdl);
ham,entity_handl e_free(ehdl);

chdl = ham.condi ti on_handl e(ND_LOCAL_NODE, "Fs-nfs2","Death",0);

/*

This action is added to a condition that does not

have an HCONDNOWAI T. Since we are unaware what the condition

already contains, we might end up getting a delayed notification

since the action sequence m ght have "arbitrary" delays and

"waits" init.

*/

ahdl = ham.action_notify_pul se(chdl, "del ayednfsdeathpul se", ND_LOCAL_NCDE,
pi d, chid, PCODENFSDELAYED, val ue, HREARVMAFTERRESTART);

ham,acti on_handl e_free(ahdl);
ham_condi ti on_handl e_free(chdl);

ehdl = ham.entity_handl e(ND_-LOCAL_NODE, "inetd", 0);

/* W force this condition to be independent of all others. */
chdl = ham.condition(ehdl, CONDRESTART, "restart",
HREARMAFTERRESTART| HCONDI NDEPENDENT) ;
ahdl = ham.action_notify_pul se(chdl, "notifyrestart_i m{, ND_LOCAL_NCDE,
pi d, chid, PCODElI NETDRESTART1, val ue, HREARMAFTERRESTART);
ham_.acti on_handl e_free(ahdl);
ahdl = ham.action_waitfor(chdl, "delay", NULL, 6532, HREARMAFTERRESTART);
ham,acti on_handl e_free(ahdl);
ahdl = ham.action_notify_pul se(chdl, "notifyrestart _del ayed", ND_LOCAL_NCDE,
pi d, chid, PCODElI NETDRESTART2, val ue, HREARMAFTERRESTART);

October 6, 2005 Chapter 4 o Using the High Availability Manager 51

A client example 0 2005, QNX Software Systems

ham,act i on_handl e_free(ahdl);
ham_condi ti on_handl e_free(chdl);
ham,entity_handl e_free(ehdl);

while (1) {
rcvid = MsgRecei vePul se(chid, &pulse, sizeof(pulse), NULL);
if (revid <0) {
if (errno !'= EINTR) {
exit(-1);
}
}
el se {
switch (pul se.code) {
case PCCDEl NETDDEATH:
printf("Inetd Death Pulse\n");
br eak;
case PCODENFSDELAYED:
printf("Fs-nfs2 died: this is the possibly del ayed pul se\n");
br eak;
case PCODEl NETDDETACH:
printf("Inetd detached, so quitting\n");
goto the_end;
case PCODEI NETDRESTARTL1:
printf("Inetd Restart Pul se: |mmediate\n");
br eak;
case PCODEI NETDRESTART2:
printf("Inetd Restart Pul se: Delayed\n");
br eak;

/*
At this point we are no longer waiting for the
information about inetd, since we know that it
has exited.
We will still continue to obtain infornmation about the
death of fs-nfs2, since we did not renove those actions.
If we exit now, the next time those actions are executed
they will fail (notifications fail if the receiver does not
exi st anynore), and they will automatically get renoved and
cl eaned up.
*/
t he_end:
ham.di sconnect (0) ;
exit(0);
}

52 Chapter 4 e Using the High Availability Manager October 6, 2005

0 2005, QNX Software Systems Starting and stopping a HAM

O Note that the HAM API has certain restrictions:

e The names of entities, conditions, and actiersamecname and
aname must not contain a/*” character.

e All names are subject to the length restriction imposed by
_POSIXPATH.MAX (as defined i<l i mi t s. h>). Since the names
are manifested inside the namespace, the effective length of a
name is the maximum length of the name as a path component. In
other words, theombined lengtlof an entity/condition/action
name — including theé pr oc/ hamprefix — must not exceed
POSIX PATH.MAX .

Starting and stopping a HAM

You start a HAM by running theamutility at the command line:

ham
Thehamutility has these command-line options:

-?|h Display usage message
-d Disable internal verbosity.
-f Log verbose output to a file (defaultsederr).

-t none|rel ative| absol ute| short abs

Specify the timestamping method. The default is

relative.

-V Set verbosity level — extrav’s increase verbosity.

-Vn Set verbosity level — use a number to specify the level (e.g.
- V3).

When a HAM starts, it also starts the Guardian process for itself.

October 6, 2005 Chapter 4 » Using the High Availability Manager 53

Starting and stopping a HAM 0 2005, QNX Software Systems

You must starhamwith its full path or with thePATH variable set to
include the path thamas a component.

You must be oot in order to start or stop a HAM.

Stopping a HAM

To stop the HAM, you must use either theamstop()function or the
hanctt rI command-line utility. These are the only correct (and the
only guaranteed) ways to stop the HAM.

Thehamstop()function or thehanct r | utility instructs a HAM to
terminate. The HAM in turn first instructs the Guardian to terminate,
and then terminates itself. To stop the HAM from the command line,
use thehanct r | utility:

hanctrl -stop

To stop a remote HAM, use thenode option to thehanct r | utility:

hanctr|l -node "nodenane" -stop

To stop the HAM programmatically using the API, use the following
functions:

/[* termnate */

i nt ham.st op(void);

i nt hamst op_nd(int nd);

i nt ham.st op_node(const char *nodenane);

Control functions

54

The following set of functions have been provided to permit control
of entities, conditions, and actions that are currently configured.

/* control operations */

int hamentity_control (ham,entity_t *ehdl, int conmand, unsigned flags);

int hamecondi ti on_control (hamcondition_t *chdl, int command, unsigned flags);
int ham.action_control (ham,acti on_t *ahdl, int conmmand, unsigned flags);

Chapter 4 ¢ Using the High Availability Manager October 6, 2005

0 2005, QNX Software Systems Starting and stopping a HAM

The permitted operations (commands) are:

HENABLE /* enable item */
HDI SABLE /* disable item */
HADDFLAGS /* add flag */
HREMOVEFLAGS /* renmove flag */
HSETFLAGS /* set flag to specific */
HGETFLAGS /* get flag */

The “enable” and “disable” commands can be used to temporarily
unhide/hide an entity, condition, or action.

An entity that is hidden is not removed, but will not be monitored for
any conditions. Similarly, a condition that is hidden will never be
triggered, while actions that are hidden will not be executed. By
default the enable and disable operations do not operate recursively
(although the disabling of an entity, will prevent the triggering of any
conditions below it, and the disabling of a condition will prevent the
execution of the actions in it).

To understand the finer distinctions of the recursive operation of the
the control functions refer to the API descriptions for:

e hamentity_control()
e ham.conditioncontrol()
e ham.action.control()

The “addflags”, “removeflags”, “setflags”, and “getflags” commands
can be used to obtain or modify the flags associated with any of the
entities, conditions, or actions. For more details, refer to the API
descriptions of ththam* _control*() functions.

Verbosity control

The verbosity level of the HAM can be controlled by using the
following API function:

i nt ham.ver bose(const char *nodenane, int op, int value);

October 6, 2005 Chapter 4 o Using the High Availability Manager 55

Starting and stopping a HAM 0 2005, QNX Software Systems

This allows for programmatic control of the verbosity. THenct r |

utility can also be used for controlling the verbosity interactively. The
function can be used to either get/set (increment/decrement) the
verbosity.

The verbosity can also be controlled using the hamctrl utility as
follows

hanctrl -verbose /* increase verbosity */
hancttrl +verbose /* decrease verbosity */
hancttrl =verbose /* get current verbosity */

To operate on a remote HAM, the hamctrl utility can be used with the
- node option:

hancttrl -node "nodenane" -verbose /* increase verbosity */
hancttrl -node "nodenane" +verbose /* decrease verbosity */
hanttrl -node "nodenane" =verbose /* get current verbosity */

wherenodenane is a valid name that represents a remote (or local)
node.

Publishing autonomously detected conditions

56

Entities or other components on the system can publish conditions
that they deem interesting to a HAM, and the HAM can in turn deliver
these to other components in the system that have expressed interest
and subscribed to them. This allows arbitrary system components that
are capable of detecting error conditions or potentially erroneous
conditions, to report these to the HAM, which in turn can notify other
components to start corrective procedures and/or take preventive
action.

There are currently two different ways of publishing information to a
HAM. Both of these are designed to be general enough to permit
clients to build more complex information exchange mechanisms
using them.

Chapter 4 ¢ Using the High Availability Manager October 6, 2005

0 2005, QNX Software Systems Starting and stopping a HAM

Publish state transitions

An entity can report its state transitions to a HAM. The HAM
maintains the current state of every entity (as reported by the entity).
The HAM does not interpret the meaning of the state value itself,
neither does it try to validate the state transitions, but can generate
events based on transitions from one state to another.

Components can publish transitions that they want the external world
to know. These states need not necessarily represgreaificstate
the application uses internally for decision making.

The following function can be used to notify a HAM of a state
transition. Since the HAM is only interested in thextstate in the
transition, this is the only information that is transmitted to the HAM.
The HAM then triggers a condition state change event internally,
which other components can subscribe to, using the
ham.conditionstate()API call described below.

/* report a state transition */

int hamentity_condition_state(hamentity_t *ehdl, unsigned tostate,
unsi gned flags);

Publish other conditions

October 6, 2005

In addition to the above, components on the system can also publish
autonomously detected conditions by using the

ham entity_conditionraise() API call. The component raising the
condition can also specify a type, class, and severity of its choice, to
allow subscribers further granularity in filtering out specific
conditions to subscribe to. This call results in the HAM triggering a
condition-raise event internally, which other components can
subscribe to using theam.conditionraise() API call described

below.

/* publish autononously detected condition */
int hamentity_condition_raise(hamentity_t *ehdl, unsigned rtype,
unsi gned rcl ass, unsigned severity, unsigned flags);

Chapter 4 o Using the High Availability Manager 57

Starting and stopping a HAM 0 2005, QNX Software Systems

Subscribing to autonomously published conditions

Subscribers can express their interest in events published by other
components by using the following API calls:

e ham.conditionstate()
e hamconditionraise()

These calls are similar to them.condition()API call, and return a
handle to a condition, but allow the subscriber customize which of
several possible published conditions they are interested in.

Trigger based on state transitions

When an entity publishes a state transition, a state transition condition
is raised for that entity, based on the two states involved in the
transition (thefrom state and théo state). Subscribers indicate which
states they are interested in by specifying values fofrtitastateand
tostateparameters in the API call.

For more detail refer to the API reference documentation for the
ham.conditionstate()API call.

hamcondi ti on_t *hamcondition_state(hamentity_t *ehdl, const char *cnane,
unsi gned fronstate, unsigned tostate, unsigned flags);

Trigger based on specific published condition

58

Subscribers can express interest in conditions raised by entities by
using the API calham.conditionraise call() indicating as
parameters to the call what sort of conditions they are interested in.

For more information refer to the APl documentation for the
ham.conditionraise() hamconditionraise call()

ham_condi ti on_t *ham.condi tion_rai se(hamentity_t *ehdl, const char *cnane,
unsi gned rtype, unsigned rclass, unsigned rseverity,
unsi gned fl ags);

Chapter 4 ¢ Using the High Availability Manager October 6, 2005

Chapter 5
Using the Client Recovery Library

In this chapter. ..

Introduction 61

MsgSend*(Yunctions 62

Other covers and convenience functions 63
A simple example 66
State-reconstruction example 69

October 6, 2005 Chapter 5 e Using the Client Recovery Library 59

0 2005, QNX Software Systems Introduction

Introduction

October 6, 2005

The client recovery library provides a drop-in enhancement solution
for many standardi bc I/O operations. The HA library’s cover
functions provide automatic recovery mechanisms for failed
connections that can be recovered from in an HA scenario.

The goal is to provide an API for high availability I/O that can
transparently provide recovery to clients, especially in an environment
where the servers must also be highly available. The recovery is
configurable to tailor specific client needs; we provide examples of
ways to develop more complicated recovery mechanisms.

The main principle of the HA library is to provide drop-in
replacements for all the “transmission” functions (eMggSend*().

The API lets a client choose specific connections that it would like to
makehighly available— all other connections will operate as
ordinary connections.

Normally, when a server that the client is talking to fails, or if there’s
a transient network fault, thHdsgSend*(functions return an error
indicating that the connection ID (or file descriptor) is stale or invalid
(EBADF).

In an HA-aware scenario, these transient faults are often recovered
from almost immediately (on the server end), thus making the
services available again. Unfortunately, clients using a standard I/O
offering might not be available to benefit from this to the maximum
unless they provide mechanisms to recover from these errors, and
then retransmit the information/data, which often might involve a
nontrivial rework of client programs.

By providing/achieving recovery inside the HA library itself, we can

automatically take advantage of the HA-aware services that restart
themselves or are automatically restarted or of the services that are
provided in a transparent cluster/redundant way.

Since recovery itself is a connection-specific task, we allow clients to
provide recovery mechanisms that will be used to restore connections
when they fail. Irrecoverable errors are propagated back reliably so

Chapter 5 e Using the Client Recovery Library 61

MsgSend*() functions 0 2005, QNX Software Systems

that any client that doesn’t wish to recover will get the 1/O library
semantics that it expects.

The recovery mechanism can be anything ranging from a simple
reopen of the connection to a more complex scenario that includes the
retransmission/renegotiation of connection-specific information.

MsgSend*() functions

62

Normally, theMsgSend*(functions returreBADF/ESRCHwhen a
connection is stale or closed on the server end (e.g. because the server
dies). In many cases, the servers themselves return (e.g. they're
restarted) and begin to offer the services properly almost immediately
(in an HA scenario). Rather than merely terminate the message
transmission with an error, in some cases it might be possible to
perform recovery and continue with the message transmission.

The HA library functions that “cover” all th#1sgSend*(varieties are
designed to do exactly this. When a specific invocation of one of the
MsgSend*(functions fails, a client-provided recovery function is
called. This recovery function can attempt to reestablish the
connection and return control to the HA librarykssgSend*()

function. As long as the connection ID returned by the recovery
function is the same as the old connection ID (which in many cases is
easy to ensure vidose/open/dup2@equences), then tivdsgSend*()
functions can now attempt to retransmit the data.

If at any point the errors returned b§sgSend*(are anything other
thanEBADF/ESRCH these errors are propagated back to the client.
Note also that if the connection ID isn’'t an HA-aware connection ID,
or if the client hasn't provided a recovery function or that function
can’t re-obtain the same connection ID, then the error is allowed to
propagate back to the client to handle in whatever way it likes.

Clients can change their recovery functions. And since clients can
also pass around “recovery/connection” information (which in turn is
passed by the HA library to the recovery function), clients can
construct complex recovery mechanisms that can be modified
dynamically.

Chapter 5 e Using the Client Recovery Library October 6, 2005

0 2005, QNX Software Systems Other covers and convenience functions

The client-side recovery library lets clients reconstruct the state
required to continue the message transmission after reconnecting to
either the same server or to a different server. The client is responsible
for determining what constitutes the state that must be reconstructed
and for performing this appropriately while the recovery function is
called.

Other covers and convenience functions

In addition to the cover functions for the standMdgSend*(xalls,
the HA library provides clients with two “HA-awareness” functions
that let you designate a connection as being HA-aware or similarly
remove such a designation for an already HA-aware connection:

HA-awareness functions

I/O covers

October 6, 2005

haattach() ~ Associate a recovery function with a connection to
make it HA-aware.

hadetach() = Remove a previously specified association between a
recovery function and a connection. This makes the
connection no longer HA-aware.

ha_connectionctrl()

Control the operation of a HA-aware connection.

The HA library also provides the following cover functions whose
behavior is essentially the same as the original functions being
covered, but augmented slightly where the connections are also
HA-aware:

ha_.open() ha.open64()

Open a connection and attach it to the HA lib. These
functions, in addition to calling the underlyirmpen
calls also make the connections HA-aware by calling
ha_attach()automatically. As a result, using these

Chapter 5 e Using the Client Recovery Library 63

Other covers and convenience functions 0 2005, QNX Software Systems

calls is equivalent to callingpen()or open64(and
following that with a call tcha attach()

ha_ creat() ha_creat64()

Create a connection and attach it to the HA lib. These
functions, in addition to calling the underlyirmgeat

calls also make the connections HA-aware by calling
ha_attach()automatically. As a result, using these
calls is equivalent to callingreat() or creat64()and
following that with a call tcha_attach()

ha_ConnectAttach(ha_ConnectAttaclr()

Create a connection usir@@pnnectAttach(®nd attach
it to the HA lib. These functions, in addition to
calling the underlyingConnectAttacltalls also make
the connections HA-aware by callifig attach()
automatically. As a result, using these calls is
equivalent to callingConnectAttach(pr
ConnectAttachr() and following that with a call to
ha attach()

ha_ConnectDetach(ha ConnectDetach()

Detach an attachdd, then close the connection
usingConnectDetach()These functions, in addition
to calling the underlyingConnectDetaclealls also
make the connections HA-aware by calling
ha_attach()automatically. As a result, using these
calls is equivalent to callin@onnectDetach(®r
ConnectDetachr() and following that with a call to
ha attach()

ha_fopen() Open a file stream and attach it to the HA lib. This
function, in addition to calling the underlyirfigpen()
call also makes connections HA-aware by calling
ha attach()automatically. As a result, using this call
is equivalent to callindopen()and following that
with a call toha.attach()

64 Chapter 5 e Using the Client Recovery Library October 6, 2005

0 2005, QNX Software Systems Other covers and convenience functions

ha_fclose() Detach an attached H# for a file stream, then close
it. This function, in addition to calling the underlying
fclose()call also makes connections HA-aware by
calling ha_attach()automatically. As a result, using
this call is equivalent to callinfclose()and following
that with a call toha_attach()

ha_close() Detach an attached Hf, then close it. This
function, in addition to calling the underlyingose()
call also makes connections HA-aware by calling
ha attach()automatically. As a result, using this call
is equivalent to callinglose()and following that with
a call toha attach()

ha_dup() Duplicate an HA connection. This function, in
addition to calling the underlyindup() call also
makes connections HA-aware by callihg attach()
automatically. As a result, using this call is equivalent
to callingdup()and following that with a call to
ha attach()

Convenience functions

In addition to the covers, the library also provides these two
convenience functions that reopen connections for recovery:

ha reopen() Reopen a connection while performing recovery.

ha ReConnectAttach()
Reopen a connection while performing recovery.

N For descriptions of all of the HA library functions, see the Client
Recovery Library Reference chapter in this guide.

October 6, 2005 Chapter 5 e Using the Client Recovery Library 65

A simple example 0 2005, QNX Software Systems

A simple example

66

Here’s a simple example of a client that has a connection opento a
server and tries to read data from it. After reading from the descriptor,
the client goes off to do something else (possibly causing a delay),
and then returns to read again.

During this window of delay, the server might have died and returned,
in which case the initial connection to the server (that has died) is now
stale.

But since the connection has been made HA-aware, and a recovery
function has been associated with it, the connection is able to
reestablish itself.

#i ncl ude <stdio. h>
#incl ude <string.h>
#i ncl ude <stdlib. h>
#i ncl ude <unistd. h>
#i ncl ude <sys/stat.h>
#include <fcntl. h>

#i ncl ude <errno. h>

#i ncl ude <ha/cover. h>

#define SERVER "/path/to/server”

typedef struct handle {
int nr;
} Handle ;

int recover _conn2(int oldfd, void *hdl)

{
int new d;
Handl e *thdl;
thdl = (Handle *)hdl;
printf(“recovering for fd % inside function 2\n", ol dfd);
/* re-open the connection */
newfd = ha_reopen(ol dfd, SERVER, O_RDO\LY);

/* performany other kind of state re-construction */

(thdl->nr)++;
return(new d);

}
int recover _conn(int oldfd, void *hdl)
{

int new d;

Handl e *thdl;

thdl = (Handle *)hdl;

printf("recovering for fd %l inside function\n",oldfd);
/* re-open the connection */

newfd = ha_reopen(ol df d, SERVER, O-RDONLY);

/* performany other kind of state reconstruction */
(thdl->nr) ++;

Chapter 5 e Using the Client Recovery Library October 6, 2005

0 2005, QNX Software Systems A simple example

October 6, 2005

return(newfd);

int main(int argc, char *argv[])

int status;
int fd;
int fd2;
int fd3;
Handl e hdl;
char buf[80];
int i;
hdl .nr = 0;
/* open a connection and make it HA aware */
fd = ha_open(SERVER, O_RDONLY, recover _conn, (void *)&hdl, 0);
if (fd <0) {

printf("could not open %\n", SERVER);

exit(-1);
}

printf("fd = %\ n",fd);
/* Dup the FD. the copy will also be HA aware */
fd2 = ha_dup(fd);

printf("dup-ped fd2 = %\ n",fd2);
printf("before sleeping first time\n");

/*
Go to sleep...
Possibly the SERVER might die and return in this little
tinme period.
*/
sl eep(15);

/*

readi ng from dup-ped fd

this should work just normally if SERVER has not died.
But if the SERVER has died and returned, the

initial read will fail, but the recovery function

will be called, and it will re-establish the
connection, and then re-establish the current

file position and then re-issue the read call

whi ch shoul d succeed now.

*/

printf("trying to read from% using fd %\ n", SERVER, fd2);
status = read(fd2, buf, 30);
if (status < 0)

printf("error: %\n",strerror(errno));

/*

fd and fd2 are dup-ped fd's

changi ng the recovery function for fd2

Fromthis point forwards, the recovery (if at all)

wi Il performed using "recover _conn2" as the recovery
function.
*/

status = ha_attach(fd2, recover_conn2, (void *)&hdl, HAREPLACERECOVERYFN);

Chapter 5 e Using the Client Recovery Library 67

A simple example 0 2005, QNX Software Systems

ha_close(fd); /* close fd */
/* open a new connection */

fd = open(SERVER, O-RDONLY);

printf("New fd = %\ n", fd);

/* make it HA aware. */
status = ha_attach(fd, recover_conn, (void *)&hdl, 0);

printf("before sleeping again\n");

/* copy it again */
fd3 = ha_dup(fd);

/* go to sleep...possibly another option for the server to fail. */
sl eep(15);

/*

get rid of one of the fd's

we still have a copy in fd3, which nust have the

recovery functions associated with it.

*

/

ha_cl ose(fd);
printf(“trying to read from% using fd %\ n", SERVER fd3);

/*
if it fails, the call will generate a call back to the
recovery function "recover _conn"
*/
status = read(fd3, buf, 30);
if (status < 0)
printf("error: %\n",strerror(errno));

printf("trying to read from % once nore using fd %\ n", SERVER, fd2);

/*

if this call fails, recovery will be via the
second function "recover _conn2", since we replaced
the function for fd2.
*/

status = read(fd2, buf, 30);

if (status < 0)

printf("error: %\n",strerror(errno));

/* close the fd2, and detach it fromthe HAlib */
ha_cl ose(fd2);

/*
finally print out our local statistics that we have been
retaining along the way.
*/
printf("total recoveries, %l\n", hdl.nr);
exit(0);

68 Chapter 5 e Using the Client Recovery Library October 6, 2005

[0 2005, QNX Software Systems

State-reconstruction example

State-reconstruction example

In the following example, in addition to reopening the connection to
the server, the client also reconstructs the state of the connection by
seeking to the current file (connection) offset.

This example also shows how the client can maintain state

information that can be used by the recovery functions to return to a
previously check-pointed state before the failure, so that the message
transmission can continue properly.

#
#
#
#
#
#
#i
#i

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

#def i ne

t ypedef

int
int

<stdi 0. h>
<string. h>
<stdlib. h>
<uni std. h>
<sys/stat.h>
<fcntl.h>
<errno. h>
<ha/ cover. h>

REMOTEFI LE "/ path/to/renmote/file"
struct handle {

nr;
curr _of fset;

} Handl e ;

int reco

{

int
int
Hand
t hdl

printf("recovering for fd %l inside function\n", ol dfd)

/* re
newf
I* re
if (
I's
(thd
retu

int main

October 6, 2005

int
int
int

ver _conn(int oldfd, void *hdl)
newf d;
newf d2;
le *thdl;
= (Handl e *)hdl

-open the file */
d = ha_reopen(ol dfd, REMOTEFI LE , O_RDONLY);

-construct state, by seeking to the correct offset

newfd >= 0)

eek(newfd, thdl->curr_offset, SEEK_SET);
| ->nr) ++

rn(newfd);

(int argc, char *argv[])
st at us;

fd;
fd2;

*/

Chapter 5 e Using the Client Recovery Library 69

State-reconstruction example 0 2005, QNX Software Systems

int fd3;
Handl e hdl;
char buf[80];
int i;

hdl . nr = 0;
hdl . curr _of fset = 0;
/* open a connection */
fd = ha_open(REMOTEFI LE, O_RDONLY, r ecover _conn,
(void *)&hdl, 0);
if (fd <0) {
printf("could not open file\n");
exit(-1);
}
fd2 = open(REMOTEFI LE, O_RDONLY);
printf(“trying to read fromfile using fd %\ n",fd);
printf("before sleeping first time\n");
status = read(fd, buf, 15);
if (status < 0)
printf("error: %\n",strerror(errno));

el se {
for (i=0; i < status; i++)
printf("%",buf[i]);
printf("\n");
/*

update state of the connection
this is a kind of checkpointing nethod.
we remenber state, so that the recovery functions
have an easier tine.
*/
hdl . curr _of f set += status;

}

fd3 = ha_dup(fd);

sl eep(18);

/*

sleep for sone arbitrary period

this could be sone other conputation

or some other bl ocking operation, which gives
a wi ndow within which the server mght fail
*/

/* reading fromdup-ped fd */
printf("trying to read fromfile using fd %\ n",fd);
printf("after sleeping\n");

/*

if the read initially fails

it will recover, re-open and seek to the right spot!!
*/

70 Chapter 5 e Using the Client Recovery Library October 6, 2005

0 2005, QNX Software Systems State-reconstruction example

status = read(fd, buf, 15);
if (status < 0)
printf("error: %\n",strerror(errno));

el se {

for (i=0; i < status; i++)

printf("%",buf[i]);

printf("\n");

hdl . curr _of f set += status;
}
printf(“trying to read fromfile using fd %\ n", fd2);
/*

try it again.. this tinme using the copy.
recovery will again happen upon failure,
automatically re-connecting/ seeking etc.
*/
status = read(fd2, buf, 15);
if (status < 0)

printf("error: %\n",strerror(errno));

el se {
for (i=0; i < status; i++)
printf("%",buf[i]);
printf("\n");
}

printf("total recoveries, %\ n",hdl.nr);
ha_cl ose(fd);

cl ose(fd2);

exit(0);

October 6, 2005 Chapter 5 e Using the Client Recovery Library 71

Chapter 6
HAM API| Reference

October 6, 2005 Chapter 6 « HAM AP| Reference 73

0 2005, QNX Software Systems

The HAT includes the following functions you can use in your

applications to interact with a HAM:

Function

Description

ham.action.control()

hamaction execute()

hamaction fail _execute()

hamaction fail _log()

hamaction fail _notify_pulse()

hamaction fail _notify_pulsenode()

hamaction fail _notify_signal()

Perform control operations
on an action objectin a
HAM.

Add an execute action to a
condition.

Add an execute action to an
action, that will be
executed if the
corresponding action fails.

Insert a log message into
the activity log of a HAM.

Add a notify pulse action to
an action, that will be
executed if the
corresponding action fails.

Add a notify pulse action to
an action, that will be
executed if the
corresponding action fails,
using a nodename.

Add a notify signal action
to an action, that will be
executed if the
corresponding action fails.

continued. ..

October 6, 2005 Chapter 6 « HAM AP| Reference 75

[0 2005, QNX Software Systems

Function

Description

hamaction fail _notify_signalLnode()

ham.action fail _waitfor()

hamactionhandle()

hamaction handlenode()

hamaction handlefree()

hamaction heartbeathealthy()

hamactionlog()

hamaction notify_pulse()

hamaction notify_pulsenode()

hamaction_notify_signal()

76 Chapter 6 « HAM API Reference

Add a notify signal action
to an action, that will be
executed if the
corresponding action fails,
using a nodename.

Add a waitfor action to an
action, that will be
executed if the
corresponding action fails

Get a handle to an action in
a condition in an entity.

Get a handle to an action in
a condition in an entity,
using a nodename.

Free a previously obtained
handle to an action in a
condition in an entity.

Reset a heartbeat’s state to
healthy.

Insert a log message into
the activity log of the
HAM.

Add a notify-pulse action
to a condition.

Add a notify-pulse action
to a condition, using a
nodename.

Add a notify-signal action
to a condition.

continued. ..

October 6, 2005

0 2005, QNX Software Systems

Function

Description

October 6, 2005

hamaction_notify_signalL.node()

hamactionremove()

hamactionrestart()

ham actionwaitfor()

hamattach()

hamattach.node()

hamattach self()

ham.condition()

ham.condition.control()

ham.conditionhandle()

ham.conditionhandlenode()

ham.conditionhandlefree()

Add a notify-signal action
to a condition, using a
nodename.

Remove an action from a
condition.

Add a restart action to a
condition.

Add a waitfor action to a
condition.

Attach an entity.

Attach an entity, using a
nodename.

Attach an application as a
self-attached entity.

Set up a condition to be
triggered when a certain
event occurs.

Perform control operations
on a condition objectin a
HAM.

Get a handle to a condition
in an entity.

Get a handle to a condition
in an entity, using a
nodename.

Free a previously obtained
handle to a condition in an
entity.

continued. ..

Chapter 6 « HAM API Reference 77

[0 2005, QNX Software Systems

78

Function

Description

ham.conditionraise()

ham.conditionremove()

ham.conditionstate()

ham.connect()
ham.connectnd()

ham.connectnode()

hamdetach()

hamdetachname()

hamdetachnamenode()

hamdetachself()

hamdisconnect()

hamdisconnecind()

Chapter 6 « HAM API Reference

Attach a condition
associated with a condition
raise condition that is
triggered by an entity
raising a condition.

Remove a condition from
an entity.

Attach a condition
associated with a state
transition condition that is
triggered by an entity
reporting a state change.

Connect to a HAM.
Connect to a remote HAM.

Connect to a remote HAM,
using a nodename.

Detach an entity from a
HAM.

Detach an entity from a
HAM, using an entity
name.

Detach an entity from a
HAM, using an entity name
and a nodename.

Detach a self-attached
entity from a HAM.

Disconnect from a HAM.

Disconnect from a remote
HAM.

continued. ..

October 6, 2005

[0 2005, QNX Software Systems

October 6, 2005

Function

Description

hamdisconnechode()

ham.entity()

ham. entity_conditionraise()

ham.entity_conditionstate()

ham entity_control()

hamentity handle()

ham entity_handlenode()

ham entity_handlefree()

hamentity_node()

hamheartbeat()

hamstop()

hamstop.nd()

hamstopnode()

hamverbose()

Disconnect from a remote
HAM, using a nodename.

Create entity placeholder
objects in a HAM.

Used by an entity to raise a
condition.

Used by an entity to notify
the HAM of a state
transition.

Perform control operations
on an entity objectin a
HAM.

Get a handle to an entity.

Get a handle to an entity,
using a nodename.

Free a previously obtained
handle to an entity.

Create entity placeholder
objects in a HAM, using a
nodename.

Send a heartbeat to a HAM.
Stop a HAM.
Stop a remote HAM.

Stop a remote HAM, using
a nodename.

Modifies the verbosity of a
HAM.

Chapter 6 « HAM API Reference 79

]

ham_action_control() 1) 2005, QNX Software Systems

Perform control operations on an action object in a HAM

Synopsis:

Library:

#i ncl ude <ha/ham h>
i nt hamcacti on_control (ham,acti on_t *ahd|,

i nt command
unsi gned flag9 ;

| i bham

Description:

Thehamaction.control() function can be used to control the state of
an action object in a HAM. This function is designed to be extensible
with additional commands. Currently, the following commands are
defined:

HENABLE, /* enable item */
HDI SABLE, /* disable item */
HADDFLAGS, /* add fl ag */
HREMOVEFLAGS, /* remove flag */
HSETFLAGS, /* set flag to specific */
HGETFLAGS, /* get flag */

When an action item is enabled (the default), it will NOT be executed
when the condition it is associated with is triggered. Individual
conditions and entities can be enabled and disabled using the
corresponding control functions for conditions and entities,
respectively.

The add flags, remove flags, and set flags commands can be used to
modify the set of flags associated with the entity being controlled.
Add flags and remove flags are used to either add to or remove from
the current set of flags, the specified set of flags (as givéags.

The set flags function is called when the current set of flags is to be
replaced bylags

80 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham_action_control()

Flags

Any flag that is valid for the corresponding action can be used when
ham.action.control()is being used to set flags, with the exception of
HACTIONDONOW.

For theHENABLE andHDISABLE commands:

HRECURSE Applies the command recursively.

Returns:

For the enable, disable, add flags, remove flags, and set flags
functions:

0 Success.

-1 An error occurreddrrnois set).
For the get flags function:

flags Success.

-1 An error occurreddrrnois set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL Thecommandr flagsvariable is invalid.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

October 6, 2005 Chapter 6 « HAM API Reference 81

h am ,aCt I O n ,C O n t I'O | () 0 2005, QNX Software Systems

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ham.conditioncontrol(), hamentity_control()

82 Chapter 6 « HAM API Reference October 6, 2005

[2005, QNX Software Systems ham _action_execute()
Add an execute action to a condition

Synopsis:
#i ncl ude <ha/ham h>
ham_,acti on_t *ham,acti on_execut e(
ham_condi ti on_t *chd|,
const char *aname
const char *path
unsi gned flags ;
Library:
[i bham
Description:

Thehamactionexecute(function adds an actiormfiamé to the

specified condition. The action will execute an external program or
command specified byath Thepath parameter must contain the

FULL path to the executable along with all parameters to be passed to
it. If either the pathname or the arguments contain spaces that need to
be passed on literally to the spawn call, they need to be quoted. As
long as the subcomponents within {p&tharguments are quoted,

using either of the following methods:

\"path with space\’

or

\"path with space\",

the following is allowed:

"\"path with space\’ argl arg2 \"arg3 with space\"".

This would be parsed as

"path with space" -> path

October 6, 2005 Chapter 6 « HAM AP| Reference 83

ham_action_execute() 1) 2005, QNX Software Systems

argl = argl
arg2 = arg2
arg3 = "arg3 with space".

The command line is in turn passed ontspawncommand by the
HAM to create a new process that will execute the command.

The handle¢hd)) is obtained either:

e from one of theham.condition*() functions to add conditions
or:

e by calling any of theham.conditionhandle()functions to request
a handle to a specific condition.

The action is executed when the appropriate condition is triggered.

Currently the following flags are defined:

HACTIONDONOW

Tells the HAM to perform the action once immediately, in
addition to performing it whenever the condition is triggered.

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is
disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to

is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

HACTIONBREAKONFAIL

Indicates that if this action were to fail, and it is part of a list of
actions, none of the actions following this one in the list of
actions will be executed.

84 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham_action_execute()

Returns:

Errors:

October 6, 2005

HACTIONKEEPONFAIL

Indicates that the action will be retained even if it fails. The
default behavior is to remove failed actions. Nevertheless if the
condition that this action is associated with is not retained, the
action will get automatically removed.

Users can specify what will be done if an action fails. By adding
action failactionsto a list associated with an action, users can
determine what will be done in the case of an action failure. For every
action that fails, the corresponding action fail list will be executed.
Certain actions (e.dhamactionlog() and

hamaction heartbeathealthy() never fail. For more details, refer to
the appropriate section in the HAM API reference for the

hamaction fail_*() calls.

A valid handle to an action to a condition, or NULL if an error
occurred érrnois set).

EBADF Couldn’t connect to the HAM.

EINVAL The name given imnameis invalid (e.g. it contains the
“I " character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham.connect() and the process that’s calling
hamaction execute(aren’t the same.

ENAMETOOLONG

The name given (imnamé is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t s. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

ENOENT There’s no entity or condition specified by the given
handle ¢hd]).

Chapter 6 « HAM AP| Reference 85

ham_action_execute() 1) 2005, QNX Software Systems

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

hamaction.notify_pulse() hamaction notify_signal(),
ham actionremove() hamactionrestart(), hamaction waitfor(),
ham.condition() ham.conditionhandle()

86 Chapter 6 « HAM API Reference October 6, 2005

[2005, QNX Software Systems ham _action_fail_execute()

Add an execute action to an action, that will be executed if the corresponding action fails

Synopsis:

Library:

#i ncl ude <ha/ ham h>

i nt hamcaction_fail _execut e(
ham,acti on_t *ahdl
const char *aname
const char *path
unsi gned flags ;

| i bham

Description:

October 6, 2005

Thehamaction fail_execute(function adds an action fail item

(anamé@ to the specified action. The action will execute an external
program or command specified pgth Thepathparameter must

contain the FULL path to the executable along with all parameters to
be passed to it. along with all parameters to be passed to it. If either
the pathname or the arguments contain spaces that need to be passed
on literally to the spawn call, they need to be quoted. As long as the
subcomponents within theatharguments are quoted, using either of

the following methods:

\"path with space\’

or

\"path with space\",

the following is allowed:

"\"path with space\’ argl arg2 \"arg3 with space\"".

This would be parsed as

Chapter 6 « HAM AP| Reference 87

L

ham _action_fail_execute() 11 2005, QNX Software Systems

Returns:

Errors:

"path with space" -> path

argl = argl
arg2 = arg2
arg3 = "arg3 with space".

The command line is in turn passed ontspawn()command by the
HAM to create a new process that will execute the command.

The handledhd]) is obtained either:

e from one of thehamaction*() functions to add actions
or:

e by calling any of thehamaction.handle()functions to request a
handle to a specific action.

0 Success.

-1 An error occurreddrrnois set).

EBADF Couldn’t connect to the HAM.

EINVAL The name given imnameis invalid (e.g. it contains the
“I " character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham.connect() and the process that’s calling
hamactionexecute(aren’t the same.

ENAMETOOLONG

The name given (imnamé is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t s. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

88 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham _action_fail_execute()

ENOENT There’s no entity or condition specified by the given
handle éhdl).

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No
Interrupt handler No
Signal handler No
Thread Yes

See also:

ham action execute()hamaction fail_execute()
hamactionhandle() hamaction handlefree(),

ham action heartbeathealthy() hamactionlog(),
ham.action_notify_pulse() hamactionnotify_signal(),
hamactionremove() hamactionrestart() hamaction waitfor(),
ham.condition() ham.conditionhandle()

October 6, 2005 Chapter 6 « HAM API Reference 89

]

h am _aCtI O n _fal I _| O g () 0 2005, QNX Software Systems

Insert a log message into the activity log of a HAM

Synopsis:

Library:

#i ncl ude <ha/ ham h>

i nt hamcacti on_fail _l og(
ham_,acti on_t *ahd|,
const char *aname
const char *msg
unsi gned attachprefix
i nt verbosity
unsi gned flags ;

| i bham

Description:

You can use thbamaction fail log() function to insert log messages
into the activity log stream that a HAM maintains. This action is
executed when the corresponding action that it is associated with fails.

The handledhd]) is obtained either:

e from one of thehamaction*() functions to add actions
or:

e by calling any of thehamaction.handle()functions to request a
handle to a specific action.

The log message to be inserted is specifiedisg and will be
generated if the verbosity of the HAM is greater than or equal to the
value specified iwverbosity Also, if attachprefixis non-zero, a prefix
will be added to the log message that contains the current
entity/condition/action that this message is related to.

90 Chapter 6 « HAM API Reference October 6, 2005

[0 2005, QNX Software Systems

ham _action fail _log()

Returns:

Errors:

0 Success.

-1 An error occurreddrrnois set).

EBADF

EINVAL

Couldn’t connect to the HAM.

The name given imanameis invalid (e.g. it contains the
“I " character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
hamconnect() and the process that’s calling
hamactionrestart()aren't the same.

ENAMETOOLONG

ENOENT

ENOMEM

The name given (imnamé is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t's. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

There’s no entity or condition specified by the given
handle ahd]).

Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it

Classification:

October 6, 2005

QNX 6

Safety

encounters while servicing this request.

Cancellation point No

continued. ..

Chapter 6 « HAM API Reference 91

h am ,aCt I O n ,fal | ,l O g () 0 2005, QNX Software Systems

Safety

Interrupt handler No
Signal handler No
Thread Yes

See also:

ham actionexecute()hamaction fail_execute()
hamactionhandle() hamaction handlefree(),

ham action heartbeathealthy() hamactionlog(),
ham.action.notify_pulse() hamactionnotify_signal(),

ham actionremove() hamactionrestart(), hamaction waitfor(),
ham.condition() ham.conditionhandle()

92 Chapter 6 « HAM API Reference October 6, 2005

L

1) 2005, QNX Software Systems ham _action_fail _notify_pulse(),

ham _action_fail_notify_pulse_node()
Add a notify pulse action to a an action, that will be executed if the corresponding action fails

Synopsis:

#i ncl ude <ha/ ham h>

ham_,acti on_t *ham,action_fail _notify_pul se(
ham,acti on_t *ahdl
const char *aname
i nt nd,
pi d_t topid,
i nt chid,
i nt pulsecode
i nt value
unsi gned flags ;

ham_acti on_t *ham.action_notify_fail _pul se_node(
ham_,acti on_t *ahd|,
const char *aname
const char *nodenamg
pi d_t topid,
i nt chid,
i nt pulsecode
i nt value
unsi gned flag9 ;

Library:
['i bham

Description:

Thehamaction fail _notify_pulse*()functions add an action fail item
(anam@ to the specified action. The action will deliver a pulse
specified bypulsecoddo the specifieshd/pid/chid or the
nodenam#pid/chid with value given byalue Thend specified to
ham action_notify_pulse()is the node identifier of the recipient node.
Thisnd must be valid at the time the call is made.

The handledhd]) is obtained either:

e from one of thehamaction*() functions to add actions

October 6, 2005 Chapter 6 « HAM API Reference 93

]

ham_action_fail_notify_pulse(),
ham _action_fail_n Otify,pl,”Se,nOd e() 2005, QNX Software Systems

or:

e by calling any of thehamaction handle()functions to request a
handle to a specific action.

The action is executed when the corresponding action that it is
associated with, fails.

Currently, there are no flags defined.

Returns:
0 Success.
-1 Anerror occurreddrrnois set).
Errors:
EBADF Couldn’t connect to the HAM.
EINVAL The name given imnameis invalid (e.g. it contains the
“I " character) or is NULL.
The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham.connect() and the process that’s calling
hamactionexecute(aren’t the same.
ENAMETOOLONG
The name given (imnamé is too long, i.e. it exceeds
_POSIX PATH.MAX (defined in<l i mi t s. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .
ENOENT There’s no entity or condition specified by the given
handle ahd|).
ENOMEM Not enough memory to create a new handle.
In addition to the above errors, the HAM returns any error it
encounters while servicing this request.
94 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham _action_fail_notify_pulse(),
ham _action_fail_notify_pulse_node()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ham actionexecute()hamaction fail_execute()

hamaction handle() hamaction handlefree(),

ham action heartbeathealthy() hamactionlog(),
hamaction.notify_pulse() hamaction notify_signal(),

ham actionremove() hamactionrestart(), hamaction waitfor(),
ham condition() ham.conditionhandle()

October 6, 2005 Chapter 6 « HAM AP| Reference 95

ham _action_fail_notify_signal(),
ham_action_fail_notify_signal_node() o 2e0s onx sofware systems
Add a notify signal action to a an action, that will be executed if the corresponding action fails

Synopsis:

#i ncl ude <ha/ ham h>

ham,acti on_t *ham,action_fail _notify_signal (
ham_acti on_t *ahdl,
const char *aname
int nd,
pi d_t topid,
i nt signum
i nt code
i nt value
unsi gned flags ;

ham_acti on_t *ham.acti on_notify_fail _si gnal _node(
ham_,acti on_t *ahd|,
const char *aname
const char *nodenamg
pi d_t topid,
i nt signum
i nt code
i nt value
unsi gned flag9 ;

Library:

| i bham

Description:

Thehamaction fail _notify_signal*() functions add an action fail item
(anamé@ to the specified action. The action will deliver a signal
specified bysignumto the specifieshd/pid or nodenamépid with

code specified imodeand value given byalue Thend specified to
ham.action.notify_signal()is the node identifier of the recipient node.
Thisnd must be valid at the time the call is made.

The handledhd]) is obtained either:

e from one of thehamaction*() functions to add actions

96 Chapter 6 « HAM API Reference October 6, 2005

[J 2005, QNX Software Systems h am ,aCt | O n ,fal | ,n Otlfy ,S | g n al () y

ham _action_fail _notify_signal_node()

Returns:

Errors:

October 6, 2005

or:

e by calling any of thehamaction.handle()functions to request a
handle to a specific action.

The action is executed when the corresponding action that it is
associated with, fails.

Currently, there are no flags defined.

0 Success.

-1 Anerror occurreddrrnois set).

EBADF Couldn’t connect to the HAM.

EINVAL The name given imnameis invalid (e.g. it contains the
“I " character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham.connect() and the process that’s calling
hamactionexecute(aren’t the same.

ENAMETOOLONG

The name given (imnamé is too long, i.e. it exceeds
_POSIX PATH.MAX (defined in<l i mi t s. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

ENOENT There’s no entity or condition specified by the given
handle ahd|).

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Chapter 6 « HAM API Reference 97

]

ham _action_fail_notify_signal(),
h am ,aCtIO n ,fal | ,n Otlfy,S | g n al ,n Od e() 2005, QNX Software Systems

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ham actionexecute()hamaction fail_execute()

hamaction handle() hamaction handlefree(),

ham action heartbeathealthy() hamactionlog(),
hamaction.notify_pulse() hamaction notify_signal(),

ham actionremove() hamactionrestart(), hamaction waitfor(),
ham condition() ham.conditionhandle()

98 Chapter 6 « HAM API Reference October 6, 2005

[2005, QNX Software Systems ham _action_fail _waitfor()

Add a waitfor action to an action, that will be executed if the corresponding action fails

Synopsis:

Library:

#i ncl ude <ha/ ham h>

i nt hameaction_fail _waitfor(
ham,acti on_t *ahdl
const char *aname
const char *path
i nt delay
unsi gned flags ;

| i bham

Description:

October 6, 2005

Thehamaction fail_waitfor() function adds an action fail item
(anamé@ to the specified action. The action will either delay dalay
milliseconds or wait untipath (if specified) appears in the name
space (whichever is earlier). Tipathparameter must contain the
FULL path that is beingvatchedfor.

The handledhd)]) is obtained either:

¢ from one of thehamaction*() functions to add actions
or:

e by calling any of thehamaction.handle()functions to request a
handle to a specific action.

The action is executed when the corresponding action that it is
associated with, fails.

Currently, there are no flags defined.

Chapter 6 « HAM API Reference 99

h am ,aCt | O n ,fal | ,Wal th I’() 2005, QNX Software Systems

Returns:

Errors:

0 Success.

-1 An error occurreddrrnois set).

EBADF

EINVAL

Couldn’t connect to the HAM.

The name given imanameis invalid (e.g. it contains the
“I " character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
hamconnect() and the process that’s calling
hamaction execute(aren’t the same.

ENAMETOOLONG

ENOENT

ENOMEM

The name given (imnamé is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t's. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

There’s no entity or condition specified by the given
handle ahd|).

Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it

Classification:

QNX 6

Safety

encounters while servicing this request.

Cancellation point No

continued. ..

100 Chapter 6 « HAM API Reference October 6, 2005

00 2005, QNX Software Systems

ham _action_fail _waitfor()

See also:

October 6, 2005

Safety

Interrupt handler No
Signal handler No
Thread Yes

ham actionexecute()hamaction fail_execute()
hamactionhandle() hamaction handlefree(),

ham action heartbeathealthy() hamactionlog(),
ham.action.notify_pulse() hamactionnotify_signal(),

ham actionremove() hamactionrestart(), hamaction waitfor(),
ham.condition() ham.conditionhandle()

Chapter 6 « HAM API Reference

101

ham_action_handle(), ham_action_handle_node() -

2005, QNX Software Systems
Get a handle to an action in a condition in an entity

Synopsis:

#i ncl ude <ha/ ham h>

ham_,acti on_t *ham,acti on_handl e(i nt nd,
const char *ename
const char *cname
const char *aname
unsi gned flags ;

ham_,acti on_t *ham,acti on_handl e_node(i nt nd,
const char *nodenamg
const char *ename
const char *cname
const char *aname
unsi gned flags ;

Library:
I i bham

Description:

Thehamaction handle()function returns a handle to an action
(anamé@ in a condition €name@ in an entity Enamé.

You can pass the handle obtained from this function to other functions
that expect a handle (e.gamaction.remove()or
hamaction handlefree()).

The handle returned is opaque — its contents are internal to the
library.

If a node (d) is specified, the handle is to an entity/condition/action
combination that refers to a process on that remote node. The
hamactionhandlenode()function is used when a nodename is used
to specify a remote HAM instead of a node identified);

There are no flags defined at this time.

102 Chapter 6 « HAM API Reference October 6, 2005

[J 2005, QNX Software Systems h am ,aCtl O n ,h an d | e() y
ham_action_handle_node()

Returns:

A valid ham_act i on_t or NULL if an error occurreddrrnois set).

Errors:

EINVAL The name given ienamecname or anameis invalid
(e.g. it contains the/*” character) or is NULL.

ENAMETOOLONG

The name given is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t's. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH.MAX .

ENOENT There’s no action of the nanaamen a condition
chamedefined in an entitgnamen the HAM'’s
current context.

ENOMEM Not enough memory to create a new handle.

Classification:
QNX 6

Safety

Cancellation point No
Interrupt handler No
Signal handler No
Thread Yes

Caveats:

A call to hamaction handle()and a subsequent use of the handle
returned in a call such damactionremove(Jare completely

October 6, 2005 Chapter 6 « HAM API Reference 103

]

ham _action_handle(), ham_action_handle_node()

2005, QNX Software Systems

asynchronousTherefore, a valid action/condition/entity may no
longer exist when the handle is used at a later time.

In such an event, thkamaction*() functions will return an error
(ENOENT) that the action in the condition doesn’t exist in the given
entity.

See also:

ham.actionexecute()hamactionhandlefree(),
hamaction.notify_pulse() hamaction notify_signal(),

ham actionremove() hamactionrestart(), hamaction waitfor(),
ham.conditionhandle() hamconditionhandlefree()

ham entity_handle() hamentity_handlefree()

104 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham _action_handle_free()
Free a previously obtained handle to an action in a condition in an entity

Synopsis:

#i ncl ude <ha/ ham h>

i nt hamcacti on_handl e_free(ham,acti on_t *ahd);

Library:
I i bham

Description:

Thehamaction handlefree()function frees a handlahdl)
associated with a given action in a condition in an entity. The function
reclaims all storage associated with the handle.

The handle you pass as an argumaiiidf) must be obtained from
hamaction execute()hamactionrestart(),

ham action_notify_pulse() hamaction.notify_signal(), or
hamactionwaitfor().

Once a handle is freed, it is no longer available to refer to any action.
Thehamactionhandlefree() call frees storage allocated for the
handle, but does not remove the action itself, which is in the HAM.

Returns:

0 Success.

-1 An error occurreddrrnois set).

Errors:
EINVAL The handle isn’t valid.

Classification:
QNX 6

October 6, 2005 Chapter 6 « HAM API Reference 105

ham_action_handle_free() 1) 2005, QNX Software Systems

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

Caveats:

Thehamactionhandlefree() function frees storage related only to
the handle in the client — it doesn’t remove the corresponding action.

See also:

ham actionexecute()hamactionhandle() hamactionrestart(),
hamaction.notify_pulse() hamaction notify_signal(),

ham actionwaitfor(), ham.conditionhandlefree(),

hamentity handlefree()

106 Chapter 6 « HAM API Reference October 6, 2005

[2005, QNX Software Systems ham _action_heartbeat_healthy()

Synopsis:

Reset a heartbeat’s state to healthy

#i ncl ude <ha/ ham h>

ham,acti on_t *ham_,acti on_heart beat _heal t hy(
ham_condi ti on_t *chd|,
const char *aname
unsi gned flag9y

Description:

Errors:

October 6, 2005

You use this function to reset the state of a heartbeat to healthy so that
HAM can resume monitoring. Assuming that the client missed one or
more heartbeats (i.e. the conditiG®NDHBEATMISSEDLOW HIGH

is true), and that a recovery has been performed, the

ham action heartbeathealthy()call instructs HAM to monitor the

client again hamaction heartbeathealthy()

The following flag is currently defined:

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is
disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to

is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

EBADF Couldn’t connect to the HAM.
EEXIST This action already exists in the specified condition.
EINVAL The name given imnames invalid (e.g. it contains the

“/ " character) or is NULL.

ENAMETOOLONG

The name given (imnam@ is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t s. h>). Note

Chapter 6 « HAM API Reference 107

ham_action_heartbeat_healthy() 1) 2005, QNX Software Systems

that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No
Interrupt handler No
Signal handler No
Thread Yes

See also:

ham action notify_pulse() hamaction notify_signal(),
ham.actionremove() hamactionrestart(), hamaction waitfor(),
ham.condition() ham.conditionhandle()

108 Chapter 6 « HAM API Reference October 6, 2005

0 2005, QNX Software Systems h am _aCt| O n _I O g ()

Synopsis:

Library:

Insert a log message into the activity log of the HAM

#i ncl ude <ha/ ham h>

ham_,acti on_t *ham,acti on_l og(
ham_condi ti on_t *chd|,
const char *aname
const char *msg
unsi gned attachprefix
i nt verbosity
unsi gned fl ags);

| i bham

Description:

October 6, 2005

You can use theamaction.log() function to insert log messages into
the activity log stream that the HAM maintains.

The handle¢hd)) is obtained either:

e from one of theham.condition*() functions to add conditions
or:

e by calling any of theham.conditionhandle()functions to request
a handle to a specific condition.

The log message to be inserted is specifiedisg and will be
generated if the verbosity of the HAM is greater than or equal to the
value specified iverbosity Also, if attachprefixis non-zero, a prefix
will be added to the log message that contains the current
entity/condition/actiorthat this message is related to.

The following flag is currently defined:

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is

Chapter 6 « HAM API Reference 109

h am ,aCt I O n ,l O g () 0 2005, QNX Software Systems

disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to
is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

Returns:
A valid handle to an action to a condition, or NULL if an error
occurred érrnois set).
Errors:
EBADF Couldn’t connect to the HAM.
EINVAL The name given imnameis invalid (e.g. it contains the

“I " character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham.connect() and the process that’s calling
hamactionrestart()aren't the same.

ENAMETOOLONG

The name given (imnamé is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t s. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

ENOENT There’s no entity or condition specified by the given
handle ¢hdl).

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

110 Chapter 6 « HAM API Reference October 6, 2005

00 2005, QNX Software Systems h am ,aCtI O n ,l O g ()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

October 6, 2005 Chapter 6 « HAM API Reference 111

ham_action_notify_pulse(),

ham_action_notify_pulse_node() [2005, QNX Software Systems
Add a notify-pulse action to a condition
Synopsis:

#i ncl ude <ha/ ham h>

ham_,acti on_t *ham,acti on_notify_pul se(
ham_condi ti on_t *chd|,
const char *aname
i nt nd,
pi d_t topid,
i nt chid,
i nt pulsecode
i nt value
unsi gned flags ;

ham_acti on_t *ham.acti on_notify_pul se_node(
ham_condi ti on_t *chd|,
const char *aname
const char *nodenamg
pi d_t topid,
i nt chid,
i nt pulsecode
i nt value
unsi gned flag9 ;

Library:
['i bham

Description:

These functions add an action to a given condition. This action will
deliver a pulse notification to the process givetadpid.

The handle¢hdl) is obtained either:

e from one of theham condition*() functions to add conditions
or:

e by calling any of theham.conditionhandle()functions to request
a handle to a specific condition.

112 Chapter 6 « HAM API Reference October 6, 2005

[J 2005, QNX Software Systems h am ,aCtl O n ,ﬂ Ot | fy ,p U | S e() y

ham_action_notify_pulse_node()

October 6, 2005

The action is executed when the appropriate condition is triggered.

Thend specifies the node identifier of the remote node (or local node)
to which the pulse is targeted The specified is the node identifier of
the remote node at the time the call is made.

Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usimgetmgrstrtond()or
another function that converts nodenames into node identifiers.

Use thehamaction.notify_pulsenode()function when a nodename is
used to specify a remote HAM instead of a node identifiej).(The
ham action notify_pulsenode()function takes as a parameter a fully
gualified node name (FQNN)

The pulse irpulsecodevith the givenvaluewill be delivered tatopid
on the specified channel I2Hid).

Currently the following flag is defined:

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is
disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to

is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

HACTIONBREAKONFAIL

Indicates that if this action were to fail, and it is part of a list of
actions, none of the actions following this one in the list of
actions will be executed.

HACTIONKEEPONFAIL

Indicates that the action will be retained even if it fails. The
default behavior is to remove failed actions. Nevertheless if the
condition that this action is associated with is not retained, the
action will get automatically removed.

Chapter 6 « HAM AP| Reference 113

]

ham_action_notify_pulse(),
ham_action_n Ot|fy,p ulse_nod e() 2005, QNX Software Systems

Users can specify what will be done if an action fails. By adding
action failactionsto a list associated with an action, users can
determine what will be done in the case of an action failure. For every
action that fails, the corresponding action fail list will be executed.
Certain actions (e.dhamactionlog() and

hamaction heartbeathealthy() never fail. For more details, refer to
the appropriate section in the HAM API reference for the
hamaction.fail *() calls.

Returns:
A valid ham_act i on_t or NULL if an error occurreddrrnois set).
Errors:

EBADF Couldn’t connect to the HAM.

EEXIST The name provided for the action already exists.

EINVAL The name given imanameis invalid (e.g. it contains the
“I " character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham.connect() and the process that’s calling
hamaction notify_pulse()aren’t the same.

ENAMETOOLONG
The name given is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t s. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

ENOENT There’s no action of the nansmamein a condition
cnamedefined in an entitgnamean the HAM'’s
current context.

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it

encounters while servicing this request.

114 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham _action_notify_pulse(),
ham_action_notify_pulse_node()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ham action.execute()hamaction_notify_signal(),
hamactionremove() hamactionrestart() hamaction waitfor(),
ham.condition()

October 6, 2005 Chapter 6 « HAM API Reference 115

ham_action_notify_signal(),

ham_action_notify_signal_node() 0 2005, QNX Software Systems
Add a notify-signal action to a condition

Synopsis:
#i ncl ude <ha/ ham h>
ham,acti on_t *ham,acti on_notify_signal (
ham_condi ti on_t *chd|,
const char *aname
int nd,
pi d_t topid,
i nt signum
i nt code
i nt value
unsi gned flags ;
ham_acti on_t *ham.acti on_notify_si gnal _node(
ham_condi ti on_t *chd|,
const char *aname
const char *nodenamg
pi d_t topid,
i nt signum
i nt code
i nt value
unsi gned flag9 ;
Library:
i bham
Description:

These functions add an action to a given condition. The action will
deliver a signal notification to the process givertapid.

The handle¢hd) is obtained either:

e from one of theham condition*() functions to add conditions
or:

e by calling any of theham.conditionhandle()functions to request
a handle to a specific condition.

116 Chapter 6 « HAM API Reference October 6, 2005

[J 2005, QNX Software Systems h am ,aCJ[IO n ,n Otlfy ,Slg nal (),
ham_action_notify_signal_node()

The action is executed when the appropriate condition is triggered.

You use the node descriptard) to specify where in the network the
recipient of the notification resides.

Thend specifies the node identifier of the remote (or local) node to
which the signal is targeted Tl specified is the node identifier of
the remote node at the time the call is made.

N Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usimgetmgrstrtond()or
another function that converts nodenames into node identifiers.

Use thehamaction notify_signalnode()function when a nodename
is used to specify a remote HAM instead of a node identifid.(
Thehamaction notify_signal.node()function takes as a parameter a
fully qualified node name (FQNN)

The signal insignumwith the givenvaluewill be delivered to the
procesgid on nodend. This can also be used to terminate processes
by sending them appropriate signals I&&TERM, SIGKILL etc.

Currently the following flags are defined:

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is
disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to

is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

HACTIONBREAKONFAIL

Indicates that if this action were to fail, and it is part of a list of
actions, none of the actions following this one in the list of
actions will be executed.

October 6, 2005 Chapter 6 « HAM API Reference 117

]

ham_action_notify_signal(),
ham_action_n Ot|fy,S|g nal_nod e() 2005, QNX Software Systems

HACTIONKEEPONFAIL

Indicates that the action will be retained even if it fails. The
default behavior is to remove failed actions. Nevertheless if the
condition that this action is associated with is not retained, the
action will get automatically removed.

Users can specify what will be done if an action fails. By adding
action failactionsto a list associated with an action, users can
determine what will be done in the case of an action failure. For every
action that fails, the corresponding action fail list will be executed.
Certain actions (e.dhamactionlog() and

hamaction heartbeathealthy() never fail. For more details, refer to
the appropriate section in the HAM API reference for the
hamaction_fail *() calls.

Returns:

A valid ham_act i on_t or NULL if an error occurreddrrnois set).

Errors:
EBADF Couldn’t connect to the HAM.

EEXIST The name provided for the action already exists.

EINVAL The name given imnameis invalid (e.g. it contains the
“I " character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham.connect() and the process that’s calling
hamaction.notify_signal()aren’t the same.

ENAMETOOLONG

The name given is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t s. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

118 Chapter 6 « HAM API Reference October 6, 2005

[J 2005, QNX Software Systems h am ,aCtIO n ,n Otlfy,Slg nal (),
ham _action_notify_signal_node()

ENOENT There’s no action of the nanamamen a condition
cnamedefined in an entitgnamean the HAM'’s
current context.

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ham.actionexecute()hamaction.notify_pulse()
ham actionremove() hamactionrestart() hamaction waitfor(),
ham.condition()

October 6, 2005 Chapter 6 « HAM API Reference 119

ham_action_remove() [2005, QNX Software Systems
Remove an action from a condition

Synopsis:
#i ncl ude <ha/ham h>
ham,acti on_t *ham,acti on_renmove(ham.conditi on_t *ahd|
unsi gned flags ;
Library:
[i bham
Description:
You use théhamactionremove(¥unction to remove an action from a
condition in a specific entity.
The handledhd)]) is obtained either:
e from one of theham.condition*() functions to add conditions
or:
e by callinghamconditionhandle()to request a handle to a specific
condition.
Returns:
0 Success.
-1 An error occurreddrrnois set).
Errors:

EBADF Couldn’t connect to the HAM.

EINVAL The handle passed is invalid.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham.connect() and the process that'’s calling
hamactionremove(Jaren't the same.

120 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham_action_remove()

ENOENT There’s no action corresponding to the given handle
(ahdl).

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ham actionexecute()hamaction.notify_pulse()
hamaction notify_signal(), hamaction restart(),
ham action waitfor(), ham condition() ham conditionhandle()

October 6, 2005 Chapter 6 « HAM API Reference 121

]

ham_action_restart() [2005, QNX Software Systems

Add a restart action to a condition

Synopsis:

Library:

#i ncl ude <ha/ ham h>

ham_,acti on_t *ham,acti on_restart(hamcondition_t *chd
const char *aname

const char *path

unsi gned flags ;

| i bham

Description:

You use théhamactionrestart()function to add an actiorafiamé to
a given condition. In this case, the action will restart a program that
has died.

Restart actions can be associated only with death conditions
(CONDDEATH).

Note also that there can be only one restart action over all the death
conditions in an entity.

The handle¢hdl) is obtained either:

e from one of theham condition*() functions to add conditions
or:

e by calling any of theham.conditionhandle()functions to request
a handle to a specific condition.

You use thepathparameter to specify the external program or
command line to be executed pathmust contain the FULL path to

the executable along with all parameters to be passed to it. along with
all parameters to be passed to it. If either the pathname or the
arguments contain spaces that need to be passed on literally to the
spawn call, they need to be quoted. As long as the subcomponents

122 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham _action_restart()

October 6, 2005

within the patharguments are quoted, using either of the following
methods:

\"path with space\’

or

\"path with space\",

the following is allowed:

"\"path with space\’ argl arg2 \"arg3 with space\""

This would be parsed as

"path with space" -> path

argl = argl
arg2 = arg2
arg3 = "arg3 with space".

The command line is in turn passed ontspawncommand by the
HAM to create a new process that will execute the command.

The action is executed when the appropriate condition is triggered.
Note that this action also triggers a restarhditionin the entity.

Currently the following flags are defined:

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is
disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to

is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

Chapter 6 « HAM AP| Reference 123

h am ,aCt I O n ,I’ eStart() 0 2005, QNX Software Systems

HACTIONBREAKONFAIL

Indicates that if this action were to fail, and it is part of a list of
actions, none of the actions following this one in the list of
actions will be executed.

HACTIONKEEPONFAIL

Indicates that the action will be retained even if it fails. The
default behavior is to remove failed actions. Nevertheless if the
condition that this action is associated with is not retained, the
action will get automatically removed.

Users can specify what will be done if an action fails. By adding
action failactionsto a list associated with an action, users can
determine what will be done in the case of an action failure. For every
action that fails, the corresponding action fail list will be executed.
Certain actions (e.chamactionlog() and

ham action heartbeathealthy() never fail. For more detalils, refer to
the appropriate section in the HAM API reference for the
hamactionfail_*() calls.

Returns:
A valid handle to an action in a condition, or NULL if an error
occurred érrnois set).
Errors:
EBADF Couldn’t connect to the HAM.
EINVAL The name given imnameis invalid (e.g. it contains the

“/ " character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham.connect() and the process that’s calling
hamactionrestart()aren’t the same.

ENAMETOOLONG

The name given (imnamé is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t s. h>). Note

124 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham _action_restart()

that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

ENOENT There’s no entity or condition specified by the given
handle ¢hdl).

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ham actionexecute()hamaction.notify_pulse()
hamaction notify_signal(), hamactionremove()
ham action waitfor(), ham condition() ham conditionhandle()

October 6, 2005 Chapter 6 « HAM AP| Reference 125

]

h am _aCtI O n _W a.| th r () 0 2005, QNX Software Systems

Add a waitfor action to a condition

Synopsis:

Library:

#i ncl ude <ha/ ham h>

ham_,acti on_t *ham,acti on_waitfor(
ham_condi ti on_t *chd|,
const char *aname
const char *path
i nt delay
unsi gned flags ;

| i bham

Description:

Thehamactionwaitfor() function adds an actiormfiamé to a given
condition. In this case, the action is one that lets you insert arbitrary
delays into a sequence of actions.

The waitfor call fails if the specified path does not appear in the
specified interval.

The handle¢hdl) is obtained either:

e from one of theham condition*() functions to add conditions
or:

e by calling any of theham.conditionhandle()functions to request
a handle to a specific condition.

You use thadelayparameter to specify the “waitfor” period in
milliseconds.

You can also specify pathin order to control the delay. fathis
specified, then the action waits for either the pathname to appear in
the namespace or for the period specifiedefay, whichever idower.

Currently the following flag is defined:

126 Chapter 6 « HAM API Reference October 6, 2005

00 2005, QNX Software Systems h am ,aCtI O n ,Wal th r ()

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is
disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to

is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

Returns:
A valid handle to an action to a condition, or NULL if an error
occurred érrnois set).
Errors:
EBADF Couldn’t connect to the HAM.
EINVAL The name given imnameis invalid (e.g. it contains the

“I " character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham.connect() and the process that’s calling
hamactionwaitfor() aren’t the same.

The delay specified is invalid. Only values greater than
Zero are permitted.

The condition into which the action is being added has

the HCONDNOWAIT set.
EEXIST The name provided for the action already exists.
ENAMETOOLONG

The name given (imname is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t s. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH.MAX .

ENOENT There’s no entity or condition specified by the given
handle ¢hd]).

October 6, 2005 Chapter 6 « HAM API Reference 127

h am ,aCt I O n ,W al th I’O 00 2005, QNX Software Systems

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

hamaction execute()hamaction notify_pulse()
ham action_notify_signal(), hamactionremove()
hamaction restart(), hamcondition() hamconditionhandle()

128 Chapter 6 « HAM API Reference October 6, 2005

[2005, QNX Software Systems ham _attach(), ham_attach_node()

Synopsis:

Library:

Attach an entity

#i ncl ude <ha/ ham h>

hameentity_t *ham,attach(const char *ename
int nd,
pi d_t pid,
const char *line,
unsi gned flags) ;

hameentity_t *ham,attach_node(const char *ename
const char *nodenamg
pi d_t pid,
const char *line,
unsi gned flags) ;

| i bham

Description:

October 6, 2005

You use théhamattach()to attach arentityto the HAM. The
hamattachnode()function is used when a nodename is used to
specify a remote HAM instead of a node identified), An entity can
be any process on the system. You can use this function to:
e attach a process that's already running

or:

¢ tell the HAM to start a process and then add it as an entity to its
context.

Once an entity has been attached, you cancadditionsandactions
to it. For arbitrary processes, the HAM can monitor either:

e processes that are in session 1 (by calpngcmgrdaemon()
or:

e any process that dies due to the delivery of a core-dump signal, i.e.
one of the set of signals that causes a core-dump. For more

Chapter 6 « HAM AP| Reference 129

ham _attach(), ham_attach_node() 1) 2005, QNX Software Systems

information on these signals, please refer to the dumper utility in
the Utility Reference

Since thehamattach*() functions open a connection to the HAM, for
convenience they also perform the inittelm.connect(call. So any
client that makes hamattach()call doesn't need to call
ham.connect(Jor hamdisconnect(pefore and after the call to
hamattach()

The arguments are as follows:

ename The name of the entity; it must be unique across the
whole context of the HAM.

pid Process ID to attach to, if the process is already
running. Ifpid < 0, the HAM starts the process and
begins monitoring it. In this casine must also be
specified with the FULLpath (including all required
arguments) to start the process.

nd This hamattach()parameter specifies the node
identifier of the remote node on which the entity being
targeted is running (or will be run). Thed is the node
identifier of the remote node at the time the call is
made.

0 Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usimgetmgrstrtond()or
another function that converts nodenames into node identifiers.

nodename Thishamattachnode()parameter is a fully qualified
node name (FQNN).

line This contains the FULL command line, including
arguments, to start the process. This is used ONLY if
pid < 0 and is ignored otherwise. along with all
parameters to be passed to it. If either the pathname or
the arguments contain spaces that need to be passed on

130 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham _attach(), ham_attach_node()

literally to the spawn call, they need to be quoted. As
long as the subcomponents within {hetharguments
are quoted, using either of the following methods:

\"path with space\’

or

\"path with space\",

the following is allowed:

"\"path with space\’ argl arg2 \"arg3 with space\"".

This would be parsed as

"path with space" -> path

argl argl

arg2

arg2

arg3 = "arg3 with space".

flags Currently, the following flag is defined:

HENTITYKEEPONDEATH

Indicates that the entity and all it conditions will
be retained when the entity dies and is not
restarted. The default is to remove all entities
that are not restarted.

Returns:

A valid handle to an entity on success; otherwise, NUkLrifois
set).

October 6, 2005 Chapter 6 « HAM API Reference 131

ham _attach(), ham_attach_node() 1) 2005, QNX Software Systems

Errors:
EBADF Couldn’t connect to the HAM.
EEXIST The name provided for the entity already exists.
EINVAL The name given ienamds invalid (e.qg. it contains the

“/” character) or is NULL.
Thepid provided is< 0, but noline was provided.

ENAMETOOLONG

The name given (ienamgis too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t s. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

ENOMEM Not enough memory to create a new handle.
In addition to the above errors, the HAM returns any error it

encounters while servicing the request to add a new entity to its
context.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler Yes
Signal handler Yes
Thread Yes

132 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham _attach(), ham_attach_node()

See also:

hamattach() ham.connect() hamdetach() hamdetachself(),
hamdisconnect()

In theLibrary Reference procmgrdaemon()

October 6, 2005 Chapter 6 « HAM API Reference 133

h am _attaC h _S el f() [2005, QNX Software Systems
Attach an application as a self-attached entity

Synopsis:

#i ncl ude <ha/ ham h>

hameentity_t *ham,attach_sel f (
const char *ename
_Ui nt 64t hp,
i nt hpdi,
i nt hpdh
unsi gned flags) ;

Library:

| i bham

Description:

You use théhamattachself() call to attach an application as a
self-attachedentity to the HAM. A self-attached entity is a process

that chooses to send heartbeats to the HAM, which will then monitor
the process for failure. Self-attached entities can, on their own, decide
at exactly what point in their lifespan they want to be monitored, what
conditions they want acted upon, and when they want to stop the
monitoring.

Note that self-attached entities can be any processes, not just those in
session 1 (unlike the requirement for t@mattach()call).

Once an entity has been attached, you cancaddlitionsandactions
to it.

Since thehamattach*() functions open a connection to the HAM, for
convenience they also perform the inittelm.connect(all. So any
client that makes hamattachself()call doesn’t need to call
ham.connect(Jor hamdisconnect(before and after the call to

ham attach self().

134 Chapter 6 « HAM API Reference October 6, 2005

00 2005, QNX Software Systems

ham _attach_self()

Returns:

Errors:

October 6, 2005

The arguments are as follows:

ename

hp

The name of the entity. This must be unique across the
whole context of the HAM. Self-attached entities can also
specify an interval at which they’ll send heartbeats to the
HAM. The heartbeat can be used to detect unresponsive
processes that aren’t dead.

The heartbeat interval in nanoseconds. The lowest
permissible heartbeat interval is defined in the constant
HAMHBEATMIN (see<ha/ ham h>). Use 0 if no heartbeat
is desired.

Note that here you're specifying the heartbeat interval — the client
must still call theham heartbeat(function to actualljtransmitthe

heartbeat.

hpd|

hpdh

flags

The number of permissible missed heartbeats before
CONDHBEATMISSEDLOWis triggered. The value dfpdl
must be< hpdh

As for hpdl, but for CONDHBEATMISSEDHIGH The value
of hpdhmust bex= hpdl.

There are no flags defined at this time.

A valid handle to an entity on success; otherwise, NUELr1fois

set).

EBADF

EEXIST

Couldn’t connect to the HAM.

The name provided for the entity already exists.

Chapter 6 « HAM AP| Reference 135

h am ,attaC h ,S el f () O 2005, QNX Software Systems

EINVAL The name given ienamds invalid (e.qg. it contains the
“/” character) or is NULL.

ENAMETOOLONG

The name given (imnamé is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t s. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

ENOMEM Not enough memory to create a new handle.
In addition to the above errors, the HAM returns any error it

encounters while servicing the request to add a new entity to its
context.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

hamattach() ham.condition() ham.connect() hamdetach()
hamdetachself() hamdisconnect()hamheartbeat()

In theLibrary Reference procmgrdaemon()

136 Chapter 6 « HAM API Reference October 6, 2005

0 2005, QNX Software Systems h am _C O ﬂ d | tl 0 n ()
Set up a condition to be triggered when a certain event occurs

Synopsis:

#i ncl ude <ha/ ham h>

ham_condi ti on_t *ham.conditi on(hamentity_t *ehdl

i nt type
const char *cname
unsi gned flags ;

Library:
I i bham

Description:

You call this function to set up a condition that will be triggered when
a significant event occurs.

Each entity can be associated with several different conditions, and
associated with each of these conditions is a set of actions that will be
performed in FIFO sequence when the condition is true. If an entity
has multiple conditions that are true simultaneously, with different
sets of actions associated with each condition, then all the actions
associated with each condition are performed, in sequence.

This mechanism lets you combine actions together into sets and
choose to remove/control them as a single “group” instead of as
individual items.

Theehdlargument is an entity handle obtained either:
e from ahamattach*() call or ahamentity*() call

or:

e by callinghamentity_handle*()with an existing entity name.
Since conditions are associated with entities, the entity handle
(ehd) must be available before you can add conditions.

Since conditions are associated with entities, the entity haetl)
must be available before you can add conditions.

You can specify any of the following faype

October 6, 2005 Chapter 6 « HAM API Reference 137

h am ,C O n d |t| O n () 0 2005, QNX Software Systems

CONDDEATH The entity died.

An entity’s death is detected for all processes in
session 1, for processes that terminate abnormally
(typically due to the delivery of a signal), and for
processes that are attached as self-attached entities.

CONDDETACH The entity detached from the HAM.

CONDHBEATMISSEDLOW

The entity missed a heartbeat specified as “low”
severity.

CONDHBEATMISSEDHIGH

The entity missed a heartbeat specified as “high”
severity.

CONDRESTART The entity was restarted.

Thecnameargument is the condition name. It must be unique across
all conditions in the given entity.

When a condition is triggered, all actions defined in all conditions of
the given type are executed. When an entity dies, a condition of type
HCONDDEATH s triggered, and all actions in all conditions that
match this type are executed.

Currently the following flags are defined:

HCONDINDEPENDENT

Indicates that the actions associated with this condition are to be
performed in a separate thread. When a condition is triggered,
actions within it are performed in FIFO order. For multiple
conditions that are simultaneously triggered, the conditions are
serviced in an arbitrary order. By setting this flag, you're
marking the condition amdependent— all actions associated

with it are executed in a separate thread, independent of actions
in other conditions.

138 Chapter 6 « HAM API Reference October 6, 2005

00 2005, QNX Software Systems h am ,C O n d |t| O n ()

Returns:

Errors:

October 6, 2005

HCONDNOWAIT

Indicates that the condition can’t contain any “waitfor” actions.
Waitfor actions are normally slow and may contain significant
delays. This will delay the execution of subsequent actions in
the list. SpecifyingHCONDNOWAIT guarantees there will be no
delays once the condition is triggered.

HREARMAFTERRESTART

Indicates that the condition is to be automatically re-armed after
the entity that it belongs to is restarted. Be default, this flag is
disabled — conditions automatically get removed across
restarts of the entity. Note that if the entity that the condition
belongs to gets removed, this condition will also be removed,
regardless of the state of this flag.

You must call theham.connect(functionbeforethe first call to
ham.condition()in a process. If a process calam.connect(jand
then calldfork(), the child process must cdlam.connect(jagain
before it can successfully cdlam.condition()in order to add
conditions.

A valid handle to a condition in the given entity; otherwise, NULL
(anderrnois set).

EBADF Couldn’t connect to the HAM.
EEXIST The name provided for the condition already exists.
EINVAL The handle, type, or name given is invalid (e.g. it

contains the/*” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using

Chapter 6 « HAM API Reference 139

h am ,C O n d |t| O n () 0 2005, QNX Software Systems

hamconnect() and the process that’s calling
ham.condition()aren’t the same.

ENAMETOOLONG

The name given (imnamé is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t's. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH.MAX .

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No
Interrupt handler No
Signal handler No
Thread Yes

See also:

hamattach() hamattachself() ham.conditionremove()
ham.connect() hamentity handle()

140 Chapter 6 « HAM API Reference October 6, 2005

0 2005, QNX Software Systems h am _e n t' ty _C 0 n t I’O | ()

Synopsis:

Library:

Perform control operations on an entity object in a HAM

#i ncl ude <ha/ham h>
int hameentity_control (hamentity_t *ehd|

i nt command
unsi gned flag9 ;

| i bham

Description:

October 6, 2005

Theham.entity_ control() function can be used to control the state of
an entity object in a HAM. This function is designed to be extensible
with additional commands. Currently, the following commands are
defined:

HENABLE, /* enable item

HDI SABLE, /* disable item
HADDFLAGS, /* add flag
HREMOVEFLAGS, /* remove flag
HSETFLAGS, /* set flag to specific
HGETFLAGS, /* get flag

When an entity item is enabled (the default), any event that occurs in
relation to this event will trigger appropriate conditions and actions
related to the entity. If an entity item is disabled, no events relating to
that entity will bereacted to If an entity is disabled, all conditions

and actions under it are also disabled. Individual conditions and
actions can be enabled and disabled using the corresponding control
functions for conditions and actions, respectively.

TheHADDFLAGS, HREMOVEFLAGS andHSETFLAGScommands

can be used to modify the set of flags associated with the entity being
controlled. Add flags and remove flags are used to either add to or
remove from the current set of flags, the specified set of flags (as

Chapter 6 « HAM API Reference 141

h am ,e n t I ty ,C O ﬂ t I’O | () 00 2005, QNX Software Systems

Flags

Returns:

Errors:

given inflagg. The set flags function is called when the current set of
flags is to be replaced Hlags

Any flag that is valid for the corresponding condition can be used
whenham.conditioncontrol() is being used to set flags, with the
exception oHCONDNOWAIT if the existing condition already has
some waitfor actions associated with it.

For theHENABLE andHDISABLE commands:

HRECURSE Applies the command recursively.

For enable, disable, add flags, remove flags, and set flags functions:

0 Success.

-1 An error occurreddrrnois set).
For get flags function

flags Success.

-1 An error occurreddrrnois set).

EBADF Couldn’t connect to the HAM.

EINVAL Thecommandr flagsvariable is invalid.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

142 Chapter 6 « HAM API Reference October 6, 2005

00 2005, QNX Software Systems h am ,eﬂ t I ty ,C O n t I’O | ()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

hamaction.control(), ham.condition.control()

October 6, 2005 Chapter 6 « HAM AP| Reference 143

ham_condition_handle(),
ham_condition_h andle_nOde() 0 2005, QNX Software Systems

Get a handle to a condition in an entity

Synopsis:

Library:

#i ncl ude <ha/ ham h>

ham_condi ti on_t *ham.conditi on_handl e(
i nt nd,
const char *ename
const char *cname
unsi gned flags) ;

ham_condi ti on_t *ham.condi ti on_handl e_node(
const char *nodenamg
const char *ename
const char *cname
unsi gned flags) ;

| i bham

Description:

Theham.conditionhandle()function returns a handle to a condition
(cnamé in an entity Enamée.

The handle obtained from this function can be passed to other
functions, such asamactionrestart() or
ham.conditionhandlefree().

The handle returned is opaque — its contents are internal to the
library.

If a node (d) is specified, the handle is to an entity/condition/action
combination that refers to a process on that remote node. The
ham.conditionhandlenode()function is used when a hodename is
used to specify a remote HAM instead of a node identifiel.(

There are no flags defined at this time.

144 Chapter 6 « HAM API Reference October 6, 2005

[J 2005, QNX Software Systems ham ,COnd Itlon ,h and |e(),
ham_condition_handle_node()

Returns:
A valid ham_condi ti on_t or NULL if an error occurreddrrnois
set).
Errors:
EINVAL The name given iknameor enamads invalid (e.qg. it
contains the/*” character) or is NULL.
ENAMETOOLONG
The name given (imnamé is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t's. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .
ENOENT There’s no condition by the nanomamedefined in an
entity by nameenamen the current context of the
HAM.
ENOMEM Not enough memory to create a new handle.
Classification:
QNX 6
Safety

Cancellation point No
Interrupt handler No
Signal handler No
Thread Yes

October 6, 2005 Chapter 6 « HAM API Reference 145

]

ham_condition_handle(),
ham ,Cond ItIOI’] ,h andle,nOde() 2005, QNX Software Systems

Caveats:

See also:

A call to hamconditionhandle()and a subsequent use of the handle
returned in a call such dmm.actionrestart()are completely
asynchronousTherefore, a valid action/condition/entity may no
longer exist when the handle is used to attach actions at a later time.

In such an event, thkamaction*() functions will return an error
(ENOENT) that the condition doesn’t exist in the given entity.

ham actionexecute()hamactionhandle()
hamaction handlefree(), hamaction notify_pulse()
ham action_notify_signal(), hamactionremove()
hamactionrestart() hamactionwaitfor(),

ham conditionhandlefree(), hamentity handle()
ham. entity_handlefree()

146 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham _condition_handle_free()
Free a previously obtained handle to a condition in an entity

Synopsis:

#i ncl ude <ha/ ham h>

i nt hamccondi ti on_handl e_free(ham,condition_t *chdl);

Library:

| i bham

Description:

Theham.conditionhandlefree() function frees a handle associated
with a condition ¢hdl) and reclaims all storage associated with the
given handle.

The handleehdl must be obtained frorham.conditionhandle()or
ham.condition() Once a handle is freed, it is no longer available to
refer to any condition. Theam.conditionhandlefree()call frees
storage allocated for the handle itself but does not remove the
condition itself, which is in the HAM.

Returns:

0 Success.

-1 An error occurreddrrnois set).

Errors:
EINVAL The handle passed to the function isn’t valid.

Classification:
QONX 6

October 6, 2005 Chapter 6 « HAM API Reference 147

ham_condition_handle_free() 1) 2005, QNX Software Systems

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

Caveats:
Theham.conditionhandlefree() function frees storage related only
to the handle in the client — it doesn’t remove the corresponding
entity.

See also:

hamaction handlefree(), ham.condition() hamconditionhandle()
ham entity_handlefree()

148 Chapter 6 « HAM API Reference October 6, 2005

[2005, QNX Software Systems ham _condition_raise()

Synopsis:

Library:

Attach a condition associated with a condition raise condition

#i ncl ude <ha/ ham h>

ham_condi ti on_t *ham.condition_rai se(
ham,entity_t *ehd|
const char *cname
unsi gned rtype,
unsi gned rclass
unsi gned rseverity
unsi gned flags) ;

| i bham

Description:

October 6, 2005

This condition is triggered whenever an entity raises a condition,
which matches the giventype rclass andrseverity An entity that

raises a condition, does so with a given set of values for type, class,
and severity. Subscribers to this event can specify the conditions they
are interested in either explicitly or by using the following special

wild cards for each of these values.

CONDRAI SETYPEANY /* ANY type : raised condition */

CONDRAI SECLASSANY /* ANY cl ass : raised condition */
CONDRAI SESEVERI TYANY /* ANY severity : raised condition */

Theehdlargument is an entity handle obtained either:

e from ahamattach*() call or ahamentity*() call
or:

e Dby callinghamentity handle*()with an existing entity name.
Since conditions are associated with entities, the entity handle
(ehd) must be available before you can add conditions.

Chapter 6 « HAM AP| Reference 149

h am ,CO n d |t| O n ,I'al Se() 2005, QNX Software Systems

Returns:
a condition handle
Success.
NULL Failure (errnois set).
Errors:
EBADF Couldn’t connect to the HAM.
EEXIST The name provided for the condition already exists.
EINVAL The handle, type, or name given is invalid (e.g. it

contains the/'” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
hamconnect() and the process that’s calling
ham.condition()aren’t the same.

ENAMETOOLONG

The name given (imnamé is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t's. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:

150

QNX 6

Safety

Cancellation point No

continued. ..

Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham_condition_raise()

Safety

Interrupt handler No
Signal handler No
Thread Yes

See also:

ham.condition() ham.conditionstate() hamattach()
hamattachself() hamentity() hamentity_control()
ham entity_handle() hamentity handlefree() hamentity node()

October 6, 2005 Chapter 6 « HAM API Reference 151

ham_condition_remove() 1) 2005, QNX Software Systems
Remove a condition from an entity

Synopsis:
#i ncl ude <ha/ham h>
i nt hamecondi ti on_renove(ham.conditi on_t *chd|,
unsi gned flags) ;
Library:
I i bham
Description:

Theham.conditionremove(¥unction removes a condition from an
entity.

Thechdlargument is a handle to a condition that was previously
obtained by a call tham.condition()or to ham.conditionhandle()

There are no flags defined at this time.

N Theham.connect(function must be called before the first call to
ham.conditionremove()in a process. If a process catlamconnect()
and then call$ork(), the child process needs to caim.connect()
again before it can successfully ceim conditionremove(to
remove conditions.

Returns:

0 Success.

-1 An error occurreddrrnois set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The handle passed as an argument is invalid.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using

152 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham_condition_remove()

hamconnect() and the process that's calling
ham.conditionremove()aren’t the same.

ENOENT There’s no condition corresponding to the handle
supplied.

In addition to the above errors, the HAM returns any error it
encounters while servicing the request.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ham.condition() ham.conditionhandle() ham.connect()

October 6, 2005 Chapter 6 « HAM AP| Reference 153

]

ham_condition_state() 1) 2005, QNX Software Systems

Attach a condition associated with a state transition

Synopsis:

Library:

#i ncl ude <ha/ ham h>

ham_condi ti on_t *ham.conditi on_st at e(
ham,entity_t *ehd|
const char *cname
unsi gned fromstate
unsi gned tostate
unsi gned flags) ;

| i bham

Description:

Flags

This condition is triggered when the specified entity changes from a
state matchinfromstateto a state matchintpstate

CONDSTATEANY can be used to specify a wild card signifying any
STATE. The matching of states is based on either an explicit match or
special conditions explained in the Flags section below.

Theehdlargument is an entity handle obtained either:

e from ahamattach*() call or ahamentity*() call
or:
e Dby callinghamentity handle*()with an existing entity name.

Since conditions are associated with entities, the entity handle
(ehd) must be available before you can add conditions.

Standard flags that are applicable for conditions are also valid here.
(Seehamcondition()for more details). In addition, the following
flags are also defined:

/* special condition flags */

154 Chapter 6 « HAM API Reference October 6, 2005

00 2005, QNX Software Systems h am ,C O n d |t| O n ,State()

Returns:

Errors:

October 6, 2005

HCONDSTATEFROVBET /* fromstate is a set */
HCONDSTATETCOSET /* to state is a set */
HCONDSTATEFROM NV /* invert fromstate set */
HCONDSTATETO NV /* invert to state set */

States can be given using:
e individual values
e the wild cardCONDSTATEANY

e bitmaps that allow several states to be referred to collectively as
sets.

If fromstateor tostaterefers to a set, the corresponding flag
HCONDSTATEFROMSETor HCONDSTATETOSETMuSst be set.

If you wantfromstateor tostateto refer to the logical negation of a set
of states definelICONDSTATEFROMINVOr HCONDSTATETOINVIN

flags. This would logically invert the set of states specified (equivalent
to saying “any state other than this set”).

a condition handle
Success.

NULL Failure (errnois set).

EBADF Couldn’t connect to the HAM.
EEXIST The name provided for the condition already exists.
EINVAL The handle, type, or name given is invalid (e.g. it

contains the/*” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using

Chapter 6 « HAM API Reference 155

h am ,C O n d |t| O n ,State() 0 2005, QNX Software Systems

hamconnect() and the process that’s calling
ham.condition()aren’t the same.

ENAMETOOLONG

The name given (imnamé is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t's. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH.MAX .

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No
Interrupt handler No
Signal handler No
Thread Yes

See also:

ham.condition() ham.conditionraise(), hamattach()
hamattachself() hamentity() hamentity_control()
ham entity_handle() hamentity handlefree() hamentity node()

156 Chapter 6 « HAM API Reference October 6, 2005

02008, anx somware systems 1AM _connect(), ham_connect_nd(),

ham_connect_node()

Synopsis:

Library:

Connect to the HAM

#i ncl ude <ha/ham h>
i nt hameconnect (unsi gned flag9 ;

i nt hamconnect _nd(int nd, unsigned flag9;
i nt hamconnect _node(const char *nodenamge unsi gned flags ;

| i bham

Description:

October 6, 2005

Theham.connect(function initializes a connection to a HAM. The
ham.connectnd() andham.connectnode()functions initialize
connections to remote HAMs.

A process may have only a single connection open to a HAM at any
time.

Thend specified ttham_connect _nd is the node identifier of the
remote node at the time ttm.connecind() call is made.

Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usingetmgrstrtond()or
another function that converts nodenames into node identifiers.

Theham.connectnode()function takes as a parameter a fully
qualified node name (FQNN).

You can call these functions any number of times, but because the
library maintains a reference count, you need to lsath disconnect()
the same number of times to release the connection.

Connections are associated with a specific procesgitl). (If a
process performsamconnect()and then call$ork(), the child

Chapter 6 « HAM API Reference 157

]

ham_connect(), ham_connect_nd(),
ham_connect_node() 2005, QX Software Systems

process needs to reconnect to the HAM by calliagn.connect()
again.

But if a process calls any of the following:

ham attach self()
hamattach()
hamattachnode()
hamdetach()
hamdetachself()
hamdetachname()
hamdetachnamenode()
hamstop()
hamstopnd()
hamstopnode()
ham. entity()

ham entity_node()

hamverbose()

it doesn’t need to catham connect*() since those functions do so on
their own.

For all othertham*() functions, clients must callam.connect(irst.

There are no flags defined at this time.

Returns:
0 Success.
-1 An error occurreddrrnois set).
158 Chapter 6 « HAM API Reference October 6, 2005

02005, anx somware systems 1AM _connect(), ham_connect_nd(),
ham_connect_node()

Errors:

Upon failure, theham connect*()functions return the error as set by
the underlyingopen()library call that failed.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:
ham attachself(), hamdisconnect()ham.stop()

In theLibrary Reference fork(), open() netmgrstrtond()

October 6, 2005 Chapter 6 ¢ HAM API Reference 159

h am _d etaC h () 0 2005, QNX Software Systems
Detach an entity from the HAM

Synopsis:

#i ncl ude <ha/ ham h>

i nt hamedetach(ham,entity_t *ehdl
unsi gned flags) ;

Library:
[i bham

Description:

This function detaches an attached entity from the HAM. The entity
being detached must NOT be a self-attached entity.

The handle passed into this functiah(l) is either returned by a
previoushamattach()call or obtained fromhamentity handle()

There are no flags defined at this time.

This function automatically callsam connect(jand
hamdisconnect(Jor the client.

Thehamdetach()call automatically raises fCONDDETACH
condition in the HAM for that entity.

Returns:
0 Success.

-1 An error occurreddrrnois set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The handle passed as an argument is invalid.

ENOENT There’s no entity corresponding to the handle supplied.

160 Chapter 6 « HAM API Reference October 6, 2005

00 2005, QNX Software Systems h am ,d etaC h ()

In addition to the above errors, the HAM returns any error it
encounters while servicing the request to remove the entity from its
context.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

hamattach() hamattachself() ham.connect() hamdetachname()
ham.detachself(), hamdisconnect()

In theLibrary Reference procmgrdaemon()

October 6, 2005 Chapter 6 « HAM API Reference 161

ham_detach_name(), ham_detach_name_node() o 2w,

QNX Software Systems
Detach an entity from the HAM, using an entity name

Synopsis:

#i ncl ude <ha/ ham h>

i nt hamedet ach_name(int nd,
const char *ename
unsi gned flag9 ;

i nt ham.det ach_name_node(const char *nodenamg
const char *ename
unsi gned flags ;

Library:
I i bham

Description:

These functions detach an attached engtygfng from a HAM. The
entity being detached must NOT be a self-attached entity.

Thend specifies the node identifier of the remote node on which the
entity being targeted is running, at the time the call is made.

Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usimgetmgrstrtond()or
another function that converts nodenames into node identifiers.

Thehamdetachnamenode()function is used when a nodename is
used to specify a remote HAM instead of a node identifiel.(

There are no flags defined at this time.
This function automatically callsam connect(jand
hamdisconnect(Jor the client.

Returns:

0 Success.

-1 An error occurreddrrnois set).

162 Chapter 6 « HAM API Reference October 6, 2005

0 2005, QNX Software Systems

ham _detach_name(),
ham_detach_name_node()

Errors:
EBADF

EINVAL

ENOENT

Error connecting to the HAM.
The name passed as an argument is invalid.

There’s no entity corresponding to the name supplied.

In addition to the above errors, the HAM returns any error it
encounters while servicing the request to remove the entity from its

context.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread

See also:

Yes

hamattach() hamattachself() ham.connect() hamdetach()
hamdetachself() hamdisconnect()

October 6, 2005

Chapter 6 « HAM AP| Reference 163

]

h am _d etaC h _S el f () [0 2005, QNX Software Systems
Detach a self-attached entity from the HAM

Synopsis:
#i ncl ude <ha/ham h>
i nt hamdetach_sel f(hameentity_t *ehdl

unsi gned flags) ;

Library:
I i bham

Description:
This function detaches a self-attached entity from the HAM. The
entity being detachedhustbe a self-attached entity.
The handle passed into this functiahg) is either returned by a
previoushamattach self() call or obtained fromham.entity handle()
There are no flags defined at this time.
This function automatically callsam.connect(jand
ham.disconnect(Jor the client.

Returns:
0 Success.
-1 An error occurreddrrnois set).

Errors:
EBADF Error connecting to the HAM.
EINVAL The handle passed as an argument is invalid.
ENOENT There is no entity corresponding to the handle supplied.
In addition to the above errors, the HAM returns any error it
encounters while servicing the request to remove the entity from its
context.

164 Chapter 6 « HAM API Reference October 6, 2005

00 2005, QNX Software Systems h am ,d etaC h ,S el f ()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

hamattach() hamattachself() ham.connect() hamdetach()
hamdetachname() hamdisconnect()

October 6, 2005 Chapter 6 « HAM API Reference 165

]

ham_disconnect(), ham_disconnect_nd(),
ham_disconnect_node() 1) 2005, QNX Software Systems

Disconnect from the HAM

Synopsis:

Library:

#i ncl ude <ha/ham h>
i nt hamudi sconnect (unsi gned flag9 ;

i nt hamudi sconnect _nd(i nt nd, unsigned flags;
i nt hamudi sconnect _node(const char *nodenamge unsi gned flags ;

| i bham

Description:

Thehamdisconnect(Junction closes a previously open connection to
a HAM. Thehamdisconnecind() andhamdisconneciode()
functions close previously opened connections to remote HAMs.

Thend specified tcham_di sconnect _nd is the node identifier of
the remote node at the time thamdisconnecind() call is made.

Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usimgetmgrstrtond()or
another function that converts nodenames into node identifiers.

Thehamdisconnechode()function takes as a parameter a fully
qualified node name (FQNN).

Because the library maintains a reference count, the actual connection
to the HAM is released only when the number of calls made to
ham.disconnect(natches the number of calls previously made to
ham.connect()

When a process callam.connect(Jand then callsork(), the
connection is no longer valid in the child process. To reconnect to the
HAM, the child process must call either:

e ham.connect(directly, which will automatically close the existing
connection and reopen a new one

166 Chapter 6 « HAM API Reference October 6, 2005

[0 2005, ONX Software Systems ham _discon neCt(),
ham_disconnect_nd(), ham_disconnect_node()

or:
e hamdisconnect()followed byhamconnect()

There are no flags defined at this time.

Returns:

0 Success.

-1 An error occurreddrrnois set).

Errors:

EINVAL There’s no valid connection to the HAM to disconnect.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

hamattach self() ham.connect() ham.connectnd(),
ham.connectnode() hamstop()

In theLibrary Reference fork()

October 6, 2005 Chapter 6 « HAM API Reference 167

ham _entity(), ham_entity_node() 1) 2005, QNX Software Systems

Create entity placeholder objects in a HAM

Synopsis:

Library:

#i ncl ude <ha/ ham h>

ham,entity_t *ham,entity(const char *ename
int nd,
unsi gned flag9 ;

ham,entity_t *ham,entity_node(const char *ename

const char *nodenamg
unsi gned flagg ;

| i bham

Description:

These functions are used to create placeholders for entity objects in a
HAM. The hamentity.node()function is used when a nodename is
used to specify a remote HAM instead of a node identifi€l.(

You can use these functions to create entities, and associate conditions
and actions with them, before the process associated with an entity is
started (or attached). Subsequkain attach*() calls by entities can

attach to these placeholder and thereby enable conditions and actions
when they occur.

Thend variable specifies the node identifier of the remote node at the
time the call is made.

Since node identifiers are transient objects, we recommend that the
value fornd is obtained at the time of the call, usingtmgrstrtond()
or another function that converts nodenames into node identifiers.

Thehamentity node()function takes as a parameter a fully qualified
node name (FQNN).

168 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham _entity(), ham_entity_node()

Returns:

Errors:

an entity handle
Success.

NULL Failure (errnois set).

EBADF Couldn’t connect to the HAM.

EINVAL The name given ienamds invalid (e.g. it contains the
“I " character) or is NULL.

ENAMETOOLONG

The name given (ianamé is too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t s. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH_MAX .

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:

October 6, 2005

QNX 6

Safety

Cancellation point No
Interrupt handler No
Signal handler No
Thread Yes

Chapter 6 « HAM AP| Reference 169

ham _entity(), ham_entity_node() 1) 2005, QNX Software Systems

See also:

hamattach() hamattachself() ham.condition()
ham.condition.control(), ham.conditionhandle()
ham.conditionhandlefree(), ham.conditionremove() hamdetach()
hamdetachname() hamdetachself(),

170 Chapter 6 « HAM API Reference October 6, 2005

[2005, QNX Software Systems ham _entity_condition_raise()
Used by an entity to raise a condition

Synopsis:

#i ncl ude <ha/ ham h>

int hameentity_condition_raise(
ham,entity_t *ehd|
unsi gned rtype,
unsi gned rclass
unsi gned rseverity
unsi gned flags) ;

Library:
[i bham

Description:

This function is used by an entity to notify a HAM of an interesting
event of its choice. This in turn triggersCONDITION_RAISE in the
HAM, which will search for matching subscribers for this event and
execute all associated actions.

The values oftype rclass andrseveritycan be used to permit finer
grain matching and to gather additional information relating to the
condition.

To learn more about the matching mechanism, refer to the API
documentation foham.conditionraise().

Returns:

0 Success.

-1 An error occurreddrrnois set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The handle specified iahdlis invalid.

October 6, 2005 Chapter 6 « HAM API Reference 171

ham _entity_condition_raise() 1) 2005, QNX Software Systems

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham.connect() and the process that'’s calling this
function are not the same.

ENOENT There’s no entity by the given handlehd).

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ham.condition() ham.conditionraise(), hamconditionstate()
hamattach() hamattach.self() hamentity() hamentity_control()
hamentity handle() hamentity_ handlefree() hamentity node()

172 Chapter 6 « HAM API Reference October 6, 2005

[2005, QNX Software Systems ham _entity_condition _state()

Synopsis:

Library:

Used by an entity to notify the HAM of a state transition

#i ncl ude <ha/ ham h>

int hameentity_condition_state(
ham,entity_t *ehd|
unsi gned tostate
unsi gned flags) ;

| i bham

Description:

Returns:

Errors:

October 6, 2005

This function enables an entity to report a transition to the HAM; the
valuetostateindicates the transitional state. The HAM in turn triggers

a condition state event for this entity, and will search for matching
subscribers for this event and execute all associated actions. For more
details of the matching mechanisms refer to the APl documentation
for ham.conditionstate()

0 Success.

-1 An error occurreddrrnois set).

EBADF Couldn’t connect to the HAM.

EINVAL The handle specified iehdlis invalid.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham.connect() and the process that'’s calling this
function are not the same.

ENOENT There’s no entity by the given handlehd).

Chapter 6 « HAM AP| Reference 173

ham _entity_condition_state() 1) 2005, QNX Software Systems

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ham.condition() ham.conditionraise(), ham.conditionstate()
hamattach() hamattachself() hamentity() hamentity_control()
ham entity_handle() hamentity_handlefree() hamentity_node()

174 Chapter 6 « HAM API Reference October 6, 2005

0 2005, QNX Software Systems h am _e n t' ty _C 0 n t I’O | ()

Synopsis:

Library:

Perform control operations on an entity object in a HAM

#i ncl ude <ha/ham h>
int hameentity_control (hamentity_t *ehd|

i nt command
unsi gned flag9 ;

| i bham

Description:

October 6, 2005

Theham.entity_ control() function can be used to control the state of
an entity object in a HAM. This function is designed to be extensible
with additional commands. Currently, the following commands are
defined:

HENABLE, /* enable item

HDI SABLE, /* disable item
HADDFLAGS, /* add flag
HREMOVEFLAGS, /* remove flag
HSETFLAGS, /* set flag to specific
HGETFLAGS, /* get flag

When an entity item is enabled (the default), any event that occurs in
relation to this event will trigger appropriate conditions and actions
related to the entity. If an entity item is disabled, no events relating to
that entity will bereacted to If an entity is disabled, all conditions

and actions under it are also disabled. Individual conditions and
actions can be enabled and disabled using the corresponding control
functions for conditions and actions, respectively.

TheHADDFLAGS, HREMOVEFLAGS andHSETFLAGScommands

can be used to modify the set of flags associated with the entity being
controlled. Add flags and remove flags are used to either add to or
remove from the current set of flags, the specified set of flags (as

Chapter 6 « HAM API Reference 175

h am ,e n t I ty ,C O n t I’O | () 00 2005, QNX Software Systems

given inflagg. The set flags function is called when the current set of
flags is to be replaced Hlags

Flags

Any flag that is valid for the corresponding entity can be used when
ham entity_control() is being used to set flags.

For theHENABLE andHDISABLE commands:

HRECURSE Applies the command recursively.

Returns:

For enable, disable, add flags, remove flags, and set flags functions:

0 Success.

-1 An error occurreddrrnois set).
For get flags function

flags Success.

-1 An error occurreddrrnois set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL Thecommandr flagsvariable is invalid.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

176 Chapter 6 « HAM API Reference October 6, 2005

00 2005, QNX Software Systems h am ,eﬂ t I ty ,C O n t I’O | ()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

hamaction.control(), ham.condition.control()

October 6, 2005 Chapter 6 « HAM API Reference 177

ham_entity_handle(), ham_entity_handle_node() o 2,

QNX Software Systems
Get a handle to an entity

Synopsis:

#i ncl ude <ha/ ham h>

ham,entity_t *ham,entity_handl e(int nd,
const char *ename
unsi gned flags) ;

ham,entity_t *ham,entity_handl e_node(const char *nodenamg
const char *ename
unsi gned flags) ;

Library:
[i bham

Description:

Thehamentity handle()function returns a handle to an entity

(enamé. The handle can then be passed to other functions that expect
a handle to an entity (such hamcondition()or

ham entity_handlefree()).

The handle returned is opaque — its contents are internal to the
library.

If a node @d) is specified, the handle is to an entity/condition/action
combination that refers to a process on that remote node. The

ham entity_handlenode()function is used when a nodename is used
to specify a remote HAM instead of a node identified)

There are no flags defined at this time.

Returns:

Avalid ham_ent i t y_t or NULL if an error occurreddrrnois set).

178 Chapter 6 « HAM API Reference October 6, 2005

[J 2005, QNX Software Systems h am ,e n t | ty ,h aﬂ d | e() y

ham _entity_handle_node()

Errors:

EINVAL The name given irnames invalid (e.g. it contains the
“I " character) or is NULL.

ENAMETOOLONG

The name given (ienamgis too long, i.e. it exceeds
_POSIXPATH.MAX (defined in<l i mi t s. h>). Note
that thecombined lengtlof an entity/condition/action
name is also limited byPOSIX PATH.MAX .

ENOENT There’s no entity by this name defined in the current
context of the HAM.

ENOMEM Not enough memory to create a new handle.

Classification:

Caveats:

October 6, 2005

QNX 6

Safety

Cancellation point No
Interrupt handler No
Signal handler No
Thread Yes

A call to hamentity handle()and a subsequent use of the handle
returned in a call such dam.condition()are completely
asynchronousTherefore, a valid action/condition/entity may no
longer exist when the handle is used at a later time.

In such an event, thkam.condition*() functions will return an error
(ENOENT) that the action in the condition doesn’t exist in the given
entity.

Chapter 6 « HAM AP| Reference 179

ham _entity_handle(), ham_entity_handle_node() - s

QNX Software Systems

See also:

hamaction handle() hamaction handlefree() hamcondition()
ham.conditionhandle() ham.conditionhandlefree(),
ham.conditionremove() hamentity_ handlefree()

180 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham _entity_handle_free()
Free a previously obtained handle to an entity

Synopsis:

#i ncl ude <ha/ ham h>

int hameentity_handl e_free(hameentity_t *ehdl);

Library:
I i bham

Description:

Thehamentity handlefree() function frees a handle associated with
an entity €hd) and reclaims all storage associated with the given
handle.

The handle éhdl) must be obtained frorham.entity_ handle()
hamattach() or hamattachself() Once a handle is freed, it is no
longer available to refer to any condition. The

hamentity handlefree() call frees storage allocated for the handle but
does not remove the condition itself, which is in the HAM.

Returns:

0 Success.

-1 An error occurreddrrnois set).

Errors:

EINVAL The name given ienamesn’t valid.

Classification:
QONX 6

October 6, 2005 Chapter 6 « HAM API Reference 181

h am ,entlty,h aﬂ d I e,fl’ee() 0 2005, QNX Software Systems

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

Caveats:

Thehamentity handlefree() function frees storage related only to
the handle in the client — it doesn’t remove the corresponding entity.

See also:

hamactionhandlefree(), ham.condition() ham.conditionhandle()
hamentity handlefree()

182 Chapter 6 « HAM API Reference October 6, 2005

0 2005, QNX Software Systems h am _h eart b eat ()
Send a heartbeat to the HAM

Synopsis:
#i ncl ude <ha/ham h>
i nt ham_heartbeat (void);
Library:
I i bham
Description:
Self-attached entities that have committed to sending heartbeats at
prescribed intervals need to chhmheartbeat()when they want to
transmit a heartbeat.
Thehamheartbeat(function does nothing if the clientisn’'t a
self-attached entity or hasn’t committed to sending heartbeats.
Returns:

This function always succeeds.
Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

October 6, 2005 Chapter 6 « HAM AP| Reference 183

h am ,h eartb eat () 0 2005, QNX Software Systems

Caveats:

Although this function always succeeds, the HAM doesn’t always
receive the heartbeat right away.

For example, if a client commits to sending a heartbeat every 5
seconds (at 5-, 10-, 15-second intervals, and so on), but instead
transmits at the 2-second mark, then the HAM won't receive a
heartbeat until the 5-second mark.

Or if the client sends a heartbeat at the 7-second mark and another at
the 8-second mark, then the HAM will receive omige heartbeaat
the 10-second mark.

See also:

hamattach.self(), hamdetachself()

184 Chapter 6 « HAM API Reference October 6, 2005

1) 2005, QNX Software Systems ham _stop(), ham_stop_nd(),

ham_stop_node()
Stop the HAM

Synopsis:

#i ncl ude <ha/ ham h>

i nt hamstop(void);
i nt hamstop_nd(int nd);
i nt ham.st op_node(const char *nodenamg;

Library:

| i bham

Description:

Thehamstop()function instructs the HAM to terminate. The
hamstopnd(), andham stopnode()functions are used to terminate
remote HAMs. These are the only proper ways to stop the HAM.

Thend specified tchamstop.nd() is the node identifier of the remote
node at the time theamstop.nd() call is made.

Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usimgetmgrstrtond()or
another function that converts nodenames into node identifiers.

Thehamstopnode()function takes as a parameter a fully qualified
node name (FQNN). Theamstopnode()function is used when a
nodename is used to specify a remote HAM instead of a node
identifier (hd).

Since the HAM and its “clone” the Guardian monitor each other, and
re-spawn should the other fail, the HAM must first terminate the
Guardian before it terminates itself.

Returns:
0 Success.

-1 An error occurreddrrnois set).

October 6, 2005 Chapter 6 « HAM AP| Reference 185

ham _stop(), ham_stop_nd(), ham_stop_node() oz,

QNX Software Systems

Errors:
EBADF Couldn’t connect to the HAM.

In addition to the above, the HAM returns any error it encounters
while servicing the request to terminate.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

186 Chapter 6 « HAM API Reference October 6, 2005

0 2005, QNX Software Systems h am __Ver b O S e()
Modifies the verbosity of a HAM

Synopsis:

#i ncl ude <ha/ ham h>

i nt hamover bose(const char *nodenamg int op, int value;

Library:
i bham
Description:
Thehamverbosdunction can be used to modify the verbosity of a
HAM. This is used to programmatically modify the verbosity. (The
ham stop()utility can also be used to do this.)
These are the variables:
op Specifies the operation on the verbosity. It can be any
one of:
e VERBOSESET.INCR=1— increment verbosity
e VERBOSESET.DECR— decrement verbosity
e VERBOSESET— set verbosity (specific value)
e VERBOSEGET — get verbosity
value Specifies the increment or decrement for the verbosity.
valuemust be a non-negative integervAlueof zero
will set the appropriate increment or decrement to 1.
nodename Specifies the target node on which the change will be
made.
Returns:

For set functions:

0 Success.

October 6, 2005 Chapter 6 « HAM API Reference 187

h am ,,V e r b O S e () O 2005, QNX Software Systems

-1 An error occurreddrrnois set).
For get function:

verbosity Success.

-1 An error occurreddrrnois set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL Thevalueor op variable is invalid.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No
Thread Yes
See also:
hamstop()

188 Chapter 6 « HAM API Reference October 6, 2005

Chapter 7
Client Recovery Library Reference

October 6, 2005 Chapter 7 e Client Recovery Library Reference 189

0 2005, QNX Software Systems

The HAT Client Recovery Library includes the following convenience
functions you can use in your applications to transparently restore
client/server connections in the event of failures:

Function Description

ha_attach() Attach a recovery function to a
connection to make it HA-aware.

ha_close() Detach an attached Hfl, then
close it.

ha_connectionctrl() Control the operation of a HA-aware
connection.

ha_ConnectAttach()ha_ConnectAttachr() Create a connection using
ConnectAttach(and attach it to the
HA lib.

ha_ConnectDetach(ha ConnectDetacli() Detach an attachdd, then close the
connection usingonnectDetach()

ha_creat(), ha_.creat64() Create a connection and attach it to
the HA lib.

ha_ detach() Detach a connection previously
attached vidna attach()

ha_dup() Duplicate an HA connection.

ha fclose() Detach an attached H#l for a file
stream, then close it.

ha fopen() Open afile stream and attach it to
the HA lib.

ha.open() ha.open64() Open a connection and attach it to
the HA lib.

ha_ReConnectAttach() Reopen a connection while

performing recovery.

continued. ..

October 6, 2005 Chapter 7 e Client Recovery Library Reference 191

0 2005, QNX Software Systems

Function Description

ha_reopen() Reopen a connection while
performing recovery.

N For information on using thede *() functions, see the chapter Using
the Client Recovery Library in this guide.

192 Chapter 7 e Client Recovery Library Reference October 6, 2005

0 2005, QNX Software Systems h a_attaC h ()

Synopsis:

Library:

Attach a recovery function to a connection to make it HA-aware

#i ncl ude <ha/ cover. h>

int ha_attach(int coid,
RFp rfn,
voi d *rhdl,
unsi gned flagy ;

l'i bha

Description:

October 6, 2005

Theha.attach()function attaches a recovery function to a connection
in order to make the connection identified dyid HA-aware. If any
operation on the connectia@oid returns arEBADF error, the recovery
function pointed to byfn will be called. The recovery function is
defined by the following type declaration4ha/ t ypes. h>:

typedef int (*RFp)(int coid, void *rhdl);

The recovery function identified layn will be called withrhdl as a
parameter. Thehdl parameter is an opaque handle to data that will be
interpreted and used by the recovery function itself. The recovery
function is expected to perform client-specific recovery on the
existing connection.

The recovery function returns a connection ID associated with the
recovered connection. This connection ID must be the same as the
one that had failed. The client can choose to recover in any way it
thinks appropriate. It could reconnect to the same server (if the
service is available), and then reconstruct its state with respect to the
connection as appropriate from the client’s perspective.

The client could also reconnect to a new server. The client recovery
function must return the same connection ID in order to indicate
successful recovery to the HA library so that the library can re-initiate
the previous failed operation on the connection.

Chapter 7 e Client Recovery Library Reference 193

h a,attaC h () O 2005, QNX Software Systems

Returns:

Errors:

If the client doesn’t want to — or can’t — recover, it can return -1 to
the library. The library will then immediately propagate the error
relating to the failed operation on the connection back to the caller.
For convenience, the HA library providas_reopen()and

ha_ ReConnectAttach@alls that close the old connection and obtain
the new connection appropriately.

You normally callha_attach()after a connection is established and a
valid coid is available.

The other method to make a connection HA-aware is to call the
convenience functionsa_open() ha_creat 64(),
ha ConnectAttach_r(), or ha fopen()

Currently the following flag is defined:

HAREPLACERECOVERYFN

Indicates that the call tba_attach()is replacing the recovery
function with a new one. You can replace recovery functions
only if the connection already has a recovery function
associated with it.

0 Success

-1 An error occurreddrrnois set).

EBADF There’s no connection identified lopid.
Or, HAREPLACERECOVERYFNS set, but there’s no
HA-aware connection identified poid.

EEXIST There’s already an HA-aware connection identified by
coid.
The flagHAREPLACERECOVERYFNisn't set.

ENOMEM Memory couldn’t be allocated while creating the
structures in the library.

194 Chapter 7 o Client Recovery Library Reference October 6, 2005

00 2005, QNX Software Systems h a,attaC h ()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ha_close() ha_detach() ha_.ConnectAttach()ha_ConnectDetach()
ha creat(), ha_fclose() ha fopen() ha.open() ha.ReConnectAttach()
ha_reopen()

October 6, 2005 Chapter 7 e Client Recovery Library Reference 195

]

h a_C I 0 S e() [J 2005, QNX Software Systems
Detach an attached HA file descriptor, then close it
Synopsis:
#i ncl ude <ha/unistd. h>
i nt ha_close(int fd);
Library:
i bha
Description:
Theha close()convenience function detaches a connection that was
previously attached usirfga_attach() and then closes the connection.
Thefd is the file descriptor originally obtained froha_open()
Returns:
0 Success
-1 An error occurreddrrnois set).
Errors:

Theha_close()function returns errors as returned by either the
underlyingclose()call or theha_detach()call.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No
Thread Yes
196 Chapter 7 e Client Recovery Library Reference October 6, 2005

00 2005, QNX Software Systems h a,CI 0 S e ()

See also:
ha attach() ha.ConnectDetach(ha detach() ha.open()

In theLibrary Reference close()

October 6, 2005 Chapter 7 e Client Recovery Library Reference 197

]

ha_connection_ctrl() [2005, QNX Software Systems

Control the operation of a HA-aware connection

Synopsis:
#i ncl ude <ha/cover. h>
i nt ha_connection_ctrl (int coid, int command, void *args)

Library:
i bha

Description:

Theha_connectionctrl() function can be used to control the operation
of the HA-aware conenction. Specifically it can be used to control the
recovery method, temporarily suspend recovery and also control the
number of times that will be attempted both consecutively for a single
failure, or across all failures. Currently the following commands are
defined:

HA_RECOVERY.ACOUNT

This sets the maximum number of times recovery is performed
for this connection. The value is specified by passing it via
“args” as an integer. A negative value implies that there is no
limit on the number of times recovery will be performed, and
this is the default state of the connection when it is made HA
aware.

HA_RECOVERY.ICOUNT

This sets the maximum number of iterations, recovery is
performed for this connection, each time a connection is found
to have failed. This count is reset each time the connection is
successfully recovered. The value is specified by passing it via
“args” as an integer. A negative value implies that there is no
limit on the number of times recovery will be performed, and
this is the default state of the connection when it is made HA
aware.

HA_RECOVERY.SUSPEND

Temporarily suspends any recovery on this connection. It will
behave like a normal connection.

198 Chapter 7 e Client Recovery Library Reference October 6, 2005

1) 2005, QNX Software Systems ha_connection_ctrl()

HA_RECOVERY.ENABLE

Re-enables any recovery on this connection. All other recovery
options are unaffected. This just toggles the “recovery
enabled/disabled” bit.

HA_RECOVERY.RESETICOUNT

Resets the iteration count usedig RECOVERY.ICOUNT
above. This sets the internal count per iteration to zero.

HA_RECOVERY.RESETACOUNT

Resets the total count used B\ _RECOVERY.ACOUNT above.
This sets the internal count of recoveries to zero.

Returns:

0 Success.

-1 An error occurreddrrnois set).

Errors:

EBADF No connection is specified by thi®id, or connection is
not HA-aware.

EINVAL Invalid command.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

October 6, 2005 Chapter 7 e Client Recovery Library Reference 199

ha_connection_ctrl() 1) 2005, QNX Software Systems

See also:

ha attach() ha_detach() ha.open() ha_reopen()
ha_ConnectAttach()ha_ConnectDetach()

200 Chapter 7 e Client Recovery Library Reference October 6, 2005

0 2005, QNX Software Systems ha_ConnectAttach () ,
ha_ConnectAttach_r()

Create a connection and attach it to the HA lib

Synopsis:

#i ncl ude <ha/ neutri no. h>

i nt ha_Connect Attach(_Ui nt 32t *nd,
pi d_t pid,
i nt chid,
unsi gned index
unsi gned flags
RFp rfn,
voi d *rhdl,
unsi gned haflag$;

i nt ha_Connect Attach_r(_Ui nt 32t *nd,
pi d_t pid,
i nt chid,
unsi gned index
unsi gned flags
RFp rfn,
voi d *rhdl,
unsi gned haflagy ;

Library:
li bha

Description:

Theha ConnectAttach(andha_ConnectDetach() functions are
identical except in the way they return errors. (For details, see the
“Returns” section.)

In addition to creating the connection using the standard
ConnectAttach_r() call, these convenience functions also call
ha attach()with the connection returned by ti@nnectAttach(gall.

The parametendgn(), andrhdl(), andhaflags()are passed to the
ha_attach()call along with the connection ID returned by the
ConnectAttach(gall.

The remaining parameters are passed to the corresponding parameters

in the ConnectAttach(gall in their appropriate positions.

October 6, 2005 Chapter 7 e Client Recovery Library Reference 201

ha_ConnectAttach(), ha_.ConnectAttach_r() ozoms onx

Software Systems

Returns:

The only difference between these functions is the way they indicate
errors:

ha_ConnectAttach()

A connection ID that's used by the message primitives. If an
error occurs, -1 is returned aedrno is set.

ha_.ConnectAttachr()

A connection ID that's used by the message primitives. This
function does NOT sedrrno. If an error occurs, the negative of
a value from the errors returned by either the underlying
ConnectAttach(gall or theha attach()call.

Errors:

Theha ConnectAttach r() call returns errors as returned by either
the underlyingConnectAttach(gall or theha attach()call.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ha attach() ha_close() ha_.ConnectAttach()ha creat() ha detach()
ha.open()

202 Chapter 7 e Client Recovery Library Reference October 6, 2005

[0 2005, QNX Software Systems h a,CO n n eCtAttaC h () y
ha_ConnectAttach_r()

In theLibrary Reference ConnectAttach()

October 6, 2005 Chapter 7 e Client Recovery Library Reference 203

ha_ConnectDetach(), ha_.ConnectDetach _r() o s owx

Software Systems

Detach an attached file descriptor, then close the connection

Synopsis:

Library:

#i ncl ude <ha/neutrino. h>
i nt ha_Connect Det ach(i nt coid);

i nt ha_Connect Det ach_r (i nt coid);

l'i bha

Description:

Returns:

Theha ConnectDetach@ndha ConnectDetachi() functions are
identical except in the way they return errors. (For details, see the
“Returns” section.)

Theha.ConnectDetach_r() call detaches a connectiocofd) that
was previously attached usihg attach() and then closes the
connection by calling the appropriaB®nnectDetach r() call.

The only difference between these functions is the way they indicate
errors:

ha_ConnectDetach()

If an error occurs, -1 is returned apdnois set. Any other
value returned indicates success.

ha_ ConnectDetach()

EOK is returned on success. This function does NOTeseto.

If an error occurs, any value from the errors returned by either
the underlyingConnectDetach(@all or theha detach()call

may be returned.

204 Chapter 7 o Client Recovery Library Reference October 6, 2005

[J 2005, QNX Software Systems h a,CO n n eCt DetaC h () y
ha_ConnectDetach_r()

Errors:

Theha.ConnectDetach_r() call returns errors as returned by either
the underlyingConnectDetach(@all or theha detach()call.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:
ha attach() ha_.ConnectAttach(ha.detach()

In theLibrary Reference ConnectDetach()

October 6, 2005 Chapter 7 o Client Recovery Library Reference 205

h a_C reat () y h a_C reat 64() [2005, QNX Software Systems
Create a connection and attach it to the HA lib

Synopsis:

#i ncl ude <ha/fcntl. h>

i nt ha_creat (const char *path
node_t mode
RFp rfn,
voi d *rhdl,
unsi gned haflag$y ;

i nt ha_creat 64(const char *path
node_t mode
RFp rfn,
voi d *rhdl,
unsi gned haflag$;

Library:
li bha

Description:

In addition to opening the connection using the standegetd 64()
call, these convenience functions also talattach()with the
connection returned by trereat()call.

The parametendn(), andrhdl(), andhaflags()are passed to the
ha attach()call along with the connection ID returned by tbreat()
call.

The remaining parameters are passed to the corresponding parameters
in thecreat()call in their appropriate positions.

Returns:

A new connection ID or -1 if an error occurreerfnois set).

206 Chapter 7 e Client Recovery Library Reference October 6, 2005

00 2005, QNX Software Systems h a_C I’eat () y h a_C I’eat64()

Errors:

Theha.creat()call returns errors as returned by either the underlying
creat()call or theha attach()call.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:
ha open() ha_attach() ha_close() ha_detach()

In theLibrary Reference creat()

October 6, 2005 Chapter 7 e Client Recovery Library Reference 207

]

h a_d etaC h () [J 2005, QNX Software Systems

Detach a previously attached connection

Synopsis:

Library:

#i ncl ude <ha/ cover. h>

int ha_attach(int coid)

l'i bha

Description:

Returns:

Errors:

Theha detach()function detaches a connection from the HA library.
This effectively makes the connection non HA-aware. After the
detach operation is complete, no more recovery will be performed for
any message operations on this connection.

The connection referred to lgpid must be a connection previously
attached to usinga_attach() Normally, you detach connections just
prior to closing them. The functiortsa_close()
ha_ConnectDetach_r(), andha fclose()perform the required
ha_detach()operation before closing the connection.

0 Success

-1 An error occurreddrrnois set).

EBADF There’s no connectioooid that’s currently attached.

Classification:

QNX 6

208 Chapter 7 o Client Recovery Library Reference October 6, 2005

00 2005, QNX Software Systems h a,d etaC h ()

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ha_attach() ha_close() ha_.ConnectDetach(hafclose()

October 6, 2005 Chapter 7 e Client Recovery Library Reference 209

]

ha_dup()

0 2005, QNX Software Systems

Duplicate an HA connection

Synopsis:

Library:

#i ncl ude <ha/ uni std. h>

i nt ha_dup(int oldfd);

l'i bha

Description:

Returns:

Errors:

Theha dup()function duplicates the HA-aware file descriptor
specified byoldfd. The functionality otha_dup()is similar to that of
the standardup() call, with the addition that the new file descriptor
also shares the recovery mechanisms associatedlalfith

Changing the recovery function for one file descriptor will
automatically change the recovery function for the other as well.

Note that HA connections are also reference-counted abeodsp()
calls. This implies that when HA connections that have lokes()d

are closed, the recovery functions will continue to exist until the last
reference to them has been closed.

The new file descriptor or -1 if an error occurremirfiois set).

EBADF The connection identified bgidfd isn't an HA-aware
connection.

ENOMEM Couldn’t allocate memory for structures in the library
to successfully duplicate the connection.

In addition, theha.dup() call returns any errors returned by the
underlyingdup()call.

210 Chapter 7 o Client Recovery Library Reference October 6, 2005

00 2005, QNX Software Systems h a,d U p ()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:
ha attach() ha_close() ha.detach() ha_open()

In theLibrary Reference dup()

October 6, 2005 Chapter 7 e Client Recovery Library Reference 211

]

h a_fCI O S e() 0 2005, QNX Software Systems
Detach an attached HA file descriptor for a file stream, then close it
Synopsis:
#i ncl ude <ha/stdi o. h>
int ha_fclose(FlILE *stp;
Library:
i bha
Description:
Theha fclose()convenience function detaches a connection
associated with the file streastpthat was previously attached using
ha attach() and then closes the connection.
Returns:
0 Success
-1 An error occurreddrrnois set).
Errors:

Theha fclose()function returns errors as returned by either the
underlyingfclose()call or theha detach()call.

Classification:

QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

212 Chapter 7 e Client Recovery Library Reference October 6, 2005

00 2005, QNX Software Systems h a,fC| O S e()

See also:
ha attach() ha.ConnectDetach(ha detach() ha.open()

In theLibrary Reference fclose()

October 6, 2005 Chapter 7 e Client Recovery Library Reference 213

]

ha_fopen()

[J 2005, QNX Software Systems

Open a file stream and attach it to the HA lib

Synopsis:

Library:

#i ncl ude <ha/stdi o. h>

i nt ha_fopen(const char *path
const char *mode
RFp rfn,
voi d *rhdl,
unsi gned haflag$y ;

l'i bha

Description:

Returns:

Errors:

In addition to opening the connection using the standiapen()call,
this convenience function also calia_attach()with the connection
returned by thdéopen()call.

The parametendn(), andrhdl(), andhaflags()are passed to the
ha attach()call along with the connection ID returned by the
underlyingfopen()call.

The remaining parameters are passed to the corresponding parameters
in thefopen()call in their appropriate positions.

A pointer to a file stream adULL if an error occursdrrnois set).

Thehafopen()call returns errors as returned by either the underlying
fopen()call or theha attach()call.

Classification:

QNX 6

214 Chapter 7 o Client Recovery Library Reference October 6, 2005

00 2005, QNX Software Systems h a,fO p en ()

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:
ha_attach() ha.detach() ha_fclose()

In theLibrary Reference fclose() fopen()

October 6, 2005 Chapter 7 e Client Recovery Library Reference 215

ha_open(), ha_open64() 1) 2005, QNX Software Systems
Open a connection and attach it to the HA lib

Synopsis:

#i ncl ude <ha/fcntl. h>

i nt ha_open(const char *path
i nt oflag,
RFp rfn,
voi d *rhdl,
unsi gned haflags ...);

i nt ha_open64(const char *path
i nt oflag,
RFp rfn,
voi d *rhdl,
unsi gned haflags ...);

Library:
li bha

Description:

In addition to opening the connection using the standaet] 64()
call, these convenience functions also talattach()with the
connection returned by trepen()call.

The parametendn(), andrhdl(), andhaflags()are passed to the
ha attach()call along with the connection ID returned by theen()
call.

The remaining parameters are passed to the corresponding parameters
in theopen()call in their appropriate positions.

Returns:

A new connection ID or -1 if an error occurreerfnois set).

216 Chapter 7 e Client Recovery Library Reference October 6, 2005

00 2005, QNX Software Systems h a_o p en () y h a_o p en 64()

Errors:

Theha.open()call returns errors as returned by either the underlying
open()call or theha attach()call.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:
ha_attach() ha_creat(), ha_close() ha_detach()

In theLibrary Reference open()

October 6, 2005 Chapter 7 e Client Recovery Library Reference 217

h a_ReCO I"\ n eCtAttaC h () [0 2005, QNX Software Systems
Reopen a connection while performing recovery

Synopsis:

#i ncl ude <ha/ neutri no. h>

i nt ha_ReConnect Attach(i nt oldcoid,
_Uint 32t nd,
pi d_t pid,

i nt chid,
unsi gned index
unsi gned flagg ;

Library:
li bha

Description:

You can use thba ReConnectAttach@onvenience function to
reopen a connection while in the recovery phase. dltleoid
argument refers to the connection that has failed. The
ha_ReConnectAttachfunction closes the previous connection and
opens a new connection using the parameters specified by calling
ConnectAttach()

Theha ReConnectAttachunction also verifies that the new
connection ID returned is the same as ¢tdcoid (as required by the
HA library mechanism).

Returns:

A new connection ID or -1 if an error occurreerfnois set).

Errors:

Theha ReConnectAttach@all returns errors as returned by the
underlyingConnectAttach(gall.

218 Chapter 7 e Client Recovery Library Reference October 6, 2005

00 2005, QNX Software Systems h a,ReCO n n eCtAttaC h ()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:

ha attach() ha_close() ConnectAttach() ConnectDetach()
ha detach() ha_open()

In theLibrary Reference ConnectAttach()

October 6, 2005 Chapter 7 e Client Recovery Library Reference 219

]

h a_l’eO e n [J 2005, QNX Software Systems
pen()

Reopen a connection while performing recovery

Synopsis:

Library:

#i ncl ude <ha/fcntl. h>
i nt ha_reopen(int oldfd,

const char *path
int oflag ...);

l'i bha

Description:

Returns:

Errors:

You can use théa reopen()convenience function to reopen a
connection while in the recovery phase. Tdiéfd argument refers to

the connection that has failed. Tha_reopen()function closes the
previous connection and opens a hew connection using the parameters
specified by callingppen()

Theha.reopen()function also verifies that the new connection ID
returned is the same as tbklfd (as required by the HA library
mechanism). If the new connection ID obtained is not the same as
oldfd, it will attempt to obtain the samfe, by calling thedup2()
function.

A new connection ID or -1 if an error occurreer(nois set).

Theha.reopen()call returns errors as returned by the underlying
open()call.

Classification:

QNX 6

220 Chapter 7 o Client Recovery Library Reference October 6, 2005

00 2005, QNX Software Systems h a,reO p e n ()

Safety

Cancellation point No

Interrupt handler No
Signal handler No
Thread Yes

See also:
ha attach() ha_close() ha.detach() ha_.open() ReConnecittach()

In theLibrary Reference open()

October 6, 2005 Chapter 7 e Client Recovery Library Reference 221

Appendix A
Examples

In this appendix...

Simple restart 225
Compound restart 226
Death/condition notification 228

Heartbeating clients (liveness detectionp31
Process starvation 238

October 6, 2005 Appendix: A e Examples 223

0 2005, QNX Software Systems Simple restart

Simple restart

October 6, 2005

The most basic form of recovery is the simple death-restart
mechanism. Since the QNXNeutrind’ realtime operating system
provides virtually all non-kernel functionality via user-installable
programs, and since it offers complete memory protection, not only
for user applications, but also for OS components (device drivers,
filesystems, etc.), a resource manager or other server program can be
easilydecoupled from the QS

This decoupling lets you safely stop, start, and upgrade resource
managers or other key prograuhgnamically without compromising
the availability of the rest of the system.

Consider the following code, where we restartitihet d daemon:

/* addinet.c */

#i ncl ude <stdio. h>
#incl ude <string.h>
#include <stdlib. h>

#i ncl ude <unistd. h>

#i ncl ude <sys/stat.h>
#i ncl ude <sys/netngr.h>
#i ncl ude <fcntl.h>

#i ncl ude "ha/ ham h"

int main(int argc, char *argv[])
{
int status;
char *inetdpath;
hameentity_t *ehdl;
ham_condi tion_t *chdl;
ham_,acti on_t *ahdl;
int inetdpid,;
if (argc > 1)
inetdpath = strdup(argv[1]);
el se
inetdpath = strdup("/usr/sbin/inetd");
if (argc > 2)
inetdpid = atoi(argv[2]);
el se
inetdpid = -1;
ham.connect (0) ;
ehdl = ham,attach("inetd", ND_LOCAL_NODE, inetdpid, inetdpath, 0);
if (ehdl !'= NULL)

chdl = ham.condi ti on(ehdl , CONDDEATH, "death", HREARMAFTERRESTART);

if (chdl !'= NULL) {
ahdl = ham.action_restart(chdl, "restart", inetdpath,
HREARMAFTERRESTART) ;
if (ahdl == NULL)

printf("add action failed\n");

Appendix: A e Examples 225

Compound restart 0 2005, QNX Software Systems

}
el se
printf("add condition failed\n");

}

el se

printf("add entity failed\n");
ham.di sconnect (0) ;
exit(0);

The above example attaches theet d process to a HAM, and then
establishes a conditiadeathand an actiomestartunder it.

Wheni net d terminates, the HAM will automatically restart it by
running the program specified byet dpat h. If i net d were already
running on the system, we can passpitkof the existing net d into

i net dpi d and it will be attached to directly. Otherwise, the HAM
will start and begin to monitarnet d.

You could use the same code to monitor, shygger (by specifying
[usr/ sbi n/ sl ogger), myueue (by specifying/ shi n/ nqueue),
etc. Just remember to specify thel path of the executable with all
its required command-line parameters.

Compound restart

Recovery often involves more than restarting a single component. The
death of one component might actually require restarting and resetting
many other components. We might also have to do some initial
cleanup before the dead component is restarted.

A HAM lets you specify a list of actions that will be performed when
a given condition is triggered. For example, suppose the entity being
monitored isf s- nf s2, and there’s a set of directories that have been
mounted and are currently in usef B- nf s2 were to die, the simple
restart of that component won't remount the directories and make
them available again! We’'d have to restiast nf s2, and then follow
that up with the explicit mounting of the appropriate directories.

Similarly, if i o- net were to die, it would take down the network
drivers and TCP/IP stackpm t cpi p. so) with it. So restarting
i 0- net involves also reloading the TCP/IP stack and reinitializing

226 Appendix: A e Examples October 6, 2005

0 2005, QNX Software Systems Compound restart

October 6, 2005

the network driver. Also, any other components that use the network
connection will also need to be reset (likeet d) so that they can
reestablish their connections again.

Consider the following example of performing a compound restart
mechanism.

/* addnfs.c */

#incl ude <stdio. h>
#incl ude <string. h>

#i ncl ude <stdlib. h>

#i ncl ude <unistd. h>
#incl ude <sys/stat.h>
#i ncl ude <sys/netngr. h>
#include <fcntl. h>

#i ncl ude <ha/ ham h>

int main(int argc, char *argv[])
{
int status;
hameentity_t *ehdl;
ham_condi ti on_t *chdl;
ham_action_t *ahdl;
char *fsnfspath;
int fsnfs2pid,

if (argc > 1)
fsnfspath = strdup(argv[1]);
el se
fsnfspath = strdup("/usr/sbin/fs-nfs2");
if (argc > 2)
fsnfs2pid = atoi(argv[2]);
el se

fsnfs2pid = -1;
ham_connect (0) ;
ehdl = ham.attach("Fs-nfs2", ND_LOCAL_NODE, fsnfs2pid, fsnfspath, 0);
if (ehdl != NULL)

chdl = hamccondi ti on(ehdl , CONDDEATH, "Death", HREARVAFTERRESTART);
if (chdl !'= NULL) {
ahdl = ham.action_restart(chdl, "Restart", fsnfspath,
HREARMAFTERRESTART) ;
if (ahdl == NULL)
printf("add action failed\n");
/1* else {
ahdl = ham.action_wai tfor(chdl, "Delayl", NULL, 2000, HREARVAFTERRESTART);
if (ahdl == NULL)
printf("add action failed\n");
ahdl = ham.action_execute(chdl, "MuntPPCBE",
"/bin/mount -t nfs 10.12.1.115:/ppcbe /ppcbe”,
HREARMAFTERRESTART| ((fsnfs2pid == -1) ? HACTI ONDONOW 0)) ;
if (ahdl == NULL)
printf("add action failed\n");
ahdl = ham.action_waitfor(chdl, "Delay2", NULL, 2000, HREARMAFTERRESTART);

if (ahdl == NULL)
printf("add action failed\n");
ahdl = ham_.action_execute(chdl, "MuntWeb",

"/bin/mount -t nfs 10.12.1.115:/web /web",

Appendix: A e Examples 227

Death/condition notification O 2005, QNX Software Systems

HREARMAFTERRESTART| ((fsnfs2pid == -1) ? HACTI ONDONOW 0)) ;
if (ahdl == NULL)
printf("add action failed\n");
} *
}
el se

printf("add condition failed\n");

}
el se
printf("add entity failed\n");
ham_di sconnect (0) ;
exit(0);

This example attachds- nf s2 as an entity, and then attaches a
series ofexecuteandwaitfor actions to the conditiodeath When

f s- nf s2 dies, HAM will restart it and also remount the remote
directories that need to be remounted in sequence. Note that you can
specifydelaysas actions and also wait for specific names to appear in
the namespace.

Death/condition notification

Fault notification is a crucial part of the availability of a system. Apart
from performing recovery per se, we also need to keep track of
failures in order to be able to analyze the system at a later point.

For fault notification, you can use standard notification mechanisms
such as pulses or signals. Clients specify what pulse/signal with
specific values they want for each natification, and a HAM delivers
the notifications at the appropriate times.

/* regevent.c */

#incl ude <stdio. h>
#incl ude <string.h>

#i ncl ude <stdlib. h>

#i ncl ude <unistd. h>

#i ncl ude <sys/stat.h>
#i ncl ude <fcntl. h>
#incl ude <errno. h>

#i ncl ude <sys/neutrino. h>
#i ncl ude <sys/ionsg. h>
#i ncl ude <sys/netngr.h>
#i ncl ude <signal . h>

#i ncl ude <ha/ ham h>

#def i ne PCODEI NETDDEATH —PULSE_CODE_M NAVAI L+1
#def i ne PCODEI NETDDETACH —PULSE_CODE_-M NAVAI L+2

228 Appendix: A e Examples October 6, 2005

0 2005, QNX Software Systems Death/condition notification

#def i ne PCODENFSDELAYED —PULSE_CODE_M NAVAI L+3
#defi ne PCODElI NETDRESTART1 —PULSE_CODE_-M NAVAI L+4
#def i ne PCODEI NETDRESTART2 —PULSE_CODE_M NAVAI L+5

#define MYSI G SI GRTM N+1
int fsnfs_val ue;

/* Signal handler to handle the death notify of fs-nfs2 */
void M/SigHandl er (int signo, siginfo_t *info, void *extra)
{
printf("Received signal %, with code = %, value %l\n",
signo, info->si _code, info->si_value.sival_int);

if (info->si_value.sival _int == fsnfs_val ue)
printf("FS-nfs2 died, this is the notify signal\n");
return;

}

int main(int argc, char *argv[])
{
int chid, coid, rcvid;
struct _pul se pul se;
pid_t pid;
int status;
int val ue;
hameentity_t *ehdl;
ham.condi tion_t *chdl;
ham,action_t *ahdl;
struct sigaction sa;
int scode;
int sval ue;

/* we need a channel to receive the pulse notification on */
chid = Channel Create(0);

/* and we need a connection to that channel for the pulse to be
delivered on */
coid = ConnectAttach(0, 0, chid, _NTO_SIDE_CHANNEL, 0);

/* fill in the event structure for a pulse */

pid = getpid();

val ue = 13;

ham.connect (0) ;

/* Assunes there is already an entity by the nane "inetd" */

chdl = ham.condi ti on_handl e(ND_LOCAL_NCDE, "inetd", "death", 0);

ahdl = ham.action_notify_pul se(chdl, "notifypul sedeath", ND_LOCAL_NODE, pid, chid,
PCODEI NETDDEATH, val ue, HREARMAFTERRESTART) ;

ham,act i on_handl e_free(ahdl);

ham.condi ti on_handl e_free(chdl);

ehdl = ham,entity_handl e(ND_LOCAL_NCDE, "inetd", 0);

chdl = ham.condition(ehdl, CONDDETACH, "detach", HREARVAFTERRESTART);

ahdl = ham.action_notify_pul se(chdl, "notifypul sedetach", ND_LOCAL_NODE, pid, chid,
PCODEI NETDDETACH, val ue, HREARMAFTERRESTART) ;

ham,act i on_handl e_free(ahdl);

ham.condi ti on_handl e_free(chdl);

ham,entity_handl e_free(ehdl);

fsnfs_value = 18; /* value we expect when fs-nfs dies */

scode = 0;

sval ue = fsnfs_val ue;

sa. sa_si gaction = MySi gHandl er;

October 6, 2005 Appendix: A e Examples 229

Death/condition notification

[0 2005, QNX Software Systems

si genpt yset (&sa. sa_mask) ;
sa.sa_flags = SA_SI G NFO
sigaction(MYSIG &sa, NULL);
/*

Assumes there is an entity by the name "Fs-nfs2".

W use "Fs-nfs2" to synbolically represent
fs-nfs2. Any nane can be used to represent

the entity
the

entity, but it's best to use a readabl e and neani ngful nane.
*

/

ehdl = ham.entity_handl e(ND_.LOCAL_NODE, "Fs-nfs2", 0);

/*

Add a new condition, which will be an "independent" condition

this means that notifications/actions inside this condition

are not

sequence threads
*/
chdl

ham_condi ti on(ehdl , CONDDEATH,

affected by "waitfor" delays in other action

" Deat hSep" ,

HCONDI NDEPENDENT| HREARMAFTERRESTART) ;

ahd| ham_acti on_noti fy_si gnal (chdl,
scode, sval ue,
ham,acti on_handl e_free(ahdl);
ham_condi ti on_handl e_free(chdl);
ham,entity_handl e_free(ehdl);
chdl
/*

= ham.condi ti on_handl| e(ND_LOCAL _NODE,

"notifysignal deat h", ND_LOCAL_NCDE, pid, MYSIG

HREARMAFTERRESTART) ;

"Fs-nfs2","Death", 0);

this actions is added to a condition that does not

have a hcondnowait.
al ready contains,
"waits" init.
*/

ahdl = ham.action_notify_pul se(chdl,

Since we are unaware what the condition
we mght end up getting a delayed notification
since the action sequence nmight have "arbitrary" del ays,

and

"del ayednf sdeat hpul se”, ND_LOCAL_NCDE,

pid, chid, PCODENFSDELAYED, val ue, HREARMAFTERRESTART);
ham,act i on_handl e_free(ahdl);
ham.condi ti on_handl e_free(chdl);
ehdl = ham.entity_handl e(ND_-LOCAL_NODE, "inetd", 0);
chdl = ham.condi tion(ehdl, CONDRESTART, “restart",
HREARVMAFTERRESTART| HCONDI NDEPENDENT) ;
ahdl = ham.action_notify_pul se(chdl, "notifyrestart _i i, ND_-LOCAL_NCDE,

pid,
ham,act i on_handl e_free(ahdl);
ahdl = ham.action_waitfor(chdl,
ham_.acti on_handl e_free(ahdl);
ahdl = ham.action_notify_pul se(chdl,
pid,
ham_.acti on_handl e_free(ahdl);
ham.condi ti on_handl e_free(chdl);
ham,enti ty_handl e_free(ehdl);
while (1) {
rcvid = MsgRecei vePul se(
if (revid <0) {
if (errno != EINTR) {
exit(-1);
}
}
el se {
switch (pul se.code) {
case PCODEl NETDDEATH:

chid, PCODEI NETDRESTART1,

chid, PCODEI NETDRESTART2,

chid, &pulse,

val ue, HREARMAFTERRESTART) ;

"del ay", NULL, 6532, HREARVAFTERRESTART) ;

"notifyrestart _del ayed",
val ue,

ND_LOCAL _NCDE,
HREARVAFTERRESTART) ;

sizeof (pulse), NULL);

printf("Inetd Death Pulse\n");

230 Appendix: A e« Examples

October 6, 2005

0 2005, QNX Software Systems Heartbeating clients (liveness detection)

br eak;
case PCODENFSDELAYED:
printf("Fs-nfs2 died: this is the possibly delayed pul se\n");
br eak;
case PCODElI NETDDETACH:
printf("Inetd detached, so quitting\n");
goto the_end;
case PCODEI NETDRESTART1:
printf("Inetd Restart Pulse: Imediate\n");
br eak;
case PCODEI NETDRESTART2:
printf("Inetd Restart Pulse: Delayed\n");
br eak;

}
}
/*
At this point we are no |onger waiting for the
information about inetd, since we know that it
has exited.
We will still continue to obtain infornation about the
death of fs-nfs2, since we did not renopve those actions
if we exit now, the next time those actions are executed
they will fail (notifications fail if the receiver does
exi st anynore), and they will autonatically get renoved and
cl eaned up.
*/
t he_end:
ham.di sconnect (0) ;
exit(0);
}

In the above example a client registers for various different types of
notifications relating to significant events concernimgt d and

f s- nf s2. Notifications can be sent immediately or after a certain
delay.

The notifications can also be received for each condition
independently— for the entity’s deathGONDDEATH), restart
(CONDRESTART), and detachinggdONDDETACH).

The CONDRESTARTIs asserted by a HAM when an entity is
successfully restarted.

Heartbeating clients (liveness detection)

October 6, 2005

Sometimes components become unavailable not because of the
occurrence of a specific “bad” event, but because the components
become unresponsive by getting stuck somewhere to the extent that
the service they provide becomes effectively unavailable.

Appendix: A « Examples 231

Heartbeating clients (liveness detection) 0 2005, QNX Software Systems

One example of this is when a process or a collection of
processes/threads enters a state of deadlock or starvation, where none
or only some of the involved processes can make any useful progress.
Such situations are often difficult to pinpoint since they occur quite
randomly.

You can have your clients assert “liveness” properties by actively
sending heartbeats to a HAM. When a process deadlocks (or starves)
and makes no progress, it will no longer heartbeat, and the HAM will
automatically detect this condition and take corrective action.

The corrective action can range from simply terminating the

offending application to restarting it and also delivering notifications
about its state to other components that depend on the safe and correct
functioning of this component. If necessary, a HAM can restart those
other components as well.

We can demonstrate this condition by showing a simple process that
has two threads that use mutual-exclusion locks incorrectly (by a
design flaw), which causes them on occasion to enter a state of
deadlock — each of the threads holds a resource that the other wants.

Essentially, each thread runs through a segment of code that involves
the use of two mutexes.

Thread 1 Thread 2
while true while true
do do
obtain lock a obtain lock b
(comput e sectionl) (conput e sectionl)
obtain lock b obtain lock a
(comput e section2) (comput e section2)

rel ease lock b rel ease lock a
rel ease | ock a rel ease lock b

done done

The code segments for each thread are shown below. The only
difference between the two is the order in which the locks are
obtained. The two threads deadlock upon execution, quite randomly;

232 Appendix: A e Examples October 6, 2005

0 2005, QNX Software Systems Heartbeating clients (liveness detection)

the exact moment of deadlock is related to the lengths of the
“compute sections” of the two threads.

/* nut exdeadl ock.c */

#i ncl ude <errno. h>

#i ncl ude <stdio. h>
#include <stdlib. h>
#incl ude <string. h>

#i ncl ude <unistd. h>

#i ncl ude <sys/types. h>
#incl ude <sys/wait.h>

#i ncl ude <signal . h>

#i ncl ude <pthread. h>

#i ncl ude <process. h>

#i ncl ude <sys/neutrino. h>
#i ncl ude <sys/procfs. h>
#i ncl ude <sys/procngr. h>
#i ncl ude <ha/ ham h>

pthread_nut ex_t nutex_a = PTHREAD_MJUTEX_I NI TI ALI ZER;
pt hread_nut ex_t nmutex_b = PTHREAD_MUTEX_I NI Tl ALI ZER;

FILE *l ogfile;
pthread_t threadl D
i nt doheart beat =0;

#def i ne COMPUTE_DELAY 100

void *funcl(void *arg)

{
int id;
/* obtain the two | ocks in the order
a->b
perform sone conputation and then
rel ease the locks ...
do this continuously
*/
id = pthread_sel f();
while (1) {
del ay(85); /* delay to let the other one go */
if (doheartbeat)
ham_heart beat () ;
pt hr ead_mut ex_| ock(&t ex_a);
fprintf(logfile, "Thread 1: Obtained lock a\n");
fprintf(logfile, "Thread 1: Waiting for lock b\n");
pt hr ead_mut ex_| ock(&t ex_b) ;
fprintf(logfile, "Thread 1: Obtained |ock b\n");
fprintf(logfile, "Thread 1: Performing conputation\n");
del ay(rand() #COMPUTE_DELAY+5) ; /* delay for conputation */
fprintf(logfile, "Thread 1: Unlocking lock b\n");
pt hr ead _mut ex —unl ock(&rut ex _b) ;
fprintf(logfile, "Thread 1: Unlocking lock a\n");
pt hr ead _mut ex —unl ock(&rut ex _a) ;
return(NULL);
}

October 6, 2005 Appendix: A « Examples 233

Heartbeating clients (liveness detection)

234

void *func2(void *arg)

{

int

Appendix: A e Examples

int id;

/* obtain the two |ocks in the order
b->a
perform sone conputation and then
rel ease the locks ...
do this continuously

*/

id = pthread_sel f();
while (1) {
del ay(25);
if (doheartbeat)
ham_heart beat () ;
pt hr ead _mut ex | ock(&t ex_b) ;
fprintf(logfile, "\tThread 2: Obtained lock b\n");
fprintf(logfile, "\tThread 2: Waiting for lock a\n");
pt hr ead_mut ex | ock(&t ex-a) ;
fprintf(logfile, "\tThread 2: Obtained lock a\n");
fprintf(logfile, "\tThread 2: Perform ng conputation\n");
del ay(rand() #COMPUTE_DELAY+5); /* delay for conputation */
fprintf(logfile, "\tThread 2: Unlocking lock a\n");
pt hr ead _nut ex —unl ock(&mut ex_a) ;
fprintf(logfile, "\tThread 2: Unlocking lock b\n");
pt hr ead_mut ex_unl ock(&mut ex_b) ;

}
return(NULL);

mai n(int argc, char *argv[])

pthread_attr _t attrib;
struct sched_param param
hameentity_t *ehdl;
ham_condi tion_t *chdl;
ham.action_t *ahdl;

int i=0;

char c;

logfile = stderr;
while ((c = getopt(argc, argv, "f:1")) !=-1) {
switch(c) {
case 'f': /* log file */
logfile = fopen(optarg, "w');
br eak;
case 'I’: /* do liveness heartbeating */
if (access("/proc/hant', F_OK) == 0)
doheart beat =1;
br eak;

}

setbuf (1 ogfile, NULL);
srand(time(NULL));
fprintf(logfile, "Creating separate conpeting conmpute thread\n");

pthread_attr_init (&attrib);
pthread_attr _setinheritsched (&ttrib, PTHREAD_EXPLI Cl T_SCHED);

[2005, QNX Software Systems

October 6, 2005

[0 2005, QNX Software Systems

Heartbeating clients (liveness detection)

October 6, 2005

pthread_attr _setschedpolicy (&ttrib, SCHED_RR);
param sched_priority = getprio (0);
pthread_attr _setschedparam (&attrib, ¶m;

if (doheartbeat) {
/* attach to ham */
ehdl = ham.attach_sel f (" mut ex- deadl ock", 1000000000UL, 5 ,5, 0);
chdl
ahdl

ham_acti on_execute(chdl, "terminate",
"/ proc/ boot / mut ex- deadl ock- heart beat.sh", 0);

}

/* create conpetitor thread */

pthread_create (& hreadl D, &attrib, funcl, NULL);
pt hr ead_det ach(t hr eadl D) ;

func2(NULL);

exit(0);

Upon execution, what we see is:

1

Starting two-threaded process.
The threads will execute as described earlier, but will

eventually deadlock. We'll wait for a reasonable amount of

ham_condi ti on(ehdl, CONDHBEATM SSEDHI GH, "heartbeat - ni ssed- hi gh",

0);

time (a few seconds) until they do end in deadlock. The threads

write out a simple execution log into
/ dev/ shmem mut ex- deadl ock. | og.

Waiting for them to deadlock.
Here’s the current state of the threads in process 73746:

pid tid nane prio STATE Bl ocked
73746 1 oot/ nutex-deadl ock 10r MJTEX 73746-02 #-21474
73746 2 oot/ nutex-deadl ock 10r MJTEX 73746-01 #-21474

And here’s the tail from the threads’ log file:

Thread 2: Obtained |lock b
Thread 2: Waiting for lock a
Thread 2: Obtained | ock a
Thread 2: Perforning conputation
Thread 2: Unl ocking lock a
Thread 2: Unl ocking lock b
Thread 2: Obtained lock b
Thread 2: Waiting for lock a
Thread 1: Obtained | ock a
Thread 1: Waiting for lock b

Extracting core current process information:

Appendix: A « Examples 235

Heartbeating clients (liveness detection) 0 2005, QNX Software Systems

/ t mp/ mut ex- deadl ock. core:
processor =PPC num.cpus=2
cpu 1 cpu=602370 nane=604e speed=299
f1ags=0xc0000001 FPU MWJ EAR
cpu 2 cpu=602370 name=604e speed=299
f1ags=0xc0000001 FPU MWJ EAR
cyc/ sec=16666666 tod_adj =999522656000000000 nsec=5190771360840 i nc=999960
boot =999522656 epoch=1970 i ntr=-2147483648
rat e=600000024 scal e=-16 | 0ad=16666
MACHI NE=" nt x604- snp" HOSTNAME="| ocal host "
hwf | ags=0x000004
pretend_cpu=0 init_nmsr=36866
pi d=73746 parent=49169 chil d=0 pgrp=73746 sid=1
f1 ags=0x000300 umask=0 base_addr=0x48040000 i nit _st ack=0x4803f a20
rui d=0 eui d=0 suid=0 rgid=0 egi d=0 sgi d=0
i gn=0000000006801000 queue=f f 00000000000000 pendi ng=0000000000000000
fds=4 threads=2 tiners=0 chans=1
thread 1 REQUESTED
i p=0xf e32f 838 sp=0x4803f 920 st kbase=0x47f bf 000 st ksi ze=528384
stat e=MJTEX fl ags=0 | ast _cpu=1 ti meout =00000000
pri=10 real pri=10 policy=RR
thread 2
i p=0xf e32f 838 sp=0x47f bef 80 st kbase=0x47f 9e000 st ksi ze=135168
stat e=MJTEX flags=4020000 | ast _cpu=2 ti nmeout =00000000
pri =10 real pri =10 policy=RR

The processes are deadlocked, with each process holding one lock
and waiting for the other.

The process is made to heartbeat

Now consider the case where the client can be made to heartbeat so
that a HAM will automatically detect when it's unresponsive and will

terminate it.

Thread 1 Thread 2
while true while true
do do

obtain lock a
(conput e sectionl)
obtain lock b

send heart beat
(comput e section2)
rel ease lock b
rel ease lock a
done

Appendix: A e Examples

obtain lock b
(conput e sectionl)
obtain lock a

send heart beat
(comput e section2)
rel ease lock a
rel ease lock b
done

October 6, 2005

0 2005, QNX Software Systems Heartbeating clients (liveness detection)

October 6, 2005

Here the process is expected to send heartbeats to a HAM. By placing
the heartbeat call within the inside loop, the deadlock condition is
trapped. The HAM notices that the heartbeats have stopped and can
then perform recovery.

Let's look at what happens now:

1

Starting two-threaded process.

The threads will execute as described earlier, but will
eventually deadlock. We'll wait for a reasonable amount of

time (a few seconds) until they do end in deadlock. The threads
write out a simple execution log into

/ dev/ shmeni nut ex- deadl ock- heart beat. | og. The

HAM detects that the threads have stopped heartbeating and
terminates the process, after saving its state for postmortem
analysis.

Waiting for them to deadlock.

Here’s the current state of the threads in process 462866 and the
state of mutex-deadlock when it missed heartbeats:

pid tid nane prio STATE Bl ocked
462866 1 oot/ nutex-deadl ock 10r MJTEX 462866- 03 #-2147
462866 2 oot/ nutex-deadl ock 63r RECEl VE 1
462866 3 oot/ nutex-deadl ock 10r MJTEX 462866- 01 #-2147

Entity state from HAM

Pat h : nut ex- deadl ock

Entity Pid : 462866

Num conditions : 1

Condition type : ATTACHEDSELF

Stats:

Heart Beat Period: 1000000000

HB Low Mark : 5

HB Hi gh Mark)

Last Heartbeat : 2001/09/03 14:40: 41: 406575120
HeartBeat State : M SSEDH GH

Creat ed : 2001/09/03 14: 40: 40: 391615720
Num Restarts 0

And here’s the tail from the threads’ log file:

Thread 2: Obtained |lock b
Thread 2: Waiting for lock a
Thread 2: Obtained | ock a
Thread 2: Perforning conputation
Thread 2: Unl ocking lock a

Appendix: A « Examples 237

Process starvation 0 2005, QNX Software Systems

Thread 2: Unl ocking lock b
Thread 2: Cbtained |lock b
Thread 2: Waiting for lock a
Thread 1: Obtained | ock a
Thread 1: Waiting for lock b

3 Extracting core current process information:

/ t np/ mut ex- deadl| ock. core:
processor =PPC num.cpus=2
cpu 1 cpu=602370 nane=604e speed=299
f1 ags=0xc0000001 FPU MMJ EAR
cpu 2 cpu=602370 name=604e speed=299
f1ags=0xc0000001 FPU MMJ EAR
cyc/ sec=16666666 tod_adj =999522656000000000 nsec=5390696363520 i nc=999960
boot =999522656 epoch=1970 intr=-2147483648
rat e=600000024 scal e=-16 | 0ad=16666
MACHI NE=" nt x604- snp" HOSTNAME="| ocal host"
hwf | ags=0x000004
pretend_cpu=0 init _nmsr=36866
pi d=462866 parent =434193 chil d=0 pgr p=462866 si d=1
f1 ags=0x000300 umask=0 base_addr=0x48040000 i nit _st ack=0x4803f 9f 0
rui d=0 eui d=0 suid=0 rgid=0 egi d=0 sgi d=0
i gn=0000000006801000 queue=f f 00000000000000 pendi ng=0000000000000000
fds=5 threads=3 tiners=1 chans=4
thread 1 REQUESTED
i p=0xf e32f 838 sp=0x4803f 8f 0 st kbase=0x47f bf 000 st ksi ze=528384
stat e=MJTEX fl ags=0 | ast _cpu=2 ti meout =00000000
pri =10 real pri =10 policy=RR
thread 2
i p=0xf e32f 1a8 sp=0x47f bef 50 st kbase=0x47f 9e000 st ksi ze=135168
st at e=RECEI VE f| ags=4000000 | ast _cpu=2 ti nmeout=00000000
pri =63 real pri =63 policy=RR
bl ocked_chi d=1
thread 3
i p=0xf e32f 838 sp=0x47f 9df 80 st kbase=0x47f 7d000 st ksi ze=135168
st at e=MJTEX f| ags=4020000 | ast _cpu=1 ti meout =00000000
pri =10 real pri =10 policy=RR

Process starvation

238

We can demonstrate this condition by showing a simple process
containing two threads that use mutual exclusion locks to manage a
critical section. Thread 1 runs at a high priority, while Thread 2 runs
at a lower priority. Essentially, each thread runs through a segment of
code that looks like this:

Thr eadl Thread 2

Appendix: A e Examples October 6, 2005

[0 2005, QNX Software Systems

Process starvation

(Run at high priority) (Run at low priority)
while true while true
do do
obtain lock a obtain lock a
(comput e sectionl) (conput e sectionl)
rel ease | ock a rel ease |l ock a
done done

The code segments for each thread is shown below; the only
difference being the priorities of the two threads. Upon execution,
Thread 2 eventually starves.

/* mutex

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

starvation.c */

<errno. h>
<stdio. h>
<stdlib. h>
<string. h>

<uni std. h>
<sys/types. h>
<sys/wait.h>
<si gnal . h>

<pt hread. h>
<process. h>
<sys/ neutrino. h>
<sys/ procfs. h>
<sys/ procngr. h>
<ha/ ham h>

pt hread_nut ex_t nmutex_a = PTHREAD_MUTEX_I NI Tl ALI ZER;

FILE *l o
int dohe

#defi ne
void *fu

{

int

gfile;
ar t beat =0;

COVPUTE_DELAY 900
ncl(void *arg)

id;

id = pthread_sel f();

whi |

retu
}
void *fu
{

int

October 6, 2005

e (1 {

pt hr ead_mut ex | ock(&t ex-a);

fprintf(logfile, "Thread 1: Locking lock a\n");

del ay(rand() “COMPUTE_DELAY+50); /* delay for conputation */
fprintf(logfile, "Thread 1: Unlocking lock a\n");

pt hr ead_mut ex_unl ock(&mut ex_a) ;

rn(NULL) ;

nc2(void *arg)

id;

Appendix: A e Examples

239

Process starvation 0 2005, QNX Software Systems

id = pthread_sel f();

while (1) {
pt hr ead_mut ex_| ock(&t ex_a);
fprintf(logfile, "\tThread 2: Locking lock a\n");
if (doheartbeat)

ham_heart beat () ;

del ay(rand() #COMPUTE_DELAY+50) ; /* delay for conputation */
fprintf(logfile, "\tThread 2: Unlocking lock a\n");
pt hr ead _nut ex —unl ock(&t ex_a) ;

}

return(NULL);

int main(int argc, char *argv[])

pthread_attr_t attrib;
struct sched_param param
hameentity_t *ehdl;
ham.condi tion_t *chdl;
ham_,acti on_t *ahdl ;

int i=0;

char c;

pthread_attr _t attrib2;
struct sched_param par ang;
pthread_t threadl D;
pthread_t threadl D2;

logfile = stderr;
while ((c = getopt(argc, argv, "f:1")) !=-1) {
switch(c) {
case 'f': /* log file */
logfile = fopen(optarg, "wW');
br eak;
case 'I': /* do liveness heartbeating */
if (access("/proc/hant, F_OK) == 0)
doheart beat =1;
br eak;

}

setbuf (1 ogfile, NULL);
srand(tine(NULL));
fprintf(logfile, "Creating separate conpeting conpute thread\n");

if (doheartbeat) {
/* attach to ham */
ehdl = ham.attach_sel f (" nut ex-starvation", 1000000000UL, 5, 5, 0);
chdl = ham.conditi on(ehdl, CONDHBEATM SSEDHI GH, "heartbeat-m ssed- hi gh", 0);
ahdl = ham.action_execute(chdl, "term nate",
"/ proc/ boot/ mut ex-starvation-heartbeat.sh", 0);
}
/* create conpetitor thread */
pthread_attr_init (&ttrib2);
pthread_attr _setinheritsched (&attri b2, PTHREAD_EXPLI Cl T_SCHED);
pthread_attr _setschedpolicy (&attrib2, SCHED_RR);
paran®. sched_priority = sched_get _priority_m n(SCHED_RR) ;
pt hread_attr _set schedparam (&attri b2, ¶nt);

pthread_create (& hreadl D2, &attrib2, func2, NULL);

240 Appendix: A e Examples October 6, 2005

0 2005, QNX Software Systems Process starvation

October 6, 2005

del ay(3000); /* let the other thread go on for a while... */

pthread_attr_init (&ttrib);

pthread_attr _setinheritsched (&ttrib, PTHREAD_EXPLI Cl T_SCHED);
pthread_attr _setschedpolicy (&ttrib, SCHED_RR);

param sched_priority = sched_get _priority_max(SCHED_RR);
pthread_attr _set schedparam (&attrib, ¶m;

pthread_create (& hreadl D, &attrib, funcl, NULL);
pthread_j oi n(threadl D, NULL);

pt hread_j oi n(t hreadl D2, NULL);
exit(0);

Upon execution, here’s what we see:

1

Starting two-threaded process.

The threads will execute as described earlier, but eventually
Thread 2 will starve. We'll wait for a reasonable amount of
time (some seconds) until Thread 2 ends up starving. The
threads write out a simple execution log into

/ dev/ shneni nut ex- st arvati on. | og.

Waiting for them to run for a while.
Here’s the current state of the threads in process 622610:

pid tid nane prio STATE Bl ocked
622610 1 t/mutex-starvation 10r JON 3
622610 2 t/ mtex-starvation 1r MJTEX 622610- 03 #- 2147

622610 3 t/mtex-starvation 63r NANOSLEEP

And here’s the tail from the threads’ log file:

Thread 1: Unl ocking lock a
Thread 1: Locking lock a
Thread 1: Unl ocking lock a
Thread 1: Locking lock a
Thread 1: Unl ocking lock a
Thread 1: Locking lock a
Thread 1: Unl ocking lock a
Thread 1: Locking lock a
Thread 1: Unl ocking lock a
Thread 1: Locking lock a

Extracting core current process information:

Appendix: A e Examples 241

Process starvation 0 2005, QNX Software Systems

/ t mp/ mut ex- starvation. core:
processor =PPC num.cpus=2
cpu 1 cpu=602370 nane=604e speed=299
f1ags=0xc0000001 FPU MMJ EAR
cpu 2 cpu=602370 name=604e speed=299
f1ags=0xc0000001 FPU MWJ EAR
cyc/ sec=16666666 tod_adj =999522656000000000 nsec=5561011550640 i nc=999960
boot =999522656 epoch=1970 i ntr=-2147483648
rat e=600000024 scal e=-16 | 0ad=16666
MACHI NE=" nt x604- snp" HOSTNAME="| ocal host "
hwf | ags=0x000004
pretend_cpu=0 init_nmsr=36866
pi d=622610 par ent =598033 chi | d=0 pgrp=622610 si d=1
f1 ags=0x000300 umask=0 base_addr=0x48040000 i nit _st ack=0x4803f al0
rui d=0 eui d=0 suid=0 rgid=0 egi d=0 sgi d=0
i gn=0000000006801000 queue=f f 00000000000000 pendi ng=0000000000000000
fds=4 threads=3 tiners=0 chans=1
thread 1 REQUESTED
i p=0xf e32f 8c8 sp=0x4803f 8a0 st kbase=0x47fbf 000 st ksi ze=528384
state=JO N flags=0 | ast _cpu=1 ti meout =00000000
pri=10 real pri=10 policy=RR
thread 2
i p=0xf e32f 838 sp=0x47f bef 80 st kbase=0x47f 9e000 st ksi ze=135168
stat e=MJTEX f|ags=4000000 | ast _cpu=2 ti nmeout =00000000
pri=1 real pri =1 policy=RR
thread 3
i p=0xf e32f 9a0 sp=0x47f 9df 20 st kbase=0x47f 7d000 st ksi ze=135168
st at e=NANOSLEEP f| ags=4000000 | ast _cpu=2 ti nmeout =0x1001000
pri =63 real pri =63 policy=RR

Thread 2 is made to heartbeat

Now consider the case where Thread 2 is made to heartbeat. A HAM
will automatically detect when the thread is unresponsive and can
terminate it and/or perform recovery.

Thread 1 Thread 2
(Run at high priority) (Run at low priority)
while true while true
do do
obtain lock a obtain lock a
send heart beat
(comput e sectionl) (conput e sectionl)
rel ease lock a rel ease lock a
done done

242 Appendix: A e« Examples October 6, 2005

0 2005, QNX Software Systems Process starvation

October 6, 2005

Here Thread 2 is expected to send heartbeats to a HAM. By placing
the heartbeat call within the inside loop, the HAM detects when
Thread 2 begins to starve.

The threads will execute as described earlier, but eventually Thread 2
will starve. We'll wait for a reasonable amount of time (some

seconds) until it does. The threads write out a simple execution log
into/ dev/ shrment mut ex- st ar vat i on- heart beat . | og. The

HAM detects that the thread has stopped heartbeating and terminates
the process, after saving its state for postmortem analysis.

Let's look at what happens:

1 Waiting for some time.

Here’s the current state of the threads in process 753682 and the
state of mutex-starvation when it missed heartbeats:

pid tid nane prio STATE Bl ocked
753682 1 t/mtex-starvation 10r JON 4
753682 2 t/mutex-starvation 63r RECEIVE 1
753682 3 t/mutex-starvation 1r MJTEX 753682- 04 #- 2147
753682 4 t/mutex-starvation 63r NANCSLEEP

Entity state from HAM

Pat h : mutex-starvation
Entity Pid : 753682

Num conditions : 1

Condition type : ATTACHEDSELF
Stats:

Hear t Beat Period: 1000000000

HB Low Mark -

HB H gh Mark : 5

Last Heartbeat : 2001/09/03 14:44:37:796119160
HeartBeat State : M SSEDH GH

Creat ed : 2001/ 09/ 03 14: 44: 34: 780239800
Num Restarts 0

And here’s the tail from the threads’ log file:

Thread 1: Unl ocking lock a
Thread 1: Locking lock a
Thread 1: Unl ocking lock a
Thread 1: Locking lock a
Thread 1: Unl ocking lock a
Thread 1: Locking lock a
Thread 1: Unl ocking lock a
Thread 1: Locking lock a
Thread 1: Unl ocking lock a
Thread 1: Locking lock a

Appendix: A e Examples 243

Process starvation 0 2005, QNX Software Systems

2 Extracting core current process information:

/ t np/ mut ex- starvati on. core:
processor =PPC num.cpus=2
cpu 1 cpu=602370 nane=604e speed=299
f1 ags=0xc0000001 FPU MMJ EAR
cpu 2 cpu=602370 name=604e speed=299
f1ags=0xc0000001 FPU MMJ EAR
cyc/ sec=16666666 tod_adj =999522656000000000 nsec=5627098907040 i nc=999960
boot =999522656 epoch=1970 intr=-2147483648
rat e=600000024 scal e=-16 | 0ad=16666
MACHI NE=" nt x604- snp" HOSTNAME="| ocal host "
hwf | ags=0x000004
pretend_cpu=0 init_nsr=36866
pi d=753682 par ent =729105 chil d=0 pgrp=753682 si d=1
f1 ags=0x000300 umask=0 base_addr=0x48040000 i nit _st ack=0x4803f 9f 0
rui d=0 eui d=0 suid=0 rgid=0 egi d=0 sgi d=0
i gn=0000000006801000 queue=f f 00000000000000 pendi ng=0000000000000000
fds=5 threads=4 tiners=1 chans=4
thread 1 REQUESTED
i p=0xf e32f 8c8 sp=0x4803f 880 st kbase=0x47f bf 000 st ksi ze=528384
state=JO N flags=0 | ast _cpu=2 ti meout =00000000
pri =10 real pri =10 policy=RR
thread 2
i p=0xf e32f 1a8 sp=0x47f bef 50 st kbase=0x47f 9e000 st ksi ze=135168
st at e=RECEI VE f| ags=4000000 | ast _cpu=2 ti nmeout=00000000
pri =63 real pri =63 policy=RR
bl ocked_chi d=1
thread 3
i p=0xf e32f 838 sp=0x47f 9df 80 st kbase=0x47f 7d000 st ksi ze=135168
stat e=MJTEX f|ags=4000000 | ast _cpu=2 ti nmeout =00000000
pri=1 real pri=1 policy=RR
thread 4
i p=0xf e32f 9a0 sp=0x47f 7cf20 stkbase=0x47f5c000 stksize=135168
st at e=NANCSLEEP f| ags=4000000 | ast _cpu=1 ti neout =0x1001000
pri =63 real pri =63 policy=RR

244 Appendix: A e« Examples October 6, 2005

Glossary

October 6, 2005 Glossary 245

[0 2005, QNX Software Systems

action

availability

clustering

condition

entity

five nines

Guardian

October 6, 2005

A specific task the HAM will perform under certain associated
conditions. Examples of actions include executing an external
process, restarting a process that has died, sending a signal or pulse
notification, etc.

The ability of a system to provide its intended service without
interruption for extended periods of time.

A method of distributing processing among several computers in
order to reduce the number 8POFs. QNX native networking offers
transparent network-wide processing, which facilitates building
clustered HA applications.

An event that will trigger certaiactions for the HAM to perform.
Examples of conditions include the death of entity, a missed
heartbeat, etc.

A process that the HAM will monitor. Entities can explicitly ask to be
monitored (i.e. aself-attachecntities), or they may be monitored
without ever realizing it.

The celebratedvailability metric that refers to a system’s ability to
remain up and running 99.999% of the time per year.

The HAM's “clone”, a stand-in process that the HAM creates to
ensure uninterrupted HA management within the QNX environment.

Glossary 247

0 2005, QNX Software Systems

HAT

HAM

heartbeat

hot swap

MMU

MTTF

MTTR

Neutrino

SPOF

248 Glossary

High Availability Toolkit.

High Availability Manager.

A “wellness” or “liveness” notification sent at specific intervals by a
client to the HAM.

The ability to remove or insert a component in a live system.

Memory Management Unit. A device on many CPUs that alerts the
OS if a process tries to access memory that’s been allocated to another
process.

Mean Time To Failure. This is the average length of time that the
system will remain in service before failing. You want this to be as
long as possible.

Mean Time To Repair. This is the amount of time it takes for the
system to resume operation after any component fails or is upgraded.
You want this to be as small as possible.

Name of the QNX microkernel.

Single point of failure. Any particular “weak link” in a system would
be considered a SPOF, because its demise would put the entire system
at risk.

October 6, 2005

[0 2005, QNX Software Systems

watchdog

A trusted piece of hardware whose main purpose is to trigger code
that will check the sanity of the system. There are software watchdogs
as well; the HAM may be considered a “smart watchdog.”

October 6, 2005 Glossary 249

Index

! logging messages on action
fail 90
“five nines” metric 3 removing from a condition 120
restart can be associated only
with death conditions 122
restarting a program 123

A action fail
. defined 27
action
adding a notify pulse action to
an action on failure 93
adding a notify signal action to C
an action on failure 96
adding arestart 122 checkpoint 69
con_trol 80 close() 196
defined 24 code example
executing a waitfor action on compound restart 226
action fail 99 death/condition
executing an external notification 228
command 84 heartbeating clients (liveness
executing an external command detection) 231
on action fail 88 process starvation 238
inserting delays into a sequence simple restart 225
of actions 126 CONDABNORMALDEATH 40
log activity 109 CONDANY 41

CONDATTACH 41

October 6, 2005 Index 251

Index 0 2005, QNX Software Systems

CONDDEATH 40, 138 D
CONDDETACH 40, 138
CONDHBEATMISSEDHIGH 41, deadlock 233

138 death
CONDHBEATMISSEDLOW 41, 138 and restart actions 122
condition dup() 210

associated with a condition raise
condition 149

defined 22 E
flags 42
freeing 147 entity

removing 152

restart 123

settingup 137

triggered on state change 154

types of 40, 137
CONDRESTART 41, 138
ConnectAttach() 201, 218
ConnectDetach() 204
connection

attaching a recovery

function 193
attaching to the HA lib 201,

attaching 129

control 141,175

defined 20

detaching 160, 162, 164

externally attached 21

getting a handletoan 178

global 22

handle 137

self-attached 21, 134, 160, 164
externally attached entity 21

206, 216
closing 166, 196, 204 F
creating 201, 206
detaching 196, 204, 208, 212 failure
duplicating 210 designing for in order to
opening 216 recover 5
reopening during fclose() 212
recovery 218,220 file stream
settingup 157 attaching to the HA lib 214
creat() 206 detaching a connection

associated witha 212
fopen() 214

252 Index October 6, 2005

[0 2005, QNX Software Systems

Index

G

global entity 22
Guardian (HAM “stand-in”) 19,
30, 32

H

HA
microkernel architecture
inherently suited for 9
haattach() 193, 196, 212, 216
ha_close() 196
ha_ConnectAttach() 194, 201
ha_ConnectAttachlr() 194
ha_ConnectDetach() 204
hacreat() 194, 206
ha creat64() 194
ha detach() 208, 212
hadup() 210
hafclose() 212
hafopen() 194, 214
HAM
as self-monitoring manager 9
hierarchy 20
multistage recovery 5
starting 53
stopping 54
ham(utility) 53
hamaction.control() 80
hamactionexecute() 84, 123
hamaction fail_execute() 88
hamactionfail_log() 90
hamaction fail _notify_pulse() 93
ham action fail _notify_pulsenode()
93

October 6, 2005

hamaction fail_notify_signal() 96
hamaction fail _notify_signal.node()
96
hamaction fail waitfor() 99
hamactionhandle() 102
hamaction handlefree() 105
hamactionlog() 109
hamaction.notify_pulse() 112
ham.action.notify_pulsenode()
112
hamaction.notify_signal() 116
ham.action.notify_signalLnode()
116
hamactionremove() 120
hamactionrestart() 122
hamactionwaitfor() 126
hamattach() 129
hamattachnode() 129
hamattachself() 134
ham.condition() 137
ham.conditionhandle() 144
ham.conditionhandlefree() 147
ham.conditionraise() 149
ham.conditionremove() 152
ham.conditionstate() 154
hamconnect() 157
ham.connect*()
reference counts and 157
hamconnectnd() 157
hamconnectnode() 157
hanctrl (utility) 54
hamdetach() 160
hamdetachname() 162
hamdetachnamenode() 162
hamdetachself() 164
hamdisconnect() 166
reference counts and 166

Index 253

Index

[J 2005, QNX Software Systems

hamdisconnecind() 166
hamdisconnechode() 166
hamentity() 168
hamentity_ conditionraise() 171
ham entity_conditionstate() 173
hamentity control() 141,175
hamentity handle() 178
hamentity_ handlefree() 181
hamheartbeat() 183
hamstop() 54
hamverbose() 187
handle
entity 178
freeing 105, 181
functions that expect 102
getting 102
getting a condition 144

subsequent use of after a call to
hamactionhandle() 104

subsequent use of after a call to
ham.conditionhandle()
146

subsequent use of after a call to
hamentity handle() 179

haopen() 194, 216
ha_ ReConnectAttach() 194, 218
hareopen() 194, 220
HAREPLACERECOVERYFN 194
HCONDINDEPENDENT 138
HCONDNOWAIT 139
heartbeat
as a way to detect
deadlock 236
as a way to detect
starvation 243
clients assert “liveness” by
sending 232

254 Index

possible delay in receiving 184

resetting the state of 107
setting interval for 135
transmitting 183
HREARMAFTERRESTART 107,
113, 123, 127, 139
caveat regarding 117

i netd
restarting 225

M

message passing 16
MMU 4
MTTR 14

N

Neutrino microkernel 15

O

open() 159, 216, 220

P

placeholders

October 6, 2005

0 2005, QNX Software Systems Index

for entity objects 168 setting up notification of 116
POSIX process model 15 software faults
postmortem analysis 4, 237, 243 detecting 13
pulse isolating 4
setting up notification of 112 main cause of system failure 3
traditional ways to handle 13
SPOF 4
starting a HAM 53
Q starvation
condition resulting from mutex
QNX o problem 241
ke_y factors for |nt_r|nS|c HA 15 detected by HAM 243
mmr_okernel architecture stopping a HAM 54
inherently reduces SPOFs
4
V
R verbosity
modifying 187
recovery
functions
attaching to a
connection 193 W
defined in<ha/ t ypes. h>
193 watchdog 13, 19
restart
action 122

condition 123

S

self-attached entity 21, 134, 160,
164

session1l 129,134

signal

October 6, 2005 Index 255

