

QNX Momentics  Development

Suite
High Availability Toolkit

Developer’s Guide

For QNX Neutrino 6.3

 2005, QNX Software Systems

 2001 – 2005, QNX Software Systems. All rights reserved.

Printed under license by:

QNX Software Systems Co.
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web:http://www.qnx.com/

Electronic edition published 2005.

Technical support options

To obtain technical support for any QNX product, visit theTechnical Support section in theServices area on our website
(www.qnx.com). You’ll find a wide range of support options, including our free web-basedDeveloper Support Center.

QNX, Momentics, Neutrino, and Photon microGUI are registered trademarks of QNX Software Systems in certain jurisdictions. All other trademarks and

trade names belong to their respective owners.

Contents

About This Guide ix

Introduction 11
Where’s the problem? 3

A software foundation for HA 3

What’s in the HAT? 72
What you get 9

The QNX Approach to HA 113
The reset “solution” 13

Traditional RTOS architecture 13

Modularity means granularity 14

Intrinsic HA 15

Using the High Availability Manager 174
Introduction 19

HAM hierarchy 20

Entities 20

Conditions 22

Actions 24

Action Fail actions 27

Multistaged recovery 29

State of the HAM 29

Example of the view shown in/proc/ham 30

October 6, 2005 Contents iii

 2005, QNX Software Systems

HAM API 33

Connect/disconnect functions 33

Attach/detach functions 34

Entity functions 39

Condition functions 40

Action functions 43

Action fail functions 46

Functions to operate on handles 49

A client example 49

Starting and stopping a HAM 53

Stopping a HAM 54

Control functions 54

Verbosity control 55

Publishing autonomously detected conditions 56

Publish state transitions 57

Publish other conditions 57

Subscribing to autonomously published conditions 58

Trigger based on state transitions 58

Trigger based on specific published condition 58

Using the Client Recovery Library 595
Introduction 61

MsgSend*()functions 62

Other covers and convenience functions 63

HA-awareness functions 63

I/O covers 63

Convenience functions 65

A simple example 66

State-reconstruction example 69

HAM API Reference 736
ham action control() 80

ham action execute() 83

iv Contents October 6, 2005

 2005, QNX Software Systems

ham action fail execute() 87

ham action fail log() 90

ham action fail notify pulse(), hamaction fail notify pulsenode()
93

ham action fail notify signal(), hamaction fail notify signal node()
96

ham action fail waitfor() 99

ham action handle(), ham action handlenode() 102

ham action handlefree() 105

ham action heartbeathealthy() 107

ham action log() 109

ham action notify pulse(), ham action notify pulsenode() 112

ham action notify signal(), ham action notify signal node() 116

ham action remove() 120

ham action restart() 122

ham action waitfor() 126

ham attach(), hamattachnode() 129

ham attachself() 134

ham condition() 137

ham entity control() 141

ham condition handle(), hamcondition handlenode() 144

ham condition handlefree() 147

ham condition raise() 149

ham condition remove() 152

ham condition state() 154

ham connect(), hamconnectnd(), ham connectnode() 157

ham detach() 160

ham detachname(), ham detachnamenode() 162

ham detachself() 164

ham disconnect(), hamdisconnectnd(), hamdisconnectnode()
166

ham entity(), hamentity node() 168

ham entity condition raise() 171

October 6, 2005 Contents v

 2005, QNX Software Systems

ham entity condition state() 173

ham entity control() 175

ham entity handle(), ham entity handlenode() 178

ham entity handlefree() 181

ham heartbeat() 183

ham stop(), hamstop nd(), ham stopnode() 185

ham verbose() 187

Client Recovery Library Reference 1897
ha attach() 193

ha close() 196

ha connectionctrl() 198

ha ConnectAttach(), ha ConnectAttachr() 201

ha ConnectDetach(), ha ConnectDetachr() 204

ha creat(), ha creat64() 206

ha detach() 208

ha dup() 210

ha fclose() 212

ha fopen() 214

ha open(), ha open64() 216

ha ReConnectAttach() 218

ha reopen() 220

Examples 223A
Simple restart 225

Compound restart 226

Death/condition notification 228

Heartbeating clients (liveness detection) 231

The process is made to heartbeat 236

Process starvation 238

Thread 2 is made to heartbeat 242

Glossary 245

vi Contents October 6, 2005

 2005, QNX Software Systems

Index 251

October 6, 2005 Contents vii

About This Guide

October 6, 2005 About This Guide ix

 2005, QNX Software Systems

The QNX High Availability Toolkit (HAT)Developer’s Guide
describes the components of the HAT and how to build robust
HA-aware software running on the QNX Neutrino realtime
operating system.

The following table may help you find information quickly in this
guide:

If you want to: Go to:

Find the introduction Introduction

Know the main components of the HAT What’s in the HAT?

Understand the benefits of a
software-oriented approach to HA

The QNX Approach to HA

Get an overview of the HAM and
Guardian “watchdogs”

Using the High Availability Manager

Find out which standard QNX library
functions have HA covers

Using the Client Recovery Library

Look up a convenience function (e.g.
ha recover())

Client Recovery Library Reference

Look up a HAM API function (e.g.
hamattach())

HAM API Reference

See sample code listings for handling
various HA scenarios

The Examples appendix

Look up a special term used in this
guide

Glossary

For an overview of the QNX Neutrino RTOS, see theSystem
Architecturemanual in the OS documentation set.

☞

October 6, 2005 About This Guide xi

Chapter 1

Introduction

In this chapter. . .
Where’s the problem? 3
A software foundation for HA 3

October 6, 2005 Chapter 1 � Introduction 1

 2005, QNX Software Systems Where’s the problem?

Where’s the problem?
The ideal High Availability (HA) system is one that remains up and
runningcontinuously, uninterrupted for an indefinite period of time.
In practical terms, HA systems strive for “five nines” availability, a
metric referring to the percentage of uptime a system can sustain in a
year — 99.999% uptime amounts to about five minutes downtime per
year.

Obviously, systems fail. For one reason or another, systems aren’t as
available for use as their users and designers would like them to be.
Of all the possible causes of system failure — power outages,
component breakdowns, operator errors, software faults, etc. — the
lion’s share belongs to software faults.

Many HA systems try to address the problem of system failure by
turning tohardwaresolutions such as:

� rugged hardware

� redundant systems/components

� hot-swap CompactPCI components

� clustering

But if so many system crashes are caused bysoftwarefaults, then
throwing more hardware at the problem may not solve it at all. What
if the system’s memory state isn’t properly restored after recovery?
What if yours is an HA system (e.g. a consumer appliance) where
redundant hardware simply isn’t an option? Or what if your particular
HA system is based on a custom chassis for which a PCI-based HA
“solution” would be pointless?

A software foundation for HA
Most system designers wouldn’t think of using a “standard” desktop
PC as the foundation for an effective HA system. Apart from the
reliability issues arising from the hardware itself, theunderlying
softwareisn’t meant for continuous operation. When desktop

October 6, 2005 Chapter 1 � Introduction 3

A software foundation for HA  2005, QNX Software Systems

operating systems and applications need to be patched or upgraded,
most users expect to reboot their machines. Unfortunately, they might
also have become accustomed to rebooting as part of their daily
operations!

But in an HA system, various software components may need to be
upgradedon a live system. Individual modules should be readily
accessible for analysis and repair, without jeopardizing the
availability of the system itself.

In our view, effective HA systems must address the main problem —
software faults — through a modular approach to system design and
implementation. Based on a microkernel architecture, the QNX

Neutrino RTOS not only helps isolate problem areas throughout the
system, but also ensures complete independence of system
components. Each component enjoys full MMU-based memory
protection. And system-level modules such as device drivers benefit
from the same isolation and protection as any other process. You can
start and stop a driver, networking protocol, filesystem, etc., without
touching the kernel. A microkernel RTOS inherently keeps thesingle
point of failure(SPOF) number as low as possible.

The QNX High Availability Toolkit (HAT) provides a reliable
software infrastructure on which to build highly effective HA
systems. In addition to support for hardware-oriented HA solutions
(e.g. CompactPCI as well as custom hardware), you also have the
tools to isolate and even repair software faults before they occur
throughout your entire system.

For example, suppose a device driver crashes because it tried to write
to memory that was allocated to another process. The MMU will alert
the QNX Neutrino microkernel, which in turn will alert the High
Availability Manager (HAM). A HAM can then restart the driver. In
addition, a dump file can be generated for postmortem analysis.

Viewing this dump file, you can immediately determine which line of
code is the culprit and then prepare a fix that you can download to all
other units in the field before they run into the same bug. With a
conventional OS, a rogue driver may run for days before the system

4 Chapter 1 � Introduction October 6, 2005

 2005, QNX Software Systems A software foundation for HA

becomes corrupted enough to fail — and then it’s too late to identify
the problem, let alone dynamically install an upgraded driver!

A HAM can perform a multistage recovery, executing several actions
in a certain order. This technique is useful whenever strict
dependencies exist between various actions in a sequence, so that the
system can restore itself to the state it was in before a failure.

Equipped with the QNX Neutrino RTOS itself, as well as the
special tools and API in the HAT, you should be able to anticipate the
kinds of problems that are likely to happen, isolate them, and then
plan accordingly. In other words, assuming that failure will occur, you
can now design for it and build systems that can recover intelligently.

October 6, 2005 Chapter 1 � Introduction 5

Chapter 2

What’s in the HAT?

In this chapter. . .
What you get 9

October 6, 2005 Chapter 2 � What’s in the HAT? 7

 2005, QNX Software Systems What you get

What you get
The QNX High Availability Toolkit (HAT) consists of the following
main components:

QNX Neutrino realtime operating system

We’re not just trying to be thorough by listing the OS
itself here! And it’s first in the list for good reason —
the QNX Neutrino microkernel architecture
inherently provides a robust environment for building
highly reliable applications. Many of the particular
features required in an HA application — system
stability, isolation of software modules, dynamic
upgrading of software components, etc. — are already
included in the OS.

The QNX Neutrino microkernel provides
system-wide stability by offering full memory
protection to all processes. And there’s very little code
running in kernel mode that could cause the
microkernel itself to fail. All individual processes,
whether applications or OS services — including
device drivers — can be started and stopped
dynamically, without jeopardizing system uptime.

For more on the suitability of the QNX Neutrino

RTOS for HA, see the next chapter in this guide.

High Availability Manager (HAM)

A HAM is a “smart watchdog” — a highly resilient
manager process that can monitor your system and
perform multistage recovery whenever system services
or processes fail or no longer respond.

As a self-monitoring manager, a HAM is resilient to
internal failures. If, for whatever reason, the HAM
itself is stopped abnormally, it can immediately and
completelyreconstruct its own stateby handing over
to a mirror process called the Guardian.

October 6, 2005 Chapter 2 � What’s in the HAT? 9

What you get  2005, QNX Software Systems

For details on the HAM, see the chapter Using the
High Availability Manager in this guide.

HAM API The HAM API library of more than 35ham*()
functions gives you a simple mechanism to talk to a
HAM. This API is implemented as a thread-safe
library you can link against.

You use the API to interact with a HAM in order to
begin monitoring processes and to set up the various
conditions (e.g. the death of a server) that will trigger
certain recovery actions.

For descriptions of the functions in the HAM API, see
the HAM API Reference chapter in this guide.

Client Recovery Library

The client recovery library provides a drop-in
enhancement solution for many standardlibc I/O
operations. The HA library’s cover functions provide
automatic recovery mechanisms for failed connections
that can be recovered from in an HA scenario.

For descriptions of the client library functions, see the
Client Recovery Library Reference chapter in this
guide.

Examples You’ll find several sample code listings (and source)
that illustrate such tasks as restarting, heartbeating,
and more. Since the examples deal with some typical
fault-recovery scenarios, you may be able to easily
tailor this source for your HA applications.

For details, see the Examples appendix in this guide.

You should purchase the source code for HAT, available separately in
the Automotive and Networking bundles.

☞

10 Chapter 2 � What’s in the HAT? October 6, 2005

Chapter 3

The QNX Approach to HA

In this chapter. . .
The reset “solution” 13
Modularity means granularity 14

October 6, 2005 Chapter 3 � The QNX Approach to HA 11

 2005, QNX Software Systems The reset “solution”

The reset “solution”
Traditional approaches to dealing with software malfunctions have
included such mechanisms as:

Hardware/software watchdog

This is a piece of hardware that’s known to be fault-free. It
triggers code to check the sanity of the system. This sanity
check usually involves examining a set of registers that are
continuously updated by properly functioning software
components. But when one of the components isn’t working
properly, the system is reset.

Manual operator intervention

Many systems aren’t designed to include an automatic fault
detection, but rely instead on a manual approach — an operator
who monitors the health of the system. If the system state is
deemed invalid, then the operator takes the appropriate action,
which usually includes a system reset.

Memory constraint faulting

Several operating systems (and hardware platforms) include
features that let you generate a fault when a program accesses
memory that isn’t yours. Once this occurs, the program
becomes unreliable. With most realtime executives, the result is
that the system must be reset in order to return to a sane
operating state.

All of these approaches are relatively successful at detecting a
software fault. But the net result of this detection, especially when
faced with a multitude of faults in several potentially separate
software components, is the rather drastic action of a system reset.

Traditional RTOS architecture
One of the principal reasons for this lack of graceful recovery is the
monolithic architecture of a traditional realtime embedded system. At
the heart of most of these systems lies arealtime executive— a single

October 6, 2005 Chapter 3 � The QNX Approach to HA 13

Modularity means granularity  2005, QNX Software Systems

memory image consisting of the RTOS itself and often numerous
tasks.

Since all tasks — including critical system-level services — share the
very same address space, when the integrity of one task is called into
question, the integrity of the entire system is at risk. If a single
component such as a device driver fails, the RTOS itself could fail. In
HA terms, each software component becomes a single point of failure
(SPOF).

The only sure recovery mechanism in such an environment is to reset
the system and start from scratch.

Such realtime systems present a very low granularity of fault recovery,
making the HA procedure of planning for and dealing with failure
seemingly straightforward (a system reset), yet often very costly (in
terms of downtime, system restoration, etc.). For some embedded
applications, a reset may involve a specialized, time-consuming
procedure in order to restore the system to full operation in the field.

Modularity means granularity
What is really needed here is a more modular approach. System
architects often de-couple and modularize their systems from a
design/implementation point of view. Ideally, these modules would be
the focus not only of the design, but also of the fault-recovery process,
so that if one module malfunctions, then only that module would
require a reset — the integrity of the rest of the system would remain
intact. In other words, that particular module wouldn’t be a SPOF.

This modular approach would also help us address the fact that the
mean time to repair (MTTR) for a system reboot is a magnitude larger
than the MTTR for replacing a single running task.

This type of increased granularity on the recovery of individual tasks
is precisely what the QNX Neutrino microkernel offers. The
architecture of the QNX Neutrino realtime operating system itself
provides so many intrinsic HA features that many QNX users take
them for granted and often design recoverability into their systems
without giving it a second thought.

14 Chapter 3 � The QNX Approach to HA October 6, 2005

 2005, QNX Software Systems Modularity means granularity

Let’s look briefly at the key features of the QNX Neutrino RTOS
and see how system designers can easily make use of these builtin
HA-ready features to build effective HA systems.

Intrinsic HA
Three key factors of the QNX Neutrino architecture contribute
directly to intrinsic HA:

QNX Neutrino microkernel

Only a few essential services are provided (e.g. message
passing and realtime scheduling). The result is a robust,
dependable system — fewer lines of code in the kernel reduce
the probability of OS errors.

Also, the kernel’s fixed-priority preemptive scheduler ensures a
predictablesystem — there are fewer HA software paths to
analyze and deal with separately.

POSIX process model

This means full MMU-supported memory protection between
system processes, making it easy to isolate and protect
individual tasks.

The process model also offersdynamicprocess creation and
destruction, which is especially important for HA systems,
because you can more readily perform fault detection, recovery,
and live upgrades in the field.

The POSIX API provides a standard programming environment
and can help achieve system simplification, validation, and
verification.

In addition, the process model lets you easily monitor external
tasks, which not only aids in fault detection and diagnosis, but
also in service distribution.

Message passing

In the QNX Neutrino realtime operating system, all
interprocess communication happens through standard message

October 6, 2005 Chapter 3 � The QNX Approach to HA 15

Modularity means granularity  2005, QNX Software Systems

passing. For HA systems, this facilitates task decoupling, task
simplification, and service distribution.

Local and network-remote messaging isidenticaland
practically transparent for the application. In a
network-distributed HA system, the QNX message-based
approach fosters replication, redundancy, and system
simplification.

These represent some of the more prominent HA-oriented features
that become readily apparent when the QNX Neutrino RTOS
forms the basis of an HA design.

16 Chapter 3 � The QNX Approach to HA October 6, 2005

Chapter 4

Using the High Availability Manager

In this chapter. . .
Introduction 19
HAM hierarchy 20
State of the HAM 29
HAM API 33
A client example 49
Starting and stopping a HAM 53

October 6, 2005 Chapter 4 � Using the High Availability Manager 17

 2005, QNX Software Systems Introduction

Introduction
The High Availability Manager (HAM) provides a mechanism for
monitoring processes and services on your system. The goal is to
provide a resilient manager (or “smart watchdog”) that can perform
multistage recovery when system services or processes fail, do not
respond, or provide an unacceptable level of service. The HA
framework, including the HAM, uses a simple publish/subscribe
mechanism to communicate interesting system events between
interested components in the system. By automatically integrating
into the native networking mechanism (QNET), this framework
transparently extends a local monitoring mechanism to a network.

The HAM acts as a conduit through which the rest of the system can
both obtain and deliver information regarding the state of the system
as a whole. The system could be a single node or a collection of
nodes connected via QNET. The HAM can monitor specific processes
and can control the behavior of the system when specific components
fail and need to be recovered. The HAM also permits external
detectors to report interesting events to the system, and can associate
actions with the occurrence of these events.

In many HA systems, single points of failure (SPOFs) must be
identified and dealt with carefully. Since the HAM maintains
information about the health of the system and also provides the basic
recovery framework, the HAM itself must never become a SPOF.

As a self-monitoring manager, the HAM is resilient to internal
failures. If, for whatever reason, the HAM itself is stopped
abnormally, it can immediately and completely reconstruct its own
state. A mirror process called the Guardian perpetually stands ready
and waiting to take over the HAM’s role. Since all state information is
maintained in shared memory, the Guardian can assume the exact
same state that the original HAM was in before the failure.

But what happens if the Guardian terminates abnormally? The
Guardian (now the new HAM) creates a new Guardian for itself
before taking the place of the original HAM. Practically speaking,
therefore, one can’t exist without the other.

October 6, 2005 Chapter 4 � Using the High Availability Manager 19

HAM hierarchy  2005, QNX Software Systems

Since the HAM/Guardian pair monitor each other, the failure of either
one can be completely recovered from. The only way to stop HAM is
to explicitly instruct it to terminate the Guardian and then to terminate
itself.

HAM hierarchy
HAM consists of three main components:

� Entities

� Conditions

� Actions

Entities
Entitiesare the fundamental units of observation/monitoring in the
system. Essentially, an entity is a process (pid). As processes, all
entities are uniquely identifiable by theirpids. Associated with each
entity is a symbolic name that can be used to refer to that specific
entity. Again, the names associated with entities are unique across the
system. Managers are currently associated with a node, so uniqueness
rules apply to a node. As we’ll see later, this uniqueness requirement
is very similar to the naming scheme used in a hierarchical filesystem.

There are three basic entity types:

� Self-attached

� Externally attached

� Global

Self-attachedentities

These are processes that explicitly choose to be
HA-aware. These processes use the
hamattachself()andhamdetachself()functions
to connect to and disconnect from a HAM.

20 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems HAM hierarchy

Self-attached processes are compiled against the
HAM API library, and the lifetime of the
monitoring is from the time of theham attachself()
call to the time of thehamdetachself()call.

Self-attached entities can also choose to send
heartbeats to a HAM, which will then monitor them
for failure. Since arbitrary processes on the system
aren’t necessarily “trackable” for failure (i.e.
they’re not in session 1, not child processes, etc.),
you can use this heartbeat mechanism to monitor
such processes.

Self-attached entities can, on their own, decide at
exactly what point in their lifespan they want to be
monitored, what conditions they want acted upon,
and when they want to stop the monitoring. In other
words, this is a situation where a process says, “Do
the following if I die.”

Externally attachedentities

These are generic processes in the system that are
being monitored. These could be arbitrary
daemons/service providers whose health is deemed
important. This method is useful for the case where
Process A says, “Tell me when Process B dies” but
Process B needn’t know about this at all.

Globalentity A global entity is really just a place holder for
matching any entity. It can be used to associate
actions that will be triggered when an interesting
event is detected with respect to any entity on the
system. The term global refers to the set of entities
being monitored in the system. This permits one to
say things like “when any process dies or when any
process misses a heartbeat, do the following”. The
global entity is never added or removed, but is only
referred to. Conditions can be added/removed to the

October 6, 2005 Chapter 4 � Using the High Availability Manager 21

HAM hierarchy  2005, QNX Software Systems

global entity as usual, and actions added/removed
from any of the conditions.

Thedumper process is normally used to obtain core images of
processes that terminate abnormally as a result of performing any
illegal operations. A HAM receives notification of such terminations
from dumper. In addition the HAM also receives notification, from
the system, of the termination of any process that is in session 1. This
includes daemon processes that callprocmgrdaemon()thereby
detaching themselves from their controlling terminal.

Conditions
Conditionsare associated with entities. These conditions represent
the state of the entity. Here are some examples of conditions:

Condition Description

CONDDEATH The entity has died.

CONDABNORMALDEATH The entity has died an abnormal
death. This condition is triggered
whenever an entity dies by a
mechanism that results in the
generation of a core file (seedumper
in theUtilities Referencefor details).

CONDDETACH The entity that was being monitored
is detaching. This ends HAM’s
monitoring of that entity.

CONDATTACH An entity for whom a place holder
was previously created (someone
has subscribed to events relating to
this entity), has joined the system.
This is also the start of the
monitoring of the entity by a HAM.

continued. . .

22 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems HAM hierarchy

Condition Description

CONDHBEATMISSEDHIGH The entity missed sending a
heartbeat message specified for a
condition of “high” severity.

CONDHBEATMISSEDLOW The entity missed sending a
heartbeat message specified for a
condition of “low” severity.

CONDRESTART The entity was restarted. This
condition is trueafter the entity is
successfully restarted.

CONDRAISE An externally detected condition is
reported to a HAM. Subscribers can
associate actions with these
externally detected conditions.

CONDSTATE An entity reports a state transition to
a HAM. Subscribers can associate
actions with specific state
transitions.

CONDANY This condition type matches any
condition type. It can be used to
associate the same actions with one
of many conditions.

The conditions described above with the exception ofCONDSTATE,
CONDRAISEandCONDANY are automatically detected and/or
triggered by a HAM (i.e. the HAM is the publisher of the conditions).
TheCONDSTATEandCONDRAISEconditions are published to a
HAM by external detectors. For all conditions, subscribers can
associate with lists of actions that will be performed in sequence
when the condition is triggered. Both theCONDSTATEand
CONDRAISEconditions provide filtering capabilities so the
subscribers can selectively associate actions with individual
conditions, based on the information published.

October 6, 2005 Chapter 4 � Using the High Availability Manager 23

HAM hierarchy  2005, QNX Software Systems

Conditions are also associated with symbolic names, which also need
to be unique within an entity.

The HAM architecture isextensible. Several conditions are
automatically detected by a HAM. Also, by using theCondition Raise
mechanism other components in the system can notify a HAM of
interesting events in the system. These conditions can be fully
customized. Also, by studying the source code, it is possible to add
the capability of detecting other conditions into the HAM (e.g. low
memory, high CPU utilization, low disk space, etc.) to suit your HA
application.

☞

Actions
Actionsare associated with conditions. A condition can contain
multiple actions. The actions are executed whenever the
corresponding condition is true. Actions within a condition execute in
FIFO order (the order in which they were added into the condition).
Multiple conditions that are true are triggered simultaneously in an
arbitrary order. Conditions specified asHCONDINDEPENDENTwill
execute in a separate thread of execution, in parallel with other
conditions. (See the section Condition functions in this chapter.)

The HAM API includes several functions for different kinds of
actions:

Action Description

hamaction restart() This action restarts the entity.

hamaction execute() Executes an arbitrary command
(e.g. to start a process).

continued. . .

24 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems HAM hierarchy

Action Description

hamaction notify pulse() Notifies some process that this
condition has occurred. This
notification is sent using a
specificpulsewith a value
specified by the process that
wished to receive this notify
message. Pulses can be
delivered to remote nodes, by
specifying the appropriate node
specifier.

hamaction notify signal() Notifies some process that this
condition has occurred. This
notification is sent using a
specificrealtime signalwith a
value specified by the process
that wished to receive this
notify message. Signals can be
delivered to remote nodes, by
specifying the appropriate node
specifier.

hamaction notify pulsenode() This is the same as the
hamaction notify pulse()
described above, except that the
node name specified for the
recipient of the pulse can be
given using the fully qualified
node name instead of the node
identifier.

continued. . .

October 6, 2005 Chapter 4 � Using the High Availability Manager 25

HAM hierarchy  2005, QNX Software Systems

Action Description

hamaction notify signal node() This is the same as the
hamaction notify signal()
described above, except that the
node name specified for the
recipient of the signal can be
given using the fully qualified
node name instead of the node
identifier.

hamaction waitfor() This action lets you insert
delays between consecutive
actions in a sequence. You can
also wait for certain names to
appear in the namespace.

hamaction heartbeathealthy() Resets the heartbeat mechanism
for an entity that had previously
missed sending heartbeats, and
had triggered a missed
heartbeat condition, but has
now recovered.

hamaction log() This allows one to insert a
customizable verbosity message
into the activity log maintained
by a HAM.

Actions are also associated with symbolic names, which are unique
within a specific condition.

Again, the HAM architecture is extensible, so you may add your own
action functions as you see fit.

☞

26 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems HAM hierarchy

Action Fail actions
When an action in a list of actions fails, one can specify an alternate
list of actions that will be performed to recover from the failure of the
given action. These actions are referred to asaction fail actions, and
are associated with each individual action. The actionfail actions are
essentially the same set of actions that would normally be executed
with the exception ofhamaction restart()and
ham action heartbeathealthy()). Here’s the list of action fail actions:

Action Description

hamaction fail execute() Executes an arbitrary
command (e.g. to start a
process).

hamaction fail notify pulse() Notifies some process that
this condition has occurred.
This notification is sent
using a specific pulse with
a value specified by the
process that wished to
receive this notify message.
Pulses can be delivered to
remote nodes by specifying
the appropriate node
specifier.

continued. . .

October 6, 2005 Chapter 4 � Using the High Availability Manager 27

HAM hierarchy  2005, QNX Software Systems

Action Description

hamaction fail notify signal() Notifies some process that
this condition has occurred.
This notification is sent
using a specific realtime
signal with a value
specified by the process
that wished to receive this
notify message. Signals can
be delivered to remote
nodes by specifying the
appropriate node specifier.

hamaction fail notify pulsenode() This is the same as the
hamaction fail notify pulse()
described above, except
that the node name
specified for the recipient
of the pulse can be given
using the fully qualified
node name instead of the
node identifier.

hamaction fail notify signal node() This is the same as the
hamaction fail notify signal()
described above, except
that the node name
specified for the recipient
of the signal can be given
using the fully qualified
node name instead of the
node identifier.

continued. . .

28 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems State of the HAM

Action Description

hamaction fail waitfor() This action lets you insert
delays between consecutive
actions in a sequence. You
can also wait for certain
names to appear in the
namespace.

hamaction fail log() This allows one to insert a
customizable verbosity
message into the activity
log maintained by a HAM.

Multistaged recovery
This complete mechanism allows us to perform recovery of a failure
of a single service or process in a multi-staged fashion.

For example, suppose you’ve startedfs-nfs2 (the NFS filesystem)
and then mounted a few directories from multiple sources. You can
instruct HAM to restartfs-nfs2 upon failure, and also to remount
the appropriate directories as required after restarting the NFS
process. And if during the lifespan offs-nfs2 some directories are
unmounted, you can remove those particular actions from the set of
actions to be performed.

As another example, supposeio-net (network I/O manager) were to
die. We can tell a HAM to restart it and also to load the appropriate
network drivers (and maybe a few more services that essentially
depend on network services in order to function).

State of the HAM
Effectively, a HAM’s internal state is like a hierarchical filesystem,
where entities are like directories, conditions associated with those
entities are like subdirectories, and actions inside those conditions are
like leaf nodes of this tree structure.

October 6, 2005 Chapter 4 � Using the High Availability Manager 29

State of the HAM  2005, QNX Software Systems

A HAM also presents this state as a read-only filesystem under
/proc/ham. As a result, arbitrary processes can also view the current
state (e.g. you can dols /proc/ham).

Besides presenting a view of the state as a filesystem, for each item
(entity/condition/action) a HAM can also display statistics and
information relating to it in a corresponding.info file at each level
in a HAM filesystem under/proc/ham.

Example of the view shown in /proc/ham
Consider the following simple example where a HAM is monitoring
inetd and restarts it when it dies:

ls -al /proc/ham
total 2
-r-------- 1 root root 175 Aug 30 23:05 .info
dr-x------ 1 root root 1 Aug 30 23:06 inetd

The.info file at the highest level provides information about the
HAM and the Guardian, as well as an overview of the entities and
other objects in the system:

cat /proc/ham/.info
Ham Pid : 10993674
Guardian Pid : 10997782
Ham Failures : 0
Guardian Failures : 0
Num Entities : 1
Num Conditions : 1
Num Actions : 1

In this case the only entity being monitored isinetd, which appears
as a directory at the top level under/proc/ham:

ls -al /proc/ham/inetd
total 2
-r-------- 1 root root 173 Aug 30 23:06 .info
dr-x------ 1 root root 1 Aug 30 23:06 death

cat /proc/ham/inetd/.info
Path : inetd
Entity Pid : 11014167
Num conditions : 1

30 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems State of the HAM

Entity type : ATTACHED
Stats:
Created : 2001/08/30 23:04:49:930148650
Num Restarts : 0

As you can see, the.info provides information and statistics relating
to theinetd entity that is being monitored. The information is
generated dynamically and contains up-to-date data for each entity.

Theinetd entity has associated with it only onecondition(i.e.
death), which is triggered when the entity dies.

ls -al /proc/ham/inetd/death
total 2
-r-------- 1 root root 126 Aug 30 23:07 .info
-r-------- 1 root root 108 Aug 30 23:07 restart

cat /proc/ham/inetd/death/.info
Path : inetd/death
Entity Pid : 11014167
Num Actions : 1
Condition ReArm : ON
Condition type : CONDDEATH

Similarly, there’s only oneactionassociated with this death condition:
therestartmechanism. Each action under the condition appears as a
file under the appropriate condition directory. The file contains details
about the action that will be performed when the condition is
triggered.

cat /proc/ham/inetd/death/restart
Path : inetd/death/restart
Entity Pid : 11014167
Action ReArm : ON
Restart Line : /usr/sbin/inetd

Wheninetd dies, all the actions associated with a death condition
under it are executed:

slay inetd

cat /proc/ham/inetd/.info
Path : inetd
Entity Pid : 11071511 <- new pid of entity

October 6, 2005 Chapter 4 � Using the High Availability Manager 31

State of the HAM  2005, QNX Software Systems

Num conditions : 1
Entity type : ATTACHED
Stats:
Created : 2001/08/30 23:04:49:930148650
Last Death : 2001/08/30 23:10:31:889820814
Restarted : 2001/08/30 23:10:31:904818519
Num Restarts : 1

As you can see, the statistics relating to the entityinetd are updated.

Similarly, if a HAM itself is terminated, the Guardian takes over as
the new HAM, and creates a Guardian for itself.

cat /proc/ham/.info
Ham Pid : 10993674 <----- This is the HAM
Guardian Pid : 10997782 <----- This is the Guardian
Ham Failures : 0
Guardian Failures : 0
Num Entities : 1
Num Conditions : 1
Num Actions : 1

... Kill the ham

/bin/kill -9 10993674 <---- Simulate failure

... re-read the stats ...

cat /proc/ham/.info
Ham Pid : 10997782 <----- This is the new HAM
Guardian Pid : 11124746 <----- This is the Guardian
Ham Failures : 1
Guardian Failures : 0
Num Entities : 1
Num Conditions : 1
Num Actions : 1

As you can see, the old Guardian is now the new HAM, and a new
Guardian has been created. All entities and conditions remain as
before; the monitoring continues as usual. The HAM and the
Guardian ignore all signals that they can.

32 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems HAM API

HAM API
A HAM provides an API for you to use in order to interact with it.
This API provides a collection of functions to:

� connect to and disconnect from a HAM

� add entities/conditions/actions to (and remove them from) the set
of things currently being monitored.

The API is implemented as a library that you can link against. The
library is thread-safe and also cancellation-safe.

Connect/disconnect functions
The HAM API library maintains only one connection to the HAM.
The library itself is thread-safe, and multiple connections (from
different threads) or the same thread are multiplexed on the same
single connection to a HAM. The library maintains reference counts.

Here are the basic connect functions:

/* Basic connect functions
return success (0) or failure (-1, with errno set) */

int ham connect(unsigned flags);
int ham connect nd(int nd, unsigned flags);
int ham connect node(const char *nodename, unsigned flags);

int ham disconnect(unsigned flags);
int ham disconnect nd(int nd, unsigned flags);
int ham disconnect node(const char *nodename, unsigned flags);

These functions are used to open or close connections to a HAM. The
first call toham connect*()will open thefd, while subsequent calls
will increment the reference count.

Similarly, ham disconnect()will decrement the count until zero; the
call that makes the count zero will close thefd. The functions return
-1 on error, and 0 on success. Similarlyham disconnect*()will
decrement the reference count until zero, with the call that makes the
count zero closing thefd. The functions return -1 on error with errno
set, and 0 on success.

October 6, 2005 Chapter 4 � Using the High Availability Manager 33

HAM API  2005, QNX Software Systems

In a multithreaded situation, there will exist only one open connection
to a given HAM at any given time, even if multiple threads were to
performham connect*()/hamdisconnect*()calls.

Theham * nd()andham * node()versions of the calls are used to
open a connection to a remote HAM across QNET. Thend that is
passed to the function is the node identifier that refers to the remote
host at the instant the call is made. Since node identifiers are transient
values, it is essential that the node identifier is obtained just prior to
the call. The other option is to use the fully qualified node name
(FQNN) of the host and to pass this as thenodenameparameter. An
nd of ND LOCAL NODE (a constant defined insys/netmgr.h) or a
nodenameof NULL (or the empty string) are equivalent, and refer to
the current node. (This is also the same as callinghamconnect()or
ham disconnect()directly).

Calls toham connect(), ham connectnd(), andham connectnode()
can be freely mixed, as long as the number of connect calls equals the
number of disconnect calls for each connection to a specific (local or
remote) HAM before the connection (fd) is closed.

Attach/detach functions
For self-attached entities

ham entity t *ham attach self(char *ename, uint64 t hp, int hpdl,
int hpdh, unsigned flags);

int ham detach self(ham entity t *ehdl, unsigned flags);

You use these two functions to attach/detach a process to/from a
HAM as a self-attached entity.

Theenameargument represents the symbolic name for this entity,
which needs to be unique in the system (of all monitored entities at
the instant the call is made).

Thehpargument represents time values in nanoseconds for the
heartbeat period. Heartbeating can be used to ensure “liveness” of the
monitored entity. Liveness is a property that describes a component’s
useful progress. In many cases, the availability of a system component

34 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems HAM API

is compromised not because the component has necessarily died, but
because it isn’t responding or making any progress. The heartbeating
mechanism lets you specify that a component will issue a heartbeat at
a given interval, and if it misses a certain number of heartbeats, then
that would constitute a heartbeat-missed condition.

Thehpdlandhpdhrepresent the number of heartbeats that can be
missed before the conditionsheartbeatmissedlowand
heartbeatmissedhighare triggered. The HAM API library registers
this request with a HAM and also creates a thread that keeps the
connection to a HAM open. If the entity were to abnormally
terminate, the connection to the HAM is closed, and the HAM will
know that this is an abnormal termination (sincehamdetachself()
wasn’t called first).

On the other hand, if a HAM were to abnormally fail (extremely
unlikely) and the Guardian takes over as the new HAM, the
connection to the old HAM will have gone stale. In that case, the
Guardian notifies all self-attached entities to reattach. The extra thread
mentioned above handles this reattach transparently. The thread also
sends the appropriate heartbeats at the correct intervals to the HAM.

If a connection to a HAM is already open, thenhamattachself()uses
the same connection, but increments the reference count of
connections opened by this client. A client that indicates that it will
heartbeat at a certain period must callham heartbeat()to actually
transmit a heartbeat to the HAM.

The library also verifies whether theenameprovided by the caller is
unique. If it doesn’t already exist, then this request is forwarded to a
HAM, which also checks it again to avoid any race conditions in
creating new entities. Theham attachself()returns a generic handle,
which can be used to detach the process from the HAM later. Note
that this handle is an opaque pointer that’s also used to add conditions
and actions as shown below.

Theham detachself()function is used to close the connection to a
HAM. From this point on, the HAM will no longer monitor this
process as a self-attached entity. The extra thread is canceled. The

October 6, 2005 Chapter 4 � Using the High Availability Manager 35

HAM API  2005, QNX Software Systems

ham detachself()function takes as an argument the handle returned
by ham attachself().

Code snippet using self-attach/detach calls

The following snippet of code uses thehamattach|detachself()
functions:

...
ham entity t *ehdl; /* The entity Handle */
int status;

/*
connects to a HAM with a heartbeat of 5 seconds
and an entity name of "client1", and no flags
it also specifies hpdh = 4, and hpdh = 8

*/

ehdl = ham attach self("client1", 5000000000, 4, 8, 0);
if (ehdl == NULL) {
printf("Could not attach to Ham\n");
exit(-1);

}
/* Detach from a HAM using the original handle */
status = ham detach self(ehdl,0);
...

For attaching/detaching all other entities
ham entity t *ham attach(char *ename, int nd, pid t pid, char *line,

unsigned flags);
ham entity t *ham attach node(char *ename, const char *nodename, pid t pid,

char *line, unsigned flags);
int ham detach(ham entity t *ehdl, unsigned flags);
int ham detach name(int nd, char *ename, unsigned flags);
int ham detach name node(const char *nodename, char *ename, unsigned flags);

These attach/detach/detach-name functions are very similar to the
* self()functions above, except here the calling process asks a HAM
to monitor a different process.

This mechanism allows for arbitrary monitoring of entities that
already exist and aren’t compiled against the HAM API library. In
fact, the entities that are being monitored needn’t even be aware that
they’re being monitored.

36 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems HAM API

You can use thehamattach()call either to:

� start an entity and continue to monitor it

or:

� begin monitoring an entity that’s already running.

In thehamattach()call, if pid is -1, then we assume that the entity
isn’t running. The entity is started now usingline as the startup
command line for it. But ifpid is greater than 0, thenline is ignored
and thepid given is attached to as an entity. Againenameneeds to be
unique across all entities currently registered.

Thend specifier inhamattach()andhamdetachname(), and the
nodenamespecifier in thehamattachnode()and
ham detachnamenode()versions of the calls are used to refer to a
remote HAM across Qnet. Thend that is passed to the function is the
node identifier that refers to the remote host at the instant the call is
made. Since node identifiers are transient values, it is essential that
the node identifier is obtained just prior to the call. The other option is
to use the fully qualified node name (FQNN) of the host and to pass
this as thenodenameparameter. Annd of ND LOCAL NODE (a
constant defined insys/netmgr.h or anodenameof NULL (or the
empty string) are equivalent, and refer to the current node.

Theham detach*()functions stop monitoring a given entity. The
ham detach()call takes as an argument the original handle returned
by ham attach(). You can also callham detachname(), which uses
the entity’s name instead of the handle.

Note that the entity handle can also be used later to addconditionsto
the entity (described below).

Code snippet using attach/detach calls

...
ham entity t *ehdl;
int status;
ehdl = ham attach("inetd", 0, -1, "/usr/sbin/inetd", 0);
/* inetd is started, running and monitored now */
...
...

October 6, 2005 Chapter 4 � Using the High Availability Manager 37

HAM API  2005, QNX Software Systems

status = ham detach(ehdl,0);
...
...

Of course the attach and detach needn’t necessarily be performed by
the same caller:

...
ham entity t *ehdl;
int status;
/* starts and begins monitoring inetd */
ehdl = ham attach("inetd", 0, -1, "/usr/sbin/inetd", 0);
...
...
/* disconnect from Ham (monitoring still continues) */
exit(0);

And to detachinetd:

...
int status;
/* stops monitoring inetd. */
status = ham detach name(0, "inetd", 0);
...
exit(0);

If inetd were already running, say withpid 105328676, then we
can write the attach/detach code as follows:

ham entity t *ehdl;
int status;
ehdl = ham attach("inetd", 0, 105328676, NULL, 0);
...
...
status = ham detach(ehdl,0);
/* status = ham detach name(0, "inetd",0); */
...
...
exit(0);

For convenience, thehamattach()andham detach()functions
connect to a HAM if such a connection doesn’t already exist. We do
this only to make the use of the functions easier.

38 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems HAM API

The connections to a HAM persist only for the duration of the
attach/detach calls; any subsequent requests to the HAM must be
preceded by the appropriateham connect()calls.

The best way to perform a large sequence of requests to a HAM is to:

1 Call ham connect()before the first request.

2 Call ham disconnect()after the last request.

This is the most efficient method, because it guarantees that there’s
always the same connection open to the HAM.

Entity functions
Theham attach*() functions are normally used when an entity is
either already running or will be started by a HAM, and monitoring
begins with the invocation of thehamattach*()call. The HAM API
also provides two functions that allow users to create placeholders for
entities that are not yet running and that might be started in the future.
This allows subscribers of interesting events to indicate their interest
in these events, without necessarily waiting for a publisher (other
entity/HAM) to create the entity.

ham entity t *ham entity(const char *ename, int nd, unsigned flags);
ham entity t *ham entity node(const char *ename, const char *nodename,

unsigned flags);

These functions create entity place holders with the name specified
ename, on the corresponding node described by either the node
identifiernd or the nodename given bynodename. Once created,
these placeholders can be used to add conditions and actions to their
associated entities. When a subsequentham attach*()call is made
that references the sameename, it will fill the entity place holder with
the appropriate process ID. From that time onwards, the entity is
monitored normally.

October 6, 2005 Chapter 4 � Using the High Availability Manager 39

HAM API  2005, QNX Software Systems

Condition functions

ham condition t *ham condition(ham entity t *ehdl, int type,
const char *cname, unsigned flags);

int ham condition remove(ham condition t *chdl, unsigned flags);

Each entity can be associated with various conditions. And for each
of these conditions there’s a set of actions that will be performed in
sequence when the condition is true. If an entity has multiple
conditions that are true simultaneously with different sets of actions
associated with each condition, then all the actions are performed for
each condition, in sequence.

This mechanism lets you combine actions together into sets and
choose to remove/control them as a single “group” instead of as
individual items.

Since conditions are associated with entities, anentity handlemust be
available in order to add conditions. Theham condition*() functions
return an opaque pointer that is a condition handle, which you can use
later to either remove a condition or add actions to the condition.

Condition types

You can specify any of the following fortype:

CONDDEATH The entity has died.

CONDABNORMALDEATH

The entity has died an abnormal death. This
condition is triggered whenever an entity dies by a
mechanism that results in the generation of a core
file (seedumper in theUtilities Referencefor
details).

CONDDETACH The entity that was being monitored is detaching.
This ends HAM’s monitoring of that entity.

CONDATTACH An entity for whom a place holder was previously
created (someone has subscribed to events relating

40 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems HAM API

to this entity), has joined the system. This is also
the start of the monitoring of the entity by a HAM.

CONDHBEATMISSEDHIGH

The entity missed sending a heartbeat message
specified for a condition of “high” severity.

CONDHBEATMISSEDLOW

The entity missed sending a heartbeat message
specified for a condition of “low” severity.

CONDRESTART The entity was restarted. This condition is true
after the entity is successfully restarted.

CONDANY This condition type matches any condition type. It
can be used to associate the same actions with one
of many conditions.

TheCONDATTACH, CONDDETACHandCONDRESTARTconditions
are triggered by the HAM, when entities attach, detach, or restart
respectively. TheCONDHBEATMISSEDHIGHand
CONDHBEATMISSEDLOWconditions are triggered internally by the
HAM when it detects the missed heartbeat conditions, as defined by
the entities when they indicated their original intent to heartbeat.

CONDDEATH is triggered whenever an entity dies.
CONDABNORMALDEATH is triggered only when an abnormal death
takes place, but such an abnormal death also triggers aCONDDEATH
condition.

You use thedetachcondition to perform some actions whenever a
monitored entity properly detaches from a HAM. After this point, the
HAM will no longer monitor the entity. In effect, you can use this to
“notify” interested clients when the HAM can no longer provide any
more information about the detaching entity.

Therestartcondition is asserted and triggered by a HAM
automatically if an entity dies and is restarted.

October 6, 2005 Chapter 4 � Using the High Availability Manager 41

HAM API  2005, QNX Software Systems

Condition flags

HCONDNOWAIT

Guarantees that there can be no “waitfor” statements in the list
of actions in this condition. All conditions that are flagged
HCONDNOWAIT are handled in a separate thread, and thus
aren’t delayed in any way by the nature of the actions in other
conditions.

HCONDINDEPENDENT

If this flag is set, then all actions in this condition are executed
in a separate thread. This lets you insert delays into a condition,
without incurring any delays in other conditions.

If a condition is flagged with bothHCONDINDEPENDENTand
HCONDNOWAIT, thenHCONDNOWAIT takes precedence, and all
actions in this condition are executed in the same thread asall other
conditions that are also flagged asHCONDNOWAIT. This is because
all HCONDNOWAIT conditions are guaranteed to have minimal delays
already.

If a condition is flagged with neitherHCONDNOWAIT nor
HCONDINDEPENDENT, it is treated as anOTHERcondition,
implying that it will be executed in the FIFO order among all
conditions that are true.

To sum up:

1 Whenever a condition (e.g.CONDDEATH, CONDDETACH, etc.)
occurs, all conditions flaggedHCONDNOWAIT are executed in
FIFO order in a single thread.

2 All conditions flaggedHCONDINDEPENDENT(but not
HCONDNOWAIT) are executed each in a separate thread.

3 All other conditions are executed in FIFO order in one single
thread.

This limits the number of threads in all to be at most:

(number of HCONDINDEPENDENT conditions)+ 2

42 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems HAM API

That is, one for all the conditions flaggedHCONDNOWAIT, and one
for all OTHERconditions.

In addition, within a condition, all actions are also executed in FIFO
order. This is true irrespective of whether the conditions are
HCONDNOWAIT or HCONDINDEPENDENT.

Action functions
/* action operations */
ham action t *ham action restart(ham condition t *chdl, const char *aname,

const char *path, unsigned flags);

ham action t *ham action execute(ham condition t *chdl, const char *aname,
const char *path, unsigned flags);

ham action t *ham action waitfor(ham condition t *chdl, const char *aname,

const char *path, int delay, unsigned flags);
ham action t *ham action notify pulse(ham condition t *chdl, const char *aname,

int nd, int topid, int chid, int pulsecode, int value,

unsigned flags);
ham action t *ham action notify signal(ham condition t *chdl, const char *aname,

int nd, pid t topid, int signum, int code, int value,

unsigned flags);
ham action t *ham action notify pulse node(ham condition t *chdl,

const char *aname, const char *nodename, int topid, int chid,
int pulsecode, int value, unsigned flags);

ham action t *ham action notify signal node(ham condition t *chdl,

const char *aname, const char *nodename, pid t topid,
int signum, int code, int value, unsigned flags);

ham action t *ham action heartbeat healthy(ham condition t *chdl,

const char *aname, unsigned flags);
ham action t *ham action log(ham condition t *chdl, const char *aname,

const char *msg, unsigned attachprefix, int verbosity,

unsigned flags);

/* remove an action */

int ham action remove(ham action t *ahdl, unsigned flags);

As mentioned earlier, a HAM currently supports several different
types ofaction functions, but note that you can add your own action
functions to suit your particular HA application.

ham action restart()

Provides a restart mechanism for the entity in the event that a
deathcondition has occurred. This implies that the entity in
question has terminated; therestartaction will restart the entity
and also keep track of the newpid that the entity will now be
associated with.

October 6, 2005 Chapter 4 � Using the High Availability Manager 43

HAM API  2005, QNX Software Systems

Restartactions can be associated only withdeathconditions. And
across all conditions of typedeath, there can be only a singlerestart
action at any time. This ensures that the entity is restarted only if it
terminates, and only once. (Conditions of typedeathinclude
conditions of the typesCONDDEATH andCONDABNORMALDEATH.

☞

ham action execute()

Executes an arbitrary command in the event that the condition is
true. This could be any executable command line. When the
condition in question is true, the list of actions is traversed and
executed in sequence.

This executes a command line as specified in the parameters.
The command line must contain the FULL path to the
executable along with all parameters to be passed to it. The
command line is in turn passed onto aspawncommand by a
HAM to create a new process that will execute the command.

You’ll find executeactions useful when you need to set up a
multistage recovery. For example, iffs-nfs2 dies and is
restarted, theham action execute()function lets you remount
any directories that are required afterfs-nfs2 is restarted.

You can have anexecuteaction take place immediately by
setting theHACTIONDONOW flag. Again, this is useful in
startup situations when an entity is created in many stages.

Note thatHACTIONDONOW is ignored forwaitfor actions. So
in order to insert delays into a sequence of actions flagged
HACTIONDONOW, you’ll need to insert the delays in the client
program (between calls tohamaction*()).

ham action waitfor()

Given a sequence of actions in a condition that will execute in
FIFO order, you can insert delays into the execution sequence
by usingham action waitfor() (as long as the condition permits
it — see the section Condition functions in this chapter). The
delay specified is in multiples of 100 msecs.

44 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems HAM API

Thehamaction waitfor() call takes as an argument apath
component, which can be used to wait for a specific name to
appear in the name space. Ifpath is NULL, the waitfor is for
exactlydelaymsecs. But ifpath is specified, the waitfor is for
eitherdelaymsecs or untilpathappears in the namespace,
whichever occurs earlier. Note that the delay when a pathname
is specified is in integral multiples of 100 msecs.

If a pathname is specified, the delays will be the closest integral
multiple of 100 msecs, rounding up. A delay of0 effectively
disables the waitfor, making thepathnamespecification
redundant.

ham action notify pulse(), ham action notify signal()

Thehamaction notify pulse()function sends the appropriate
pulse to the givennd/pid/chid.

Theaction notify signal()sends an appropriate realtime signal
with a value to thepid that requests it.

Actions can persist across a restart if the entity is restarted.
Similarly, conditions can also be set to persist (i.e. you can
rearm them) after a restart of the entity. You can do this by
ORingHREARMAFTERRESTARTinto the flags argument to
either thehamcondition()call or to the appropriate action
statement.

If a condition persists when an entity is restarted, each
individual action is checked to see if it also persists. Actions
that needn’t be rearmed are performed once and removed. Any
actions that fail are also removed, even if they’re set to be
rearmed.

If a condition isn’t marked asrearmed, then all actions under it
are automatically removed, since the actions are associated only
with the condition and can’t be retained if the condition no
longer exists.

The persistence of conditions and actions across a restart
depends on the restart of the entity itself. So if the entity isn’t
restarted (i.e. there’s noACTIONRESTARTor the

October 6, 2005 Chapter 4 � Using the High Availability Manager 45

HAM API  2005, QNX Software Systems

ACTIONRESTARTfails for some reason), then the entity is
removed, along with all conditions and actions associated with
the entity as well.

ham action notify pulsenode()

This is the same as theham action notify pulse()above, except
that the node name specified for the recipient of the pulse can
be given using the fully qualified node name instead of the node
identifier (nd).

ham action notify signal node()

This is the same as theham action notify signal()above, except
that the node name specified for the recipient of the signal can
be given using the fully qualified node name instead of the node
identifier (nd).

Action fail functions
/* action fail operations */
int ham action fail execute(ham action t *ahdl, const char *aname,

const char *path, unsigned flags);

int ham action fail waitfor(ham action t *ahdl, const char *aname,
const char *path, int delay, unsigned flags);

int ham action fail notify pulse(ham action t *ahdl, const char *aname,

int nd, int topid, int chid, int pulsecode, int value, unsigned flags);
int ham action fail notify signal(ham action t *ahdl, const char *aname,

int nd, pid t topid, int signum, int code, int value, unsigned flags);

int ham action fail notify pulse node(ham action t *ahdl, const char *aname,
const char *nodename, int topid, int chid, int pulsecode, int value,

unsigned flags);

int ham action fail notify signal node(ham action t *ahdl, const char *aname,
const char *nodename, pid t topid, int signum, int code, int value,

unsigned flags);

int ham action fail log(ham action t *ahdl, const char *aname,
const char *message, unsigned attachprefix, int verbosity, unsigned flags);

/* remove an action fail operation */

int ham action fail remove(ham action t *ahdl, const char *aname,

unsigned flags);

These actions are used to associate a list of actions that will be
executed when an action in a condition fails. These functions are
similar to the corresponding action functions described in the
previous section, the primary difference being the first parameter,
which in the case of these functions is a handle to an action (as
opposed to a handle to a condition).

46 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems HAM API

Example to monitor inetd

The following code snippet shows how to begin monitoring the
inetd process:

#include <stdio.h>
#include <string.h>

#include <stdlib.h>

#include <unistd.h>
#include <sys/stat.h>

#include <sys/netmgr.h>

#include <fcntl.h>
#include <ha/ham.h>

int main(int argc, char *argv[])
{

int status;
char *inetdpath;

ham entity t *ehdl;

ham condition t *chdl;
ham action t *ahdl;

int inetdpid;

inetdpath = strdup("/usr/sbin/inetd");

inetdpid = -1;

ham connect(0);
ehdl = ham attach("inetd", ND LOCAL NODE, inetdpid, inetdpath, 0);

if (ehdl != NULL)

{
chdl = ham condition(ehdl,CONDDEATH, "death", HREARMAFTERRESTART);

if (chdl != NULL) {

ahdl = ham action restart(chdl, "restart", inetdpath,
HREARMAFTERRESTART);

if (ahdl == NULL)
printf("add action failed\n");

}

else
printf("add condition failed\n");

}

else
printf("add entity failed\n");

ham disconnect(0);

exit(0);
}

Example to monitor fs-nfs2

The following code snippet shows how to begin monitoring the
fs-nfs2 process:

#include <stdio.h>

#include <string.h>

October 6, 2005 Chapter 4 � Using the High Availability Manager 47

HAM API  2005, QNX Software Systems

#include <stdlib.h>
#include <unistd.h>

#include <sys/stat.h>

#include <sys/netmgr.h>
#include <fcntl.h>

#include <ha/ham.h>

int main(int argc, char *argv[])

{
int status;

ham entity t *ehdl;

ham condition t *chdl;
ham action t *ahdl;

char *fsnfspath;

int fsnfs2pid;

fsnfspath = strdup("/usr/sbin/fs-nfs2");

fsnfs2pid = -1;

ham connect(0);

ehdl = ham attach("Fs-nfs2", ND LOCAL NODE, fsnfs2pid, fsnfspath, 0);
if (ehdl != NULL)

{

chdl = ham condition(ehdl,CONDDEATH, "Death", HREARMAFTERRESTART);
if (chdl != NULL) {

ahdl = ham action restart(chdl, "Restart", fsnfspath,
HREARMAFTERRESTART);

if (ahdl == NULL)

printf("add action failed\n");
else {

ahdl = ham action waitfor(chdl, "Delay1", NULL, 2000,

HREARMAFTERRESTART);
if (ahdl == NULL)

printf("add action failed\n");

ahdl = ham action execute(chdl, "MountDir1",
"/bin/mount -t nfs a.b.c.d:/dir1 /dir1",

HREARMAFTERRESTART|HACTIONDONOW));

if (ahdl == NULL)
printf("add action failed\n");

ahdl = ham action waitfor(chdl, "Delay2", NULL, 2000,

HREARMAFTERRESTART);
if (ahdl == NULL)

printf("add action failed\n");
ahdl = ham action execute(chdl, "Mountdir2",

"/bin/mount -t nfs a.b.c.d:/dir2 /dir2",

HREARMAFTERRESTART|HACTIONDONOW);
if (ahdl == NULL)

printf("add action failed\n");

}
}

else

printf("add condition failed\n");
}

else

printf("add entity failed\n");
ham disconnect(0);

exit(0);

}

48 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems A client example

Functions to operate on handles
/* Get/Free handles */

ham entity t *ham entity handle(int nd, const char *ename, unsigned flags);
ham condition t *ham condition handle(int nd, const char *ename,

const char *cname, unsigned flags);

ham action t *ham action handle(int nd, const char *ename, const char *cname,
const char *aname, unsigned flags);

ham entity t *ham entity handle node(const char *nodename, const char *ename,
unsigned flags);

ham condition t *ham condition handle node(const char * nodename,

const char *ename, const char *cname, unsigned flags);
ham action t *ham action handle node(const char * nodename, const char *ename,

const char *cname, const char *aname, unsigned flags);

int ham entity handle free(ham entity t *ehdl);
int ham condition handle free(ham condition t *chdl);

int ham action handle free(ham action t *ahdl);

You use the handle functions to get/free handles based on entity,
condition, and action names. You can then use these handles later to
add or remove conditions and actions. As for all the other functions
the* node*()variations are used to refer to a HAM that is not
necessarily local, using a fully qualified node name (FQNN).

A client example
Here’s an example of a client that obtains notifications via pulses and
signals about significant events from a HAM. It registers a
pulse-notification scheme in the event thatinetd dies or detaches. It
also registers a signal-notification mechanism for the death of
fs-nfs2.

This example also demonstrates how the delayed notification occurs,
and shows how to overcome this using anHCONDINDEPENDENT
condition.

#include <stdio.h>

#include <string.h>
#include <stdlib.h>

#include <unistd.h>

#include <sys/stat.h>
#include <fcntl.h>

#include <errno.h>

#include <sys/neutrino.h>
#include <sys/iomsg.h>

#include <sys/netmgr.h>

October 6, 2005 Chapter 4 � Using the High Availability Manager 49

A client example  2005, QNX Software Systems

#include <signal.h>
#include <ha/ham.h>

#define PCODEINETDDEATH PULSE CODE MINAVAIL+1
#define PCODEINETDDETACH PULSE CODE MINAVAIL+2

#define PCODENFSDELAYED PULSE CODE MINAVAIL+3

#define PCODEINETDRESTART1 PULSE CODE MINAVAIL+4
#define PCODEINETDRESTART2 PULSE CODE MINAVAIL+5

#define MYSIG SIGRTMIN+1

int fsnfs value;

/* Signal handler to handle the death notify of fs-nfs2 */

void MySigHandler(int signo, siginfo t *info, void *extra)
{

printf("Received signal %d, with code = %d, value %d\n",

signo, info->si code, info->si value.sival int);
if (info->si value.sival int == fsnfs value)

printf("FS-nfs2 died, this is the notify signal\n");

return;
}

int main(int argc, char *argv[])
{

int chid, coid, rcvid;
struct pulse pulse;

pid t pid;

int status;
int value;

ham entity t *ehdl;

ham condition t *chdl;
ham action t *ahdl;

struct sigaction sa;

int scode;
int svalue;

/* we need a channel to receive the pulse notification on */
chid = ChannelCreate(0);

/* and we need a connection to that channel for the pulse to be
delivered on */

coid = ConnectAttach(0, 0, chid, NTO SIDE CHANNEL, 0);

/* fill in the event structure for a pulse */

pid = getpid();
value = 13;

ham connect(0);

/* Assumes there is already an entity by the name "inetd" */
chdl = ham condition handle(ND LOCAL NODE, "inetd","death",0);

ahdl = ham action notify pulse(chdl, "notifypulsedeath",ND LOCAL NODE, pid,

chid, PCODEINETDDEATH, value, HREARMAFTERRESTART);

ham action handle free(ahdl);

ham condition handle free(chdl);

ehdl = ham entity handle(ND LOCAL NODE, "inetd", 0);

chdl = ham condition(ehdl, CONDDETACH, "detach", HREARMAFTERRESTART);
ahdl = ham action notify pulse(chdl, "notifypulsedetach",ND LOCAL NODE, pid,

chid, PCODEINETDDETACH, value, HREARMAFTERRESTART);

50 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems A client example

ham action handle free(ahdl);
ham condition handle free(chdl);

ham entity handle free(ehdl);

fsnfs value = 18; /* value we expect when fs-nfs dies */

scode = 0;

svalue = fsnfs value;
sa.sa sigaction = MySigHandler;

sigemptyset(&sa.sa mask);
sa.sa flags = SA SIGINFO;

sigaction(MYSIG, &sa, NULL);

/*

Assumes there is an entity by the name "Fs-nfs2".

We use "Fs-nfs2" to symbolically represent the entity
fs-nfs2. Any name can be used to represent the

entity, but it’s best to use a readable and meaningful name.

*/
ehdl = ham entity handle(ND LOCAL NODE, "Fs-nfs2", 0);

/*
Add a new condition, which will be an "independent" condition.

This means that notifications/actions inside this condition

are not affected by "waitfor" delays in other action
sequence threads

*/
chdl = ham condition(ehdl,CONDDEATH, "DeathSep",

HCONDINDEPENDENT|HREARMAFTERRESTART);

ahdl = ham action notify signal(chdl, "notifysignaldeath",ND LOCAL NODE,
pid, MYSIG, scode, svalue, HREARMAFTERRESTART);

ham action handle free(ahdl);

ham condition handle free(chdl);
ham entity handle free(ehdl);

chdl = ham condition handle(ND LOCAL NODE, "Fs-nfs2","Death",0);
/*

This action is added to a condition that does not

have an HCONDNOWAIT. Since we are unaware what the condition
already contains, we might end up getting a delayed notification

since the action sequence might have "arbitrary" delays and

"waits" in it.
*/

ahdl = ham action notify pulse(chdl, "delayednfsdeathpulse", ND LOCAL NODE,
pid, chid, PCODENFSDELAYED, value, HREARMAFTERRESTART);

ham action handle free(ahdl);
ham condition handle free(chdl);

ehdl = ham entity handle(ND LOCAL NODE, "inetd", 0);

/* We force this condition to be independent of all others. */

chdl = ham condition(ehdl, CONDRESTART, "restart",
HREARMAFTERRESTART|HCONDINDEPENDENT);

ahdl = ham action notify pulse(chdl, "notifyrestart imm", ND LOCAL NODE,

pid, chid, PCODEINETDRESTART1, value, HREARMAFTERRESTART);
ham action handle free(ahdl);

ahdl = ham action waitfor(chdl, "delay",NULL,6532, HREARMAFTERRESTART);

ham action handle free(ahdl);
ahdl = ham action notify pulse(chdl, "notifyrestart delayed", ND LOCAL NODE,

pid, chid, PCODEINETDRESTART2, value, HREARMAFTERRESTART);

October 6, 2005 Chapter 4 � Using the High Availability Manager 51

A client example  2005, QNX Software Systems

ham action handle free(ahdl);

ham condition handle free(chdl);

ham entity handle free(ehdl);

while (1) {

rcvid = MsgReceivePulse(chid, &pulse, sizeof(pulse), NULL);
if (rcvid < 0) {

if (errno != EINTR) {
exit(-1);

}

}
else {

switch (pulse.code) {

case PCODEINETDDEATH:
printf("Inetd Death Pulse\n");

break;

case PCODENFSDELAYED:
printf("Fs-nfs2 died: this is the possibly delayed pulse\n");

break;

case PCODEINETDDETACH:
printf("Inetd detached, so quitting\n");

goto the end;

case PCODEINETDRESTART1:
printf("Inetd Restart Pulse: Immediate\n");

break;
case PCODEINETDRESTART2:

printf("Inetd Restart Pulse: Delayed\n");

break;
}

}

}
/*

At this point we are no longer waiting for the

information about inetd, since we know that it
has exited.

We will still continue to obtain information about the

death of fs-nfs2, since we did not remove those actions.
If we exit now, the next time those actions are executed

they will fail (notifications fail if the receiver does not

exist anymore), and they will automatically get removed and
cleaned up.

*/
the end:

ham disconnect(0);

exit(0);
}

52 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems Starting and stopping a HAM

Note that the HAM API has certain restrictions:

� The names of entities, conditions, and actions (ename, cname, and
aname) must not contain a “/” character.

� All names are subject to the length restriction imposed by
POSIX PATH MAX (as defined in<limits.h>). Since the names
are manifested inside the namespace, the effective length of a
name is the maximum length of the name as a path component. In
other words, thecombined lengthof an entity/condition/action
name — including the/proc/ham prefix — must not exceed
POSIX PATH MAX .

☞

Starting and stopping a HAM
You start a HAM by running theham utility at the command line:

ham

Theham utility has these command-line options:

-?|h Display usage message

-d Disable internal verbosity.

-f Log verbose output to a file (default isstderr).

-t none|relative|absolute|shortabs

Specify the timestamping method. The default is
relative.

-v Set verbosity level — extra-v’s increase verbosity.

-Vn Set verbosity level — use a number to specify the level (e.g.
-V3).

When a HAM starts, it also starts the Guardian process for itself.

October 6, 2005 Chapter 4 � Using the High Availability Manager 53

Starting and stopping a HAM  2005, QNX Software Systems

You must startham with its full path or with thePATH variable set to
include the path toham as a component.

You must beroot in order to start or stop a HAM.

☞

Stopping a HAM
To stop the HAM, you must use either theham stop()function or the
hamctrl command-line utility. These are the only correct (and the
only guaranteed) ways to stop the HAM.

Theham stop()function or thehamctrl utility instructs a HAM to
terminate. The HAM in turn first instructs the Guardian to terminate,
and then terminates itself. To stop the HAM from the command line,
use thehamctrl utility:

hamctrl -stop

To stop a remote HAM, use the-node option to thehamctrl utility:

hamctrl -node "nodename" -stop

To stop the HAM programmatically using the API, use the following
functions:

/* terminate */
int ham stop(void);
int ham stop nd(int nd);
int ham stop node(const char *nodename);

Control functions
The following set of functions have been provided to permit control
of entities, conditions, and actions that are currently configured.

/* control operations */

int ham entity control(ham entity t *ehdl, int command, unsigned flags);
int ham condition control(ham condition t *chdl, int command, unsigned flags);

int ham action control(ham action t *ahdl, int command, unsigned flags);

54 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems Starting and stopping a HAM

The permitted operations (commands) are:

HENABLE /* enable item */
HDISABLE /* disable item */
HADDFLAGS /* add flag */
HREMOVEFLAGS /* remove flag */
HSETFLAGS /* set flag to specific */
HGETFLAGS /* get flag */

The “enable” and “disable” commands can be used to temporarily
unhide/hide an entity, condition, or action.

An entity that is hidden is not removed, but will not be monitored for
any conditions. Similarly, a condition that is hidden will never be
triggered, while actions that are hidden will not be executed. By
default the enable and disable operations do not operate recursively
(although the disabling of an entity, will prevent the triggering of any
conditions below it, and the disabling of a condition will prevent the
execution of the actions in it).

To understand the finer distinctions of the recursive operation of the
the control functions refer to the API descriptions for:

� ham entity control()

� ham conditioncontrol()

� ham action control()

The “addflags”, “removeflags”, “setflags”, and “getflags” commands
can be used to obtain or modify the flags associated with any of the
entities, conditions, or actions. For more details, refer to the API
descriptions of theham* control *() functions.

Verbosity control
The verbosity level of the HAM can be controlled by using the
following API function:

int ham verbose(const char *nodename, int op, int value);

October 6, 2005 Chapter 4 � Using the High Availability Manager 55

Starting and stopping a HAM  2005, QNX Software Systems

This allows for programmatic control of the verbosity. Thehamctrl

utility can also be used for controlling the verbosity interactively. The
function can be used to either get/set (increment/decrement) the
verbosity.

The verbosity can also be controlled using the hamctrl utility as
follows

hamctrl -verbose /* increase verbosity */
hamctrl +verbose /* decrease verbosity */
hamctrl =verbose /* get current verbosity */

To operate on a remote HAM, the hamctrl utility can be used with the
-node option:

hamctrl -node "nodename" -verbose /* increase verbosity */
hamctrl -node "nodename" +verbose /* decrease verbosity */
hamctrl -node "nodename" =verbose /* get current verbosity */

wherenodename is a valid name that represents a remote (or local)
node.

Publishing autonomously detected conditions
Entities or other components on the system can publish conditions
that they deem interesting to a HAM, and the HAM can in turn deliver
these to other components in the system that have expressed interest
and subscribed to them. This allows arbitrary system components that
are capable of detecting error conditions or potentially erroneous
conditions, to report these to the HAM, which in turn can notify other
components to start corrective procedures and/or take preventive
action.

There are currently two different ways of publishing information to a
HAM. Both of these are designed to be general enough to permit
clients to build more complex information exchange mechanisms
using them.

56 Chapter 4 � Using the High Availability Manager October 6, 2005

 2005, QNX Software Systems Starting and stopping a HAM

Publish state transitions
An entity can report its state transitions to a HAM. The HAM
maintains the current state of every entity (as reported by the entity).
The HAM does not interpret the meaning of the state value itself,
neither does it try to validate the state transitions, but can generate
events based on transitions from one state to another.

Components can publish transitions that they want the external world
to know. These states need not necessarily represent aspecificstate
the application uses internally for decision making.

The following function can be used to notify a HAM of a state
transition. Since the HAM is only interested in thenextstate in the
transition, this is the only information that is transmitted to the HAM.
The HAM then triggers a condition state change event internally,
which other components can subscribe to, using the
ham conditionstate()API call described below.

/* report a state transition */

int ham entity condition state(ham entity t *ehdl, unsigned tostate,
unsigned flags);

Publish other conditions
In addition to the above, components on the system can also publish
autonomously detected conditions by using the
ham entity conditionraise()API call. The component raising the
condition can also specify a type, class, and severity of its choice, to
allow subscribers further granularity in filtering out specific
conditions to subscribe to. This call results in the HAM triggering a
condition-raise event internally, which other components can
subscribe to using theham conditionraise()API call described
below.

/* publish autonomously detected condition */
int ham entity condition raise(ham entity t *ehdl, unsigned rtype,

unsigned rclass, unsigned severity, unsigned flags);

October 6, 2005 Chapter 4 � Using the High Availability Manager 57

Starting and stopping a HAM  2005, QNX Software Systems

Subscribing to autonomously published conditions
Subscribers can express their interest in events published by other
components by using the following API calls:

� ham conditionstate()

� ham conditionraise()

These calls are similar to thehamcondition()API call, and return a
handle to a condition, but allow the subscriber customize which of
several possible published conditions they are interested in.

Trigger based on state transitions
When an entity publishes a state transition, a state transition condition
is raised for that entity, based on the two states involved in the
transition (thefromstate and theto state). Subscribers indicate which
states they are interested in by specifying values for thefromstateand
tostateparameters in the API call.

For more detail refer to the API reference documentation for the
ham conditionstate()API call.

ham condition t *ham condition state(ham entity t *ehdl, const char *cname,
unsigned fromstate, unsigned tostate, unsigned flags);

Trigger based on specific published condition
Subscribers can express interest in conditions raised by entities by
using the API callham conditionraise call(), indicating as
parameters to the call what sort of conditions they are interested in.

For more information refer to the API documentation for the
ham conditionraise() hamconditionraise call().

ham condition t *ham condition raise(ham entity t *ehdl, const char *cname,
unsigned rtype, unsigned rclass, unsigned rseverity,
unsigned flags);

58 Chapter 4 � Using the High Availability Manager October 6, 2005

Chapter 5

Using the Client Recovery Library

In this chapter. . .
Introduction 61
MsgSend*()functions 62
Other covers and convenience functions 63
A simple example 66
State-reconstruction example 69

October 6, 2005 Chapter 5 � Using the Client Recovery Library 59

 2005, QNX Software Systems Introduction

Introduction
The client recovery library provides a drop-in enhancement solution
for many standardlibc I/O operations. The HA library’s cover
functions provide automatic recovery mechanisms for failed
connections that can be recovered from in an HA scenario.

The goal is to provide an API for high availability I/O that can
transparently provide recovery to clients, especially in an environment
where the servers must also be highly available. The recovery is
configurable to tailor specific client needs; we provide examples of
ways to develop more complicated recovery mechanisms.

The main principle of the HA library is to provide drop-in
replacements for all the “transmission” functions (e.g.MsgSend*()).
The API lets a client choose specific connections that it would like to
makehighly available— all other connections will operate as
ordinary connections.

Normally, when a server that the client is talking to fails, or if there’s
a transient network fault, theMsgSend*()functions return an error
indicating that the connection ID (or file descriptor) is stale or invalid
(EBADF).

In an HA-aware scenario, these transient faults are often recovered
from almost immediately (on the server end), thus making the
services available again. Unfortunately, clients using a standard I/O
offering might not be available to benefit from this to the maximum
unless they provide mechanisms to recover from these errors, and
then retransmit the information/data, which often might involve a
nontrivial rework of client programs.

By providing/achieving recovery inside the HA library itself, we can
automatically take advantage of the HA-aware services that restart
themselves or are automatically restarted or of the services that are
provided in a transparent cluster/redundant way.

Since recovery itself is a connection-specific task, we allow clients to
provide recovery mechanisms that will be used to restore connections
when they fail. Irrecoverable errors are propagated back reliably so

October 6, 2005 Chapter 5 � Using the Client Recovery Library 61

MsgSend*() functions  2005, QNX Software Systems

that any client that doesn’t wish to recover will get the I/O library
semantics that it expects.

The recovery mechanism can be anything ranging from a simple
reopen of the connection to a more complex scenario that includes the
retransmission/renegotiation of connection-specific information.

MsgSend*() functions
Normally, theMsgSend*()functions returnEBADF/ESRCHwhen a
connection is stale or closed on the server end (e.g. because the server
dies). In many cases, the servers themselves return (e.g. they’re
restarted) and begin to offer the services properly almost immediately
(in an HA scenario). Rather than merely terminate the message
transmission with an error, in some cases it might be possible to
perform recovery and continue with the message transmission.

The HA library functions that “cover” all theMsgSend*()varieties are
designed to do exactly this. When a specific invocation of one of the
MsgSend*()functions fails, a client-provided recovery function is
called. This recovery function can attempt to reestablish the
connection and return control to the HA library’sMsgSend*()
function. As long as the connection ID returned by the recovery
function is the same as the old connection ID (which in many cases is
easy to ensure viaclose/open/dup2()sequences), then theMsgSend*()
functions can now attempt to retransmit the data.

If at any point the errors returned byMsgSend*()are anything other
thanEBADF/ESRCH, these errors are propagated back to the client.
Note also that if the connection ID isn’t an HA-aware connection ID,
or if the client hasn’t provided a recovery function or that function
can’t re-obtain the same connection ID, then the error is allowed to
propagate back to the client to handle in whatever way it likes.

Clients can change their recovery functions. And since clients can
also pass around “recovery/connection” information (which in turn is
passed by the HA library to the recovery function), clients can
construct complex recovery mechanisms that can be modified
dynamically.

62 Chapter 5 � Using the Client Recovery Library October 6, 2005

 2005, QNX Software Systems Other covers and convenience functions

The client-side recovery library lets clients reconstruct the state
required to continue the message transmission after reconnecting to
either the same server or to a different server. The client is responsible
for determining what constitutes the state that must be reconstructed
and for performing this appropriately while the recovery function is
called.

Other covers and convenience functions
In addition to the cover functions for the standardMsgSend*()calls,
the HA library provides clients with two “HA-awareness” functions
that let you designate a connection as being HA-aware or similarly
remove such a designation for an already HA-aware connection:

HA-awareness functions
ha attach() Associate a recovery function with a connection to

make it HA-aware.

ha detach() Remove a previously specified association between a
recovery function and a connection. This makes the
connection no longer HA-aware.

ha connectionctrl()

Control the operation of a HA-aware connection.

I/O covers
The HA library also provides the following cover functions whose
behavior is essentially the same as the original functions being
covered, but augmented slightly where the connections are also
HA-aware:

ha open(), ha open64()

Open a connection and attach it to the HA lib. These
functions, in addition to calling the underlyingopen
calls also make the connections HA-aware by calling
ha attach()automatically. As a result, using these

October 6, 2005 Chapter 5 � Using the Client Recovery Library 63

Other covers and convenience functions  2005, QNX Software Systems

calls is equivalent to callingopen()or open64()and
following that with a call toha attach().

ha creat(), ha creat64()

Create a connection and attach it to the HA lib. These
functions, in addition to calling the underlyingcreat
calls also make the connections HA-aware by calling
ha attach()automatically. As a result, using these
calls is equivalent to callingcreat()or creat64()and
following that with a call toha attach().

ha ConnectAttach(), ha ConnectAttachr()

Create a connection usingConnectAttach()and attach
it to the HA lib. These functions, in addition to
calling the underlyingConnectAttachcalls also make
the connections HA-aware by callingha attach()
automatically. As a result, using these calls is
equivalent to callingConnectAttach()or
ConnectAttachr() and following that with a call to
ha attach().

ha ConnectDetach(), ha ConnectDetachr()

Detach an attachedfd, then close the connection
usingConnectDetach(). These functions, in addition
to calling the underlyingConnectDetachcalls also
make the connections HA-aware by calling
ha attach()automatically. As a result, using these
calls is equivalent to callingConnectDetach()or
ConnectDetachr() and following that with a call to
ha attach().

ha fopen() Open a file stream and attach it to the HA lib. This
function, in addition to calling the underlyingfopen()
call also makes connections HA-aware by calling
ha attach()automatically. As a result, using this call
is equivalent to callingfopen()and following that
with a call toha attach().

64 Chapter 5 � Using the Client Recovery Library October 6, 2005

 2005, QNX Software Systems Other covers and convenience functions

ha fclose() Detach an attached HAfd for a file stream, then close
it. This function, in addition to calling the underlying
fclose()call also makes connections HA-aware by
callingha attach()automatically. As a result, using
this call is equivalent to callingfclose()and following
that with a call toha attach().

ha close() Detach an attached HAfd, then close it. This
function, in addition to calling the underlyingclose()
call also makes connections HA-aware by calling
ha attach()automatically. As a result, using this call
is equivalent to callingclose()and following that with
a call toha attach().

ha dup() Duplicate an HA connection. This function, in
addition to calling the underlyingdup()call also
makes connections HA-aware by callingha attach()
automatically. As a result, using this call is equivalent
to callingdup()and following that with a call to
ha attach().

Convenience functions
In addition to the covers, the library also provides these two
convenience functions that reopen connections for recovery:

ha reopen() Reopen a connection while performing recovery.

ha ReConnectAttach()

Reopen a connection while performing recovery.

For descriptions of all of the HA library functions, see the Client
Recovery Library Reference chapter in this guide.

☞

October 6, 2005 Chapter 5 � Using the Client Recovery Library 65

A simple example  2005, QNX Software Systems

A simple example
Here’s a simple example of a client that has a connection open to a
server and tries to read data from it. After reading from the descriptor,
the client goes off to do something else (possibly causing a delay),
and then returns to read again.

During this window of delay, the server might have died and returned,
in which case the initial connection to the server (that has died) is now
stale.

But since the connection has been made HA-aware, and a recovery
function has been associated with it, the connection is able to
reestablish itself.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>
#include <unistd.h>

#include <sys/stat.h>
#include <fcntl.h>

#include <errno.h>

#include <ha/cover.h>

#define SERVER "/path/to/server"

typedef struct handle {

int nr;

} Handle ;

int recover conn2(int oldfd, void *hdl)

{
int newfd;

Handle *thdl;

thdl = (Handle *)hdl;
printf("recovering for fd %d inside function 2\n",oldfd);

/* re-open the connection */
newfd = ha reopen(oldfd, SERVER, O RDONLY);

/* perform any other kind of state re-construction */

(thdl->nr)++;
return(newfd);

}

int recover conn(int oldfd, void *hdl)

{

int newfd;
Handle *thdl;

thdl = (Handle *)hdl;

printf("recovering for fd %d inside function\n",oldfd);
/* re-open the connection */

newfd = ha reopen(oldfd, SERVER, O RDONLY);

/* perform any other kind of state reconstruction */
(thdl->nr)++;

66 Chapter 5 � Using the Client Recovery Library October 6, 2005

 2005, QNX Software Systems A simple example

return(newfd);
}

int main(int argc, char *argv[])
{

int status;

int fd;
int fd2;

int fd3;
Handle hdl;

char buf[80];

int i;

hdl.nr = 0;

/* open a connection and make it HA aware */
fd = ha open(SERVER, O RDONLY,recover conn, (void *)&hdl, 0);

if (fd < 0) {

printf("could not open %s\n", SERVER);
exit(-1);

}

printf("fd = %d\n",fd);

/* Dup the FD. the copy will also be HA aware */

fd2 = ha dup(fd);

printf("dup-ped fd2 = %d\n",fd2);
printf("before sleeping first time\n");

/*
Go to sleep...

Possibly the SERVER might die and return in this little

time period.
*/

sleep(15);

/*

reading from dup-ped fd

this should work just normally if SERVER has not died.
But if the SERVER has died and returned, the

initial read will fail, but the recovery function

will be called, and it will re-establish the
connection, and then re-establish the current

file position and then re-issue the read call
which should succeed now.

*/

printf("trying to read from %s using fd %d\n",SERVER, fd2);

status = read(fd2,buf,30);

if (status < 0)
printf("error: %s\n",strerror(errno));

/*
fd and fd2 are dup-ped fd’s

changing the recovery function for fd2

From this point forwards, the recovery (if at all)
will performed using "recover conn2" as the recovery

function.

*/

status = ha attach(fd2, recover conn2, (void *)&hdl, HAREPLACERECOVERYFN);

October 6, 2005 Chapter 5 � Using the Client Recovery Library 67

A simple example  2005, QNX Software Systems

ha close(fd); /* close fd */

/* open a new connection */
fd = open(SERVER, O RDONLY);

printf("New fd = %d\n",fd);

/* make it HA aware. */

status = ha attach(fd, recover conn, (void *)&hdl, 0);

printf("before sleeping again\n");

/* copy it again */

fd3 = ha dup(fd);

/* go to sleep...possibly another option for the server to fail. */

sleep(15);

/*

get rid of one of the fd’s

we still have a copy in fd3, which must have the
recovery functions associated with it.

*/

ha close(fd);

printf("trying to read from %s using fd %d\n",SERVER, fd3);

/*

if it fails, the call will generate a call back to the
recovery function "recover conn"

*/

status = read(fd3,buf,30);
if (status < 0)

printf("error: %s\n",strerror(errno));

printf("trying to read from %s once more using fd %d\n",SERVER, fd2);

/*
if this call fails, recovery will be via the

second function "recover conn2", since we replaced

the function for fd2.
*/

status = read(fd2,buf,30);
if (status < 0)

printf("error: %s\n",strerror(errno));

/* close the fd2, and detach it from the HA lib */

ha close(fd2);

/*

finally print out our local statistics that we have been

retaining along the way.
*/

printf("total recoveries, %d\n",hdl.nr);

exit(0);
}

68 Chapter 5 � Using the Client Recovery Library October 6, 2005

 2005, QNX Software Systems State-reconstruction example

State-reconstruction example
In the following example, in addition to reopening the connection to
the server, the client also reconstructs the state of the connection by
seeking to the current file (connection) offset.

This example also shows how the client can maintain state
information that can be used by the recovery functions to return to a
previously check-pointed state before the failure, so that the message
transmission can continue properly.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>
#include <ha/cover.h>

#define REMOTEFILE "/path/to/remote/file"

typedef struct handle {
int nr;
int curr offset;

} Handle ;

int recover conn(int oldfd, void *hdl)
{

int newfd;
int newfd2;
Handle *thdl;
thdl = (Handle *)hdl;
printf("recovering for fd %d inside function\n",oldfd);

/* re-open the file */
newfd = ha reopen(oldfd, REMOTEFILE , O RDONLY);

/* re-construct state, by seeking to the correct offset. */
if (newfd >= 0)
lseek(newfd, thdl->curr offset, SEEK SET);

(thdl->nr)++;
return(newfd);

}

int main(int argc, char *argv[])
{

int status;
int fd;
int fd2;

October 6, 2005 Chapter 5 � Using the Client Recovery Library 69

State-reconstruction example  2005, QNX Software Systems

int fd3;
Handle hdl;
char buf[80];
int i;

hdl.nr = 0;
hdl.curr offset = 0;
/* open a connection */
fd = ha open(REMOTEFILE, O RDONLY,recover conn,

(void *)&hdl, 0);
if (fd < 0) {

printf("could not open file\n");
exit(-1);

}
fd2 = open(REMOTEFILE, O RDONLY);
printf("trying to read from file using fd %d\n",fd);
printf("before sleeping first time\n");
status = read(fd,buf,15);
if (status < 0)

printf("error: %s\n",strerror(errno));
else {

for (i=0; i < status; i++)
printf("%c",buf[i]);

printf("\n");
/*
update state of the connection
this is a kind of checkpointing method.
we remember state, so that the recovery functions
have an easier time.

*/
hdl.curr offset += status;

}

fd3 = ha dup(fd);
sleep(18);

/*
sleep for some arbitrary period
this could be some other computation
or some other blocking operation, which gives
a window within which the server might fail

*/

/* reading from dup-ped fd */
printf("trying to read from file using fd %d\n",fd);
printf("after sleeping\n");

/*
if the read initially fails
it will recover, re-open and seek to the right spot!!

*/

70 Chapter 5 � Using the Client Recovery Library October 6, 2005

 2005, QNX Software Systems State-reconstruction example

status = read(fd,buf,15);
if (status < 0)

printf("error: %s\n",strerror(errno));
else {

for (i=0; i < status; i++)
printf("%c",buf[i]);

printf("\n");
hdl.curr offset += status;

}
printf("trying to read from file using fd %d\n",fd2);

/*
try it again.. this time using the copy.
recovery will again happen upon failure,
automatically re-connecting/seeking etc.

*/
status = read(fd2,buf,15);
if (status < 0)

printf("error: %s\n",strerror(errno));
else {

for (i=0; i < status; i++)
printf("%c",buf[i]);

printf("\n");
}
printf("total recoveries, %d\n",hdl.nr);
ha close(fd);
close(fd2);
exit(0);

}

October 6, 2005 Chapter 5 � Using the Client Recovery Library 71

Chapter 6

HAM API Reference

October 6, 2005 Chapter 6 � HAM API Reference 73

 2005, QNX Software Systems

The HAT includes the following functions you can use in your
applications to interact with a HAM:

Function Description

hamaction control() Perform control operations
on an action object in a
HAM.

hamaction execute() Add an execute action to a
condition.

hamaction fail execute() Add an execute action to an
action, that will be
executed if the
corresponding action fails.

hamaction fail log() Insert a log message into
the activity log of a HAM.

hamaction fail notify pulse() Add a notify pulse action to
an action, that will be
executed if the
corresponding action fails.

hamaction fail notify pulsenode() Add a notify pulse action to
an action, that will be
executed if the
corresponding action fails,
using a nodename.

hamaction fail notify signal() Add a notify signal action
to an action, that will be
executed if the
corresponding action fails.

continued. . .

October 6, 2005 Chapter 6 � HAM API Reference 75

 2005, QNX Software Systems

Function Description

hamaction fail notify signal node() Add a notify signal action
to an action, that will be
executed if the
corresponding action fails,
using a nodename.

hamaction fail waitfor() Add a waitfor action to an
action, that will be
executed if the
corresponding action fails

hamaction handle() Get a handle to an action in
a condition in an entity.

hamaction handlenode() Get a handle to an action in
a condition in an entity,
using a nodename.

hamaction handlefree() Free a previously obtained
handle to an action in a
condition in an entity.

hamaction heartbeathealthy() Reset a heartbeat’s state to
healthy.

hamaction log() Insert a log message into
the activity log of the
HAM.

hamaction notify pulse() Add a notify-pulse action
to a condition.

hamaction notify pulsenode() Add a notify-pulse action
to a condition, using a
nodename.

hamaction notify signal() Add a notify-signal action
to a condition.

continued. . .

76 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems

Function Description

hamaction notify signal node() Add a notify-signal action
to a condition, using a
nodename.

hamaction remove() Remove an action from a
condition.

hamaction restart() Add a restart action to a
condition.

hamaction waitfor() Add a waitfor action to a
condition.

hamattach() Attach an entity.

hamattachnode() Attach an entity, using a
nodename.

hamattachself() Attach an application as a
self-attached entity.

hamcondition() Set up a condition to be
triggered when a certain
event occurs.

hamconditioncontrol() Perform control operations
on a condition object in a
HAM.

hamconditionhandle() Get a handle to a condition
in an entity.

hamconditionhandlenode() Get a handle to a condition
in an entity, using a
nodename.

hamconditionhandlefree() Free a previously obtained
handle to a condition in an
entity.

continued. . .

October 6, 2005 Chapter 6 � HAM API Reference 77

 2005, QNX Software Systems

Function Description

hamcondition raise() Attach a condition
associated with a condition
raise condition that is
triggered by an entity
raising a condition.

hamcondition remove() Remove a condition from
an entity.

hamconditionstate() Attach a condition
associated with a state
transition condition that is
triggered by an entity
reporting a state change.

hamconnect() Connect to a HAM.

hamconnectnd() Connect to a remote HAM.

hamconnectnode() Connect to a remote HAM,
using a nodename.

hamdetach() Detach an entity from a
HAM.

hamdetachname() Detach an entity from a
HAM, using an entity
name.

hamdetachnamenode() Detach an entity from a
HAM, using an entity name
and a nodename.

hamdetachself() Detach a self-attached
entity from a HAM.

hamdisconnect() Disconnect from a HAM.

hamdisconnectnd() Disconnect from a remote
HAM.

continued. . .

78 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems

Function Description

hamdisconnectnode() Disconnect from a remote
HAM, using a nodename.

hamentity() Create entity placeholder
objects in a HAM.

hamentity conditionraise() Used by an entity to raise a
condition.

hamentity conditionstate() Used by an entity to notify
the HAM of a state
transition.

hamentity control() Perform control operations
on an entity object in a
HAM.

hamentity handle() Get a handle to an entity.

hamentity handlenode() Get a handle to an entity,
using a nodename.

hamentity handlefree() Free a previously obtained
handle to an entity.

hamentity node() Create entity placeholder
objects in a HAM, using a
nodename.

hamheartbeat() Send a heartbeat to a HAM.

hamstop() Stop a HAM.

hamstopnd() Stop a remote HAM.

hamstopnode() Stop a remote HAM, using
a nodename.

hamverbose() Modifies the verbosity of a
HAM.

October 6, 2005 Chapter 6 � HAM API Reference 79

ham action control()  2005, QNX Software Systems

Perform control operations on an action object in a HAM

Synopsis:
#include <ha/ham.h>

int ham action control(ham action t *ahdl,
int command,
unsigned flags);

Library:
libham

Description:
Theham action control() function can be used to control the state of
an action object in a HAM. This function is designed to be extensible
with additional commands. Currently, the following commands are
defined:

HENABLE, /* enable item */
HDISABLE, /* disable item */
HADDFLAGS, /* add flag */
HREMOVEFLAGS, /* remove flag */
HSETFLAGS, /* set flag to specific */
HGETFLAGS, /* get flag */

When an action item is enabled (the default), it will NOT be executed
when the condition it is associated with is triggered. Individual
conditions and entities can be enabled and disabled using the
corresponding control functions for conditions and entities,
respectively.

The add flags, remove flags, and set flags commands can be used to
modify the set of flags associated with the entity being controlled.
Add flags and remove flags are used to either add to or remove from
the current set of flags, the specified set of flags (as given inflags).
The set flags function is called when the current set of flags is to be
replaced byflags.

80 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action control()

Flags

Any flag that is valid for the corresponding action can be used when
ham action control() is being used to set flags, with the exception of
HACTIONDONOW.

For theHENABLE andHDISABLE commands:

HRECURSE Applies the command recursively.

Returns:
For the enable, disable, add flags, remove flags, and set flags
functions:

0 Success.

-1 An error occurred (errno is set).

For the get flags function:

flags Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL Thecommandor flagsvariable is invalid.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

October 6, 2005 Chapter 6 � HAM API Reference 81

ham action control()  2005, QNX Software Systems

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham conditioncontrol(), ham entity control()

82 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action execute()
Add an execute action to a condition

Synopsis:
#include <ha/ham.h>

ham action t *ham action execute(
ham condition t *chdl,
const char *aname,
const char *path,
unsigned flags);

Library:
libham

Description:
Theham action execute()function adds an action (aname) to the
specified condition. The action will execute an external program or
command specified bypath. Thepathparameter must contain the
FULL path to the executable along with all parameters to be passed to
it. If either the pathname or the arguments contain spaces that need to
be passed on literally to the spawn call, they need to be quoted. As
long as the subcomponents within thepatharguments are quoted,
using either of the following methods:

\’path with space\’

or

\"path with space\",

the following is allowed:

"\’path with space\’ arg1 arg2 \"arg3 with space\"".

This would be parsed as

"path with space" -> path

October 6, 2005 Chapter 6 � HAM API Reference 83

ham action execute()  2005, QNX Software Systems

arg1 = arg1

arg2 = arg2

arg3 = "arg3 with space".

The command line is in turn passed onto aspawncommand by the
HAM to create a new process that will execute the command.

The handle (chdl) is obtained either:

� from one of thehamcondition*() functions to add conditions

or:

� by calling any of thehamconditionhandle()functions to request
a handle to a specific condition.

The action is executed when the appropriate condition is triggered.

Currently the following flags are defined:

HACTIONDONOW

Tells the HAM to perform the action once immediately, in
addition to performing it whenever the condition is triggered.

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is
disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to
is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

HACTIONBREAKONFAIL

Indicates that if this action were to fail, and it is part of a list of
actions, none of the actions following this one in the list of
actions will be executed.

84 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action execute()

HACTIONKEEPONFAIL

Indicates that the action will be retained even if it fails. The
default behavior is to remove failed actions. Nevertheless if the
condition that this action is associated with is not retained, the
action will get automatically removed.

Users can specify what will be done if an action fails. By adding
action failactionsto a list associated with an action, users can
determine what will be done in the case of an action failure. For every
action that fails, the corresponding action fail list will be executed.
Certain actions (e.g.hamaction log() and
ham action heartbeathealthy()) never fail. For more details, refer to
the appropriate section in the HAM API reference for the
ham action fail *() calls.

Returns:
A valid handle to an action to a condition, or NULL if an error
occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The name given inanameis invalid (e.g. it contains the
“/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham connect()) and the process that’s calling
ham action execute()aren’t the same.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOENT There’s no entity or condition specified by the given
handle (chdl).

October 6, 2005 Chapter 6 � HAM API Reference 85

ham action execute()  2005, QNX Software Systems

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action notify pulse(), ham action notify signal(),
ham action remove(), ham action restart(), hamaction waitfor(),
ham condition(), ham conditionhandle()

86 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action fail execute()
Add an execute action to an action, that will be executed if the corresponding action fails

Synopsis:
#include <ha/ham.h>

int ham action fail execute(
ham action t *ahdl,
const char *aname,
const char *path,
unsigned flags);

Library:
libham

Description:
Theham action fail execute()function adds an action fail item
(aname) to the specified action. The action will execute an external
program or command specified bypath. Thepathparameter must
contain the FULL path to the executable along with all parameters to
be passed to it. along with all parameters to be passed to it. If either
the pathname or the arguments contain spaces that need to be passed
on literally to the spawn call, they need to be quoted. As long as the
subcomponents within thepatharguments are quoted, using either of
the following methods:

\’path with space\’

or

\"path with space\",

the following is allowed:

"\’path with space\’ arg1 arg2 \"arg3 with space\"".

This would be parsed as

October 6, 2005 Chapter 6 � HAM API Reference 87

ham action fail execute()  2005, QNX Software Systems

"path with space" -> path

arg1 = arg1

arg2 = arg2

arg3 = "arg3 with space".

The command line is in turn passed onto aspawn()command by the
HAM to create a new process that will execute the command.

The handle (ahdl) is obtained either:

� from one of thehamaction*() functions to add actions

or:

� by calling any of thehamaction handle()functions to request a
handle to a specific action.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The name given inanameis invalid (e.g. it contains the
“/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham connect()) and the process that’s calling
ham action execute()aren’t the same.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

88 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action fail execute()

ENOENT There’s no entity or condition specified by the given
handle (ahdl).

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action execute(), ham action fail execute(),
ham action handle(), ham action handlefree(),
ham action heartbeathealthy(), ham action log(),
ham action notify pulse(), ham action notify signal(),
ham action remove(), ham action restart(), hamaction waitfor(),
ham condition(), ham conditionhandle()

October 6, 2005 Chapter 6 � HAM API Reference 89

ham action fail log()  2005, QNX Software Systems

Insert a log message into the activity log of a HAM

Synopsis:
#include <ha/ham.h>

int ham action fail log(
ham action t *ahdl,
const char *aname,
const char *msg,
unsigned attachprefix,
int verbosity,
unsigned flags);

Library:
libham

Description:
You can use thehamaction fail log() function to insert log messages
into the activity log stream that a HAM maintains. This action is
executed when the corresponding action that it is associated with fails.

The handle (ahdl) is obtained either:

� from one of thehamaction*() functions to add actions

or:

� by calling any of thehamaction handle()functions to request a
handle to a specific action.

The log message to be inserted is specified bymsg, and will be
generated if the verbosity of the HAM is greater than or equal to the
value specified inverbosity. Also, if attachprefixis non-zero, a prefix
will be added to the log message that contains the current
entity/condition/action that this message is related to.

90 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action fail log()

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The name given inanameis invalid (e.g. it contains the
“/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham connect()) and the process that’s calling
ham action restart()aren’t the same.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOENT There’s no entity or condition specified by the given
handle (ahdl).

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

continued. . .

October 6, 2005 Chapter 6 � HAM API Reference 91

ham action fail log()  2005, QNX Software Systems

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action execute(), ham action fail execute(),
ham action handle(), ham action handlefree(),
ham action heartbeathealthy(), ham action log(),
ham action notify pulse(), ham action notify signal(),
ham action remove(), ham action restart(), hamaction waitfor(),
ham condition(), ham conditionhandle()

92 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action fail notify pulse(),
ham action fail notify pulse node()

Add a notify pulse action to a an action, that will be executed if the corresponding action fails

Synopsis:
#include <ha/ham.h>

ham action t *ham action fail notify pulse(
ham action t *ahdl,
const char *aname,
int nd,
pid t topid,
int chid,
int pulsecode,
int value,
unsigned flags);

ham action t *ham action notify fail pulse node(
ham action t *ahdl,
const char *aname,
const char *nodename,
pid t topid,
int chid,
int pulsecode,
int value,
unsigned flags);

Library:
libham

Description:
Theham action fail notify pulse*()functions add an action fail item
(aname) to the specified action. The action will deliver a pulse
specified bypulsecodeto the specifiednd/pid/chid or the
nodename/pid/chid with value given byvalue. Thend specified to
ham action notify pulse()is the node identifier of the recipient node.
Thisnd must be valid at the time the call is made.

The handle (ahdl) is obtained either:

� from one of thehamaction*() functions to add actions

October 6, 2005 Chapter 6 � HAM API Reference 93

ham action fail notify pulse(),
ham action fail notify pulse node()  2005, QNX Software Systems

or:

� by calling any of thehamaction handle()functions to request a
handle to a specific action.

The action is executed when the corresponding action that it is
associated with, fails.

Currently, there are no flags defined.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The name given inanameis invalid (e.g. it contains the
“/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham connect()) and the process that’s calling
ham action execute()aren’t the same.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOENT There’s no entity or condition specified by the given
handle (ahdl).

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

94 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action fail notify pulse(),
ham action fail notify pulse node()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action execute(), ham action fail execute(),
ham action handle(), ham action handlefree(),
ham action heartbeathealthy(), ham action log(),
ham action notify pulse(), ham action notify signal(),
ham action remove(), ham action restart(), hamaction waitfor(),
ham condition(), ham conditionhandle()

October 6, 2005 Chapter 6 � HAM API Reference 95

ham action fail notify signal(),
ham action fail notify signal node()  2005, QNX Software Systems

Add a notify signal action to a an action, that will be executed if the corresponding action fails

Synopsis:
#include <ha/ham.h>

ham action t *ham action fail notify signal(
ham action t *ahdl,
const char *aname,
int nd,
pid t topid,
int signum,
int code,
int value,
unsigned flags);

ham action t *ham action notify fail signal node(
ham action t *ahdl,
const char *aname,
const char *nodename,
pid t topid,
int signum,
int code,
int value,
unsigned flags);

Library:
libham

Description:
Theham action fail notify signal*() functions add an action fail item
(aname) to the specified action. The action will deliver a signal
specified bysignumto the specifiednd/pid or nodename/pid with
code specified incodeand value given byvalue. Thend specified to
ham action notify signal() is the node identifier of the recipient node.
Thisnd must be valid at the time the call is made.

The handle (ahdl) is obtained either:

� from one of thehamaction*() functions to add actions

96 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action fail notify signal(),
ham action fail notify signal node()

or:

� by calling any of thehamaction handle()functions to request a
handle to a specific action.

The action is executed when the corresponding action that it is
associated with, fails.

Currently, there are no flags defined.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The name given inanameis invalid (e.g. it contains the
“/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham connect()) and the process that’s calling
ham action execute()aren’t the same.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOENT There’s no entity or condition specified by the given
handle (ahdl).

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

October 6, 2005 Chapter 6 � HAM API Reference 97

ham action fail notify signal(),
ham action fail notify signal node()  2005, QNX Software Systems

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action execute(), ham action fail execute(),
ham action handle(), ham action handlefree(),
ham action heartbeathealthy(), ham action log(),
ham action notify pulse(), ham action notify signal(),
ham action remove(), ham action restart(), hamaction waitfor(),
ham condition(), ham conditionhandle()

98 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action fail waitfor()
Add a waitfor action to an action, that will be executed if the corresponding action fails

Synopsis:
#include <ha/ham.h>

int ham action fail waitfor(
ham action t *ahdl,
const char *aname,
const char *path,
int delay,
unsigned flags);

Library:
libham

Description:
Theham action fail waitfor() function adds an action fail item
(aname) to the specified action. The action will either delay fordelay
milliseconds or wait untilpath(if specified) appears in the name
space (whichever is earlier). Thepathparameter must contain the
FULL path that is beingwatchedfor.

The handle (ahdl) is obtained either:

� from one of thehamaction*() functions to add actions

or:

� by calling any of thehamaction handle()functions to request a
handle to a specific action.

The action is executed when the corresponding action that it is
associated with, fails.

Currently, there are no flags defined.

October 6, 2005 Chapter 6 � HAM API Reference 99

ham action fail waitfor()  2005, QNX Software Systems

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The name given inanameis invalid (e.g. it contains the
“/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham connect()) and the process that’s calling
ham action execute()aren’t the same.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOENT There’s no entity or condition specified by the given
handle (ahdl).

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

continued. . .

100 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action fail waitfor()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action execute(), ham action fail execute(),
ham action handle(), ham action handlefree(),
ham action heartbeathealthy(), ham action log(),
ham action notify pulse(), ham action notify signal(),
ham action remove(), ham action restart(), hamaction waitfor(),
ham condition(), ham conditionhandle()

October 6, 2005 Chapter 6 � HAM API Reference 101

ham action handle(), ham action handle node() 

2005, QNX Software Systems

Get a handle to an action in a condition in an entity

Synopsis:
#include <ha/ham.h>

ham action t *ham action handle(int nd,
const char *ename,
const char *cname,
const char *aname,
unsigned flags);

ham action t *ham action handle node(int nd,
const char *nodename,
const char *ename,
const char *cname,
const char *aname,
unsigned flags);

Library:
libham

Description:
Theham action handle()function returns a handle to an action
(aname) in a condition (cname) in an entity (ename).

You can pass the handle obtained from this function to other functions
that expect a handle (e.g.ham action remove()or
ham action handlefree()).

The handle returned is opaque — its contents are internal to the
library.

If a node (nd) is specified, the handle is to an entity/condition/action
combination that refers to a process on that remote node. The
ham action handlenode()function is used when a nodename is used
to specify a remote HAM instead of a node identifier (nd).

There are no flags defined at this time.

102 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action handle(),
ham action handle node()

Returns:
A valid ham action t or NULL if an error occurred (errno is set).

Errors:
EINVAL The name given inename, cname, or anameis invalid

(e.g. it contains the “/” character) or is NULL.

ENAMETOOLONG

The name given is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOENT There’s no action of the nameanamein a condition
cnamedefined in an entityenamein the HAM’s
current context.

ENOMEM Not enough memory to create a new handle.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
A call to hamaction handle()and a subsequent use of the handle
returned in a call such asham action remove()are completely

October 6, 2005 Chapter 6 � HAM API Reference 103

ham action handle(), ham action handle node() 

2005, QNX Software Systems

asynchronous. Therefore, a valid action/condition/entity may no
longer exist when the handle is used at a later time.

In such an event, thehamaction*() functions will return an error
(ENOENT) that the action in the condition doesn’t exist in the given
entity.

See also:
ham action execute(), ham action handlefree(),
ham action notify pulse(), ham action notify signal(),
ham action remove(), ham action restart(), hamaction waitfor(),
ham conditionhandle(), hamconditionhandlefree(),
ham entity handle(), hamentity handlefree()

104 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action handle free()
Free a previously obtained handle to an action in a condition in an entity

Synopsis:
#include <ha/ham.h>

int ham action handle free(ham action t *ahdl);

Library:
libham

Description:
Theham action handlefree()function frees a handle (ahdl)
associated with a given action in a condition in an entity. The function
reclaims all storage associated with the handle.

The handle you pass as an argument (ahdl) must be obtained from
ham action execute(), ham action restart(),
ham action notify pulse(), ham action notify signal(), or
ham action waitfor().

Once a handle is freed, it is no longer available to refer to any action.
Theham action handlefree()call frees storage allocated for the
handle, but does not remove the action itself, which is in the HAM.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL The handle isn’t valid.

Classification:
QNX 6

October 6, 2005 Chapter 6 � HAM API Reference 105

ham action handle free()  2005, QNX Software Systems

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
Theham action handlefree()function frees storage related only to
the handle in the client — it doesn’t remove the corresponding action.

See also:
ham action execute(), ham action handle(), ham action restart(),
ham action notify pulse(), ham action notify signal(),
ham action waitfor(), ham conditionhandlefree(),
ham entity handlefree()

106 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action heartbeat healthy()
Reset a heartbeat’s state to healthy

Synopsis:
#include <ha/ham.h>

ham action t *ham action heartbeat healthy(
ham condition t *chdl,
const char *aname,
unsigned flags)

Description:
You use this function to reset the state of a heartbeat to healthy so that
HAM can resume monitoring. Assuming that the client missed one or
more heartbeats (i.e. the conditionCONDHBEATMISSEDLOW|HIGH
is true), and that a recovery has been performed, the
ham action heartbeathealthy()call instructs HAM to monitor the
client again.ham action heartbeathealthy()

The following flag is currently defined:

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is
disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to
is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

Errors:
EBADF Couldn’t connect to the HAM.

EEXIST This action already exists in the specified condition.

EINVAL The name given inanameis invalid (e.g. it contains the
“/” character) or is NULL.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note

October 6, 2005 Chapter 6 � HAM API Reference 107

ham action heartbeat healthy()  2005, QNX Software Systems

that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action notify pulse(), ham action notify signal(),
ham action remove(), ham action restart(), hamaction waitfor(),
ham condition(), ham conditionhandle()

108 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action log()
Insert a log message into the activity log of the HAM

Synopsis:
#include <ha/ham.h>

ham action t *ham action log(
ham condition t *chdl,
const char *aname,
const char *msg,
unsigned attachprefix,
int verbosity,
unsigned flags);

Library:
libham

Description:
You can use thehamaction log() function to insert log messages into
the activity log stream that the HAM maintains.

The handle (chdl) is obtained either:

� from one of thehamcondition*() functions to add conditions

or:

� by calling any of thehamconditionhandle()functions to request
a handle to a specific condition.

The log message to be inserted is specified bymsg, and will be
generated if the verbosity of the HAM is greater than or equal to the
value specified inverbosity. Also, if attachprefixis non-zero, a prefix
will be added to the log message that contains the current
entity/condition/actionthat this message is related to.

The following flag is currently defined:

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is

October 6, 2005 Chapter 6 � HAM API Reference 109

ham action log()  2005, QNX Software Systems

disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to
is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

Returns:
A valid handle to an action to a condition, or NULL if an error
occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The name given inanameis invalid (e.g. it contains the
“/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham connect()) and the process that’s calling
ham action restart()aren’t the same.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOENT There’s no entity or condition specified by the given
handle (chdl).

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

110 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action log()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

October 6, 2005 Chapter 6 � HAM API Reference 111

ham action notify pulse(),
ham action notify pulse node()  2005, QNX Software Systems

Add a notify-pulse action to a condition

Synopsis:
#include <ha/ham.h>

ham action t *ham action notify pulse(
ham condition t *chdl,
const char *aname,
int nd,
pid t topid,
int chid,
int pulsecode,
int value,
unsigned flags);

ham action t *ham action notify pulse node(
ham condition t *chdl,
const char *aname,
const char *nodename,
pid t topid,
int chid,
int pulsecode,
int value,
unsigned flags);

Library:
libham

Description:
These functions add an action to a given condition. This action will
deliver a pulse notification to the process given intopid.

The handle (chdl) is obtained either:

� from one of thehamcondition*() functions to add conditions

or:

� by calling any of thehamconditionhandle()functions to request
a handle to a specific condition.

112 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action notify pulse(),
ham action notify pulse node()

The action is executed when the appropriate condition is triggered.

Thend specifies the node identifier of the remote node (or local node)
to which the pulse is targeted Thend specified is the node identifier of
the remote node at the time the call is made.

Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usingnetmgrstrtond()or
another function that converts nodenames into node identifiers.

☞

Use thehamaction notify pulsenode()function when a nodename is
used to specify a remote HAM instead of a node identifier (nd). The
ham action notify pulsenode()function takes as a parameter a fully
qualified node name (FQNN)

The pulse inpulsecodewith the givenvaluewill be delivered totopid
on the specified channel ID (chid).

Currently the following flag is defined:

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is
disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to
is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

HACTIONBREAKONFAIL

Indicates that if this action were to fail, and it is part of a list of
actions, none of the actions following this one in the list of
actions will be executed.

HACTIONKEEPONFAIL

Indicates that the action will be retained even if it fails. The
default behavior is to remove failed actions. Nevertheless if the
condition that this action is associated with is not retained, the
action will get automatically removed.

October 6, 2005 Chapter 6 � HAM API Reference 113

ham action notify pulse(),
ham action notify pulse node()  2005, QNX Software Systems

Users can specify what will be done if an action fails. By adding
action failactionsto a list associated with an action, users can
determine what will be done in the case of an action failure. For every
action that fails, the corresponding action fail list will be executed.
Certain actions (e.g.hamaction log() and
ham action heartbeathealthy()) never fail. For more details, refer to
the appropriate section in the HAM API reference for the
ham action fail *() calls.

Returns:
A valid ham action t or NULL if an error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EEXIST The name provided for the action already exists.

EINVAL The name given inanameis invalid (e.g. it contains the
“/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham connect()) and the process that’s calling
ham action notify pulse()aren’t the same.

ENAMETOOLONG

The name given is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOENT There’s no action of the nameanamein a condition
cnamedefined in an entityenamein the HAM’s
current context.

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

114 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action notify pulse(),
ham action notify pulse node()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action execute(), ham action notify signal(),
ham action remove(), ham action restart(), hamaction waitfor(),
ham condition()

October 6, 2005 Chapter 6 � HAM API Reference 115

ham action notify signal(),
ham action notify signal node()  2005, QNX Software Systems

Add a notify-signal action to a condition

Synopsis:
#include <ha/ham.h>

ham action t *ham action notify signal(
ham condition t *chdl,
const char *aname,
int nd,
pid t topid,
int signum,
int code,
int value,
unsigned flags);

ham action t *ham action notify signal node(
ham condition t *chdl,
const char *aname,
const char *nodename,
pid t topid,
int signum,
int code,
int value,
unsigned flags);

Library:
libham

Description:
These functions add an action to a given condition. The action will
deliver a signal notification to the process given intopid.

The handle (chdl) is obtained either:

� from one of thehamcondition*() functions to add conditions

or:

� by calling any of thehamconditionhandle()functions to request
a handle to a specific condition.

116 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action notify signal(),
ham action notify signal node()

The action is executed when the appropriate condition is triggered.

You use the node descriptor (nd) to specify where in the network the
recipient of the notification resides.

Thend specifies the node identifier of the remote (or local) node to
which the signal is targeted Thend specified is the node identifier of
the remote node at the time the call is made.

Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usingnetmgrstrtond()or
another function that converts nodenames into node identifiers.

☞

Use thehamaction notify signal node()function when a nodename
is used to specify a remote HAM instead of a node identifier (nd).
Theham action notify signal node()function takes as a parameter a
fully qualified node name (FQNN)

The signal insignumwith the givenvaluewill be delivered to the
processpid on nodend. This can also be used to terminate processes
by sending them appropriate signals likeSIGTERM, SIGKILL etc.

Currently the following flags are defined:

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is
disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to
is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

HACTIONBREAKONFAIL

Indicates that if this action were to fail, and it is part of a list of
actions, none of the actions following this one in the list of
actions will be executed.

October 6, 2005 Chapter 6 � HAM API Reference 117

ham action notify signal(),
ham action notify signal node()  2005, QNX Software Systems

HACTIONKEEPONFAIL

Indicates that the action will be retained even if it fails. The
default behavior is to remove failed actions. Nevertheless if the
condition that this action is associated with is not retained, the
action will get automatically removed.

Users can specify what will be done if an action fails. By adding
action failactionsto a list associated with an action, users can
determine what will be done in the case of an action failure. For every
action that fails, the corresponding action fail list will be executed.
Certain actions (e.g.hamaction log() and
ham action heartbeathealthy()) never fail. For more details, refer to
the appropriate section in the HAM API reference for the
ham action fail *() calls.

Returns:
A valid ham action t or NULL if an error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EEXIST The name provided for the action already exists.

EINVAL The name given inanameis invalid (e.g. it contains the
“/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham connect()) and the process that’s calling
ham action notify signal()aren’t the same.

ENAMETOOLONG

The name given is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

118 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action notify signal(),
ham action notify signal node()

ENOENT There’s no action of the nameanamein a condition
cnamedefined in an entityenamein the HAM’s
current context.

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action execute(), ham action notify pulse(),
ham action remove(), ham action restart(), hamaction waitfor(),
ham condition()

October 6, 2005 Chapter 6 � HAM API Reference 119

ham action remove()  2005, QNX Software Systems

Remove an action from a condition

Synopsis:
#include <ha/ham.h>

ham action t *ham action remove(ham condition t *ahdl,
unsigned flags);

Library:
libham

Description:
You use theham action remove()function to remove an action from a
condition in a specific entity.

The handle (ahdl) is obtained either:

� from one of thehamcondition*() functions to add conditions

or:

� by callinghamconditionhandle()to request a handle to a specific
condition.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The handle passed is invalid.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
hamconnect()) and the process that’s calling
hamaction remove()aren’t the same.

120 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action remove()

ENOENT There’s no action corresponding to the given handle
(ahdl).

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action execute(), ham action notify pulse(),
ham action notify signal(), hamaction restart(),
ham action waitfor(), ham condition(), ham conditionhandle()

October 6, 2005 Chapter 6 � HAM API Reference 121

ham action restart()  2005, QNX Software Systems

Add a restart action to a condition

Synopsis:
#include <ha/ham.h>

ham action t *ham action restart(ham condition t *chdl,
const char *aname,
const char *path,
unsigned flags);

Library:
libham

Description:
You use theham action restart()function to add an action (aname) to
a given condition. In this case, the action will restart a program that
has died.

Restart actions can be associated only with death conditions
(CONDDEATH).

Note also that there can be only one restart action over all the death
conditions in an entity.

☞

The handle (chdl) is obtained either:

� from one of thehamcondition*() functions to add conditions

or:

� by calling any of thehamconditionhandle()functions to request
a handle to a specific condition.

You use thepathparameter to specify the external program or
command line to be executed —pathmust contain the FULL path to
the executable along with all parameters to be passed to it. along with
all parameters to be passed to it. If either the pathname or the
arguments contain spaces that need to be passed on literally to the
spawn call, they need to be quoted. As long as the subcomponents

122 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action restart()

within thepatharguments are quoted, using either of the following
methods:

\’path with space\’

or

\"path with space\",

the following is allowed:

"\’path with space\’ arg1 arg2 \"arg3 with space\"".

This would be parsed as

"path with space" -> path

arg1 = arg1

arg2 = arg2

arg3 = "arg3 with space".

The command line is in turn passed onto aspawncommand by the
HAM to create a new process that will execute the command.

The action is executed when the appropriate condition is triggered.

Note that this action also triggers a restartconditionin the entity.

Currently the following flags are defined:

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is
disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to
is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

October 6, 2005 Chapter 6 � HAM API Reference 123

ham action restart()  2005, QNX Software Systems

HACTIONBREAKONFAIL

Indicates that if this action were to fail, and it is part of a list of
actions, none of the actions following this one in the list of
actions will be executed.

HACTIONKEEPONFAIL

Indicates that the action will be retained even if it fails. The
default behavior is to remove failed actions. Nevertheless if the
condition that this action is associated with is not retained, the
action will get automatically removed.

Users can specify what will be done if an action fails. By adding
action failactionsto a list associated with an action, users can
determine what will be done in the case of an action failure. For every
action that fails, the corresponding action fail list will be executed.
Certain actions (e.g.hamaction log() and
ham action heartbeathealthy()) never fail. For more details, refer to
the appropriate section in the HAM API reference for the
ham action fail *() calls.

Returns:
A valid handle to an action in a condition, or NULL if an error
occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The name given inanameis invalid (e.g. it contains the
“/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham connect()) and the process that’s calling
ham action restart()aren’t the same.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note

124 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action restart()

that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOENT There’s no entity or condition specified by the given
handle (chdl).

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action execute(), ham action notify pulse(),
ham action notify signal(), hamaction remove(),
ham action waitfor(), ham condition(), ham conditionhandle()

October 6, 2005 Chapter 6 � HAM API Reference 125

ham action waitfor()  2005, QNX Software Systems

Add a waitfor action to a condition

Synopsis:
#include <ha/ham.h>

ham action t *ham action waitfor(
ham condition t *chdl,
const char *aname,
const char *path,
int delay,
unsigned flags);

Library:
libham

Description:
Theham action waitfor() function adds an action (aname) to a given
condition. In this case, the action is one that lets you insert arbitrary
delays into a sequence of actions.

The waitfor call fails if the specified path does not appear in the
specified interval.

The handle (chdl) is obtained either:

� from one of thehamcondition*() functions to add conditions

or:

� by calling any of thehamconditionhandle()functions to request
a handle to a specific condition.

You use thedelayparameter to specify the “waitfor” period in
milliseconds.

You can also specify apath in order to control the delay. Ifpath is
specified, then the action waits for either the pathname to appear in
the namespace or for the period specified indelay, whichever islower.

Currently the following flag is defined:

126 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham action waitfor()

HREARMAFTERRESTART

Indicates that the action is to be automatically rearmed after the
entity that it belongs to is restarted. By default, this flag is
disabled— actions automatically get pruned across restarts of
the entity. Note that if the condition that this action belongs to
is pruned after a restart, this action will also be removed,
regardless of the value of this flag.

Returns:
A valid handle to an action to a condition, or NULL if an error
occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The name given inanameis invalid (e.g. it contains the
“/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham connect()) and the process that’s calling
ham action waitfor() aren’t the same.

The delay specified is invalid. Only values greater than
zero are permitted.

The condition into which the action is being added has
theHCONDNOWAIT set.

EEXIST The name provided for the action already exists.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOENT There’s no entity or condition specified by the given
handle (chdl).

October 6, 2005 Chapter 6 � HAM API Reference 127

ham action waitfor()  2005, QNX Software Systems

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action execute(), ham action notify pulse(),
ham action notify signal(), hamaction remove(),
ham action restart(), hamcondition(), ham conditionhandle()

128 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham attach(), ham attach node()
Attach an entity

Synopsis:
#include <ha/ham.h>

ham entity t *ham attach(const char *ename,
int nd,
pid t pid,
const char *line,
unsigned flags);

ham entity t *ham attach node(const char *ename,
const char *nodename,
pid t pid,
const char *line,
unsigned flags);

Library:
libham

Description:
You use theham attach()to attach anentityto the HAM. The
ham attachnode()function is used when a nodename is used to
specify a remote HAM instead of a node identifier (nd). An entity can
be any process on the system. You can use this function to:

� attach a process that’s already running

or:

� tell the HAM to start a process and then add it as an entity to its
context.

Once an entity has been attached, you can addconditionsandactions
to it. For arbitrary processes, the HAM can monitor either:

� processes that are in session 1 (by callingprocmgrdaemon())

or:

� any process that dies due to the delivery of a core-dump signal, i.e.
one of the set of signals that causes a core-dump. For more

October 6, 2005 Chapter 6 � HAM API Reference 129

ham attach(), ham attach node()  2005, QNX Software Systems

information on these signals, please refer to the dumper utility in
theUtility Reference.

Since theham attach*() functions open a connection to the HAM, for
convenience they also perform the initialhamconnect()call. So any
client that makes aham attach()call doesn’t need to call
ham connect()or ham disconnect()before and after the call to
ham attach().

☞

The arguments are as follows:

ename The name of the entity; it must be unique across the
whole context of the HAM.

pid Process ID to attach to, if the process is already
running. Ifpid ≤ 0, the HAM starts the process and
begins monitoring it. In this case,line must also be
specified with the FULLpath(including all required
arguments) to start the process.

nd Thisham attach()parameter specifies the node
identifier of the remote node on which the entity being
targeted is running (or will be run). Thend is the node
identifier of the remote node at the time the call is
made.

Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usingnetmgrstrtond()or
another function that converts nodenames into node identifiers.

☞

nodename Thisham attachnode()parameter is a fully qualified
node name (FQNN).

line This contains the FULL command line, including
arguments, to start the process. This is used ONLY if
pid ≤ 0 and is ignored otherwise. along with all
parameters to be passed to it. If either the pathname or
the arguments contain spaces that need to be passed on

130 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham attach(), ham attach node()

literally to the spawn call, they need to be quoted. As
long as the subcomponents within thepatharguments
are quoted, using either of the following methods:

\’path with space\’

or

\"path with space\",

the following is allowed:

"\’path with space\’ arg1 arg2 \"arg3 with space\"".

This would be parsed as

"path with space" -> path

arg1 = arg1

arg2 = arg2

arg3 = "arg3 with space".

flags Currently, the following flag is defined:

HENTITYKEEPONDEATH

Indicates that the entity and all it conditions will
be retained when the entity dies and is not
restarted. The default is to remove all entities
that are not restarted.

Returns:
A valid handle to an entity on success; otherwise, NULL (errno is
set).

October 6, 2005 Chapter 6 � HAM API Reference 131

ham attach(), ham attach node()  2005, QNX Software Systems

Errors:
EBADF Couldn’t connect to the HAM.

EEXIST The name provided for the entity already exists.

EINVAL The name given inenameis invalid (e.g. it contains the
“/” character) or is NULL.

Thepid provided is≤ 0, but noline was provided.

ENAMETOOLONG

The name given (inename) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing the request to add a new entity to its
context.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler Yes

Signal handler Yes

Thread Yes

132 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham attach(), ham attach node()

See also:
ham attach(), ham connect(), ham detach(), hamdetachself(),
ham disconnect()

In theLibrary Reference: procmgrdaemon()

October 6, 2005 Chapter 6 � HAM API Reference 133

ham attach self()  2005, QNX Software Systems

Attach an application as a self-attached entity

Synopsis:
#include <ha/ham.h>

ham entity t *ham attach self(
const char *ename,
Uint64t hp,
int hpdl,
int hpdh,
unsigned flags);

Library:
libham

Description:
You use theham attachself()call to attach an application as a
self-attachedentity to the HAM. A self-attached entity is a process
that chooses to send heartbeats to the HAM, which will then monitor
the process for failure. Self-attached entities can, on their own, decide
at exactly what point in their lifespan they want to be monitored, what
conditions they want acted upon, and when they want to stop the
monitoring.

Note that self-attached entities can be any processes, not just those in
session 1 (unlike the requirement for thehamattach()call).

Once an entity has been attached, you can addconditionsandactions
to it.

Since theham attach*() functions open a connection to the HAM, for
convenience they also perform the initialhamconnect()call. So any
client that makes aham attachself()call doesn’t need to call
ham connect()or ham disconnect()before and after the call to
ham attachself().

☞

134 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham attach self()

The arguments are as follows:

ename The name of the entity. This must be unique across the
whole context of the HAM. Self-attached entities can also
specify an interval at which they’ll send heartbeats to the
HAM. The heartbeat can be used to detect unresponsive
processes that aren’t dead.

hp The heartbeat interval in nanoseconds. The lowest
permissible heartbeat interval is defined in the constant
HAMHBEATMIN (see<ha/ham.h>). Use 0 if no heartbeat
is desired.

Note that here you’re specifying the heartbeat interval — the client
must still call theham heartbeat()function to actuallytransmitthe
heartbeat.

☞

hpdl The number of permissible missed heartbeats before
CONDHBEATMISSEDLOWis triggered. The value ofhpdl
must be≤ hpdh.

hpdh As for hpdl, but forCONDHBEATMISSEDHIGH. The value
of hpdhmust be≥ hpdl.

flags There are no flags defined at this time.

Returns:
A valid handle to an entity on success; otherwise, NULL (errno is
set).

Errors:
EBADF Couldn’t connect to the HAM.

EEXIST The name provided for the entity already exists.

October 6, 2005 Chapter 6 � HAM API Reference 135

ham attach self()  2005, QNX Software Systems

EINVAL The name given inenameis invalid (e.g. it contains the
“/” character) or is NULL.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing the request to add a new entity to its
context.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham attach(), ham condition(), hamconnect(), hamdetach(),
ham detachself(), hamdisconnect(), hamheartbeat()

In theLibrary Reference: procmgrdaemon()

136 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham condition()
Set up a condition to be triggered when a certain event occurs

Synopsis:
#include <ha/ham.h>

ham condition t *ham condition(ham entity t *ehdl,
int type,
const char *cname,
unsigned flags);

Library:
libham

Description:
You call this function to set up a condition that will be triggered when
a significant event occurs.

Each entity can be associated with several different conditions, and
associated with each of these conditions is a set of actions that will be
performed in FIFO sequence when the condition is true. If an entity
has multiple conditions that are true simultaneously, with different
sets of actions associated with each condition, then all the actions
associated with each condition are performed, in sequence.

This mechanism lets you combine actions together into sets and
choose to remove/control them as a single “group” instead of as
individual items.

Theehdlargument is an entity handle obtained either:

� from aham attach*()call or aham entity*() call

or:

� by callinghamentity handle*()with an existing entity name.
Since conditions are associated with entities, the entity handle
(ehdl) must be available before you can add conditions.

Since conditions are associated with entities, the entity handle (ehdl)
must be available before you can add conditions.

You can specify any of the following fortype:

October 6, 2005 Chapter 6 � HAM API Reference 137

ham condition()  2005, QNX Software Systems

CONDDEATH The entity died.

An entity’s death is detected for all processes in
session 1, for processes that terminate abnormally
(typically due to the delivery of a signal), and for
processes that are attached as self-attached entities.

CONDDETACH The entity detached from the HAM.

CONDHBEATMISSEDLOW

The entity missed a heartbeat specified as “low”
severity.

CONDHBEATMISSEDHIGH

The entity missed a heartbeat specified as “high”
severity.

CONDRESTART The entity was restarted.

Thecnameargument is the condition name. It must be unique across
all conditions in the given entity.

When a condition is triggered, all actions defined in all conditions of
the given type are executed. When an entity dies, a condition of type
HCONDDEATH is triggered, and all actions in all conditions that
match this type are executed.

Currently the following flags are defined:

HCONDINDEPENDENT

Indicates that the actions associated with this condition are to be
performed in a separate thread. When a condition is triggered,
actions within it are performed in FIFO order. For multiple
conditions that are simultaneously triggered, the conditions are
serviced in an arbitrary order. By setting this flag, you’re
marking the condition asindependent— all actions associated
with it are executed in a separate thread, independent of actions
in other conditions.

138 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham condition()

HCONDNOWAIT

Indicates that the condition can’t contain any “waitfor” actions.
Waitfor actions are normally slow and may contain significant
delays. This will delay the execution of subsequent actions in
the list. SpecifyingHCONDNOWAIT guarantees there will be no
delays once the condition is triggered.

HREARMAFTERRESTART

Indicates that the condition is to be automatically re-armed after
the entity that it belongs to is restarted. Be default, this flag is
disabled — conditions automatically get removed across
restarts of the entity. Note that if the entity that the condition
belongs to gets removed, this condition will also be removed,
regardless of the state of this flag.

You must call theham connect()functionbeforethe first call to
ham condition()in a process. If a process callsham connect()and
then callsfork(), the child process must callhamconnect()again
before it can successfully callham condition()in order to add
conditions.

☞

Returns:
A valid handle to a condition in the given entity; otherwise, NULL
(anderrno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EEXIST The name provided for the condition already exists.

EINVAL The handle, type, or name given is invalid (e.g. it
contains the “/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using

October 6, 2005 Chapter 6 � HAM API Reference 139

ham condition()  2005, QNX Software Systems

ham connect()) and the process that’s calling
ham condition()aren’t the same.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham attach(), ham attachself(), hamcondition remove(),
ham connect(), ham entity handle()

140 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham entity control()
Perform control operations on an entity object in a HAM

Synopsis:
#include <ha/ham.h>

int ham entity control(ham entity t *ehdl,
int command,
unsigned flags);

Library:
libham

Description:
Theham entity control() function can be used to control the state of
an entity object in a HAM. This function is designed to be extensible
with additional commands. Currently, the following commands are
defined:

HENABLE, /* enable item
HDISABLE, /* disable item
HADDFLAGS, /* add flag
HREMOVEFLAGS, /* remove flag
HSETFLAGS, /* set flag to specific
HGETFLAGS, /* get flag

When an entity item is enabled (the default), any event that occurs in
relation to this event will trigger appropriate conditions and actions
related to the entity. If an entity item is disabled, no events relating to
that entity will bereacted to. If an entity is disabled, all conditions
and actions under it are also disabled. Individual conditions and
actions can be enabled and disabled using the corresponding control
functions for conditions and actions, respectively.

TheHADDFLAGS, HREMOVEFLAGS, andHSETFLAGScommands
can be used to modify the set of flags associated with the entity being
controlled. Add flags and remove flags are used to either add to or
remove from the current set of flags, the specified set of flags (as

October 6, 2005 Chapter 6 � HAM API Reference 141

ham entity control()  2005, QNX Software Systems

given inflags). The set flags function is called when the current set of
flags is to be replaced byflags.

Flags

Any flag that is valid for the corresponding condition can be used
whenham conditioncontrol() is being used to set flags, with the
exception ofHCONDNOWAIT if the existing condition already has
some waitfor actions associated with it.

For theHENABLE andHDISABLE commands:

HRECURSE Applies the command recursively.

Returns:
For enable, disable, add flags, remove flags, and set flags functions:

0 Success.

-1 An error occurred (errno is set).

For get flags function

flags Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL Thecommandor flagsvariable is invalid.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

142 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham entity control()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action control(), hamconditioncontrol()

October 6, 2005 Chapter 6 � HAM API Reference 143

ham condition handle(),
ham condition handle node()  2005, QNX Software Systems

Get a handle to a condition in an entity

Synopsis:
#include <ha/ham.h>

ham condition t *ham condition handle(
int nd,
const char *ename,
const char *cname,
unsigned flags);

ham condition t *ham condition handle node(
const char *nodename,
const char *ename,
const char *cname,
unsigned flags);

Library:
libham

Description:
Theham conditionhandle()function returns a handle to a condition
(cname) in an entity (ename).

The handle obtained from this function can be passed to other
functions, such asham action restart()or
ham conditionhandlefree().

The handle returned is opaque — its contents are internal to the
library.

If a node (nd) is specified, the handle is to an entity/condition/action
combination that refers to a process on that remote node. The
ham conditionhandlenode()function is used when a nodename is
used to specify a remote HAM instead of a node identifier (nd).

There are no flags defined at this time.

144 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham condition handle(),
ham condition handle node()

Returns:
A valid ham condition t or NULL if an error occurred (errno is
set).

Errors:
EINVAL The name given incnameor enameis invalid (e.g. it

contains the “/” character) or is NULL.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOENT There’s no condition by the namecnamedefined in an
entity by nameenamein the current context of the
HAM.

ENOMEM Not enough memory to create a new handle.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

October 6, 2005 Chapter 6 � HAM API Reference 145

ham condition handle(),
ham condition handle node()  2005, QNX Software Systems

Caveats:
A call to hamconditionhandle()and a subsequent use of the handle
returned in a call such asham action restart()are completely
asynchronous. Therefore, a valid action/condition/entity may no
longer exist when the handle is used to attach actions at a later time.

In such an event, thehamaction*() functions will return an error
(ENOENT) that the condition doesn’t exist in the given entity.

See also:
ham action execute(), ham action handle(),
ham action handlefree(), hamaction notify pulse(),
ham action notify signal(), hamaction remove(),
ham action restart(), hamaction waitfor(),
ham conditionhandlefree(), ham entity handle(),
ham entity handlefree()

146 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham condition handle free()
Free a previously obtained handle to a condition in an entity

Synopsis:
#include <ha/ham.h>

int ham condition handle free(ham condition t *chdl);

Library:
libham

Description:
Theham conditionhandlefree()function frees a handle associated
with a condition (chdl) and reclaims all storage associated with the
given handle.

The handlechdlmust be obtained fromham conditionhandle()or
ham condition(). Once a handle is freed, it is no longer available to
refer to any condition. Thehamconditionhandlefree()call frees
storage allocated for the handle itself but does not remove the
condition itself, which is in the HAM.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL The handle passed to the function isn’t valid.

Classification:
QNX 6

October 6, 2005 Chapter 6 � HAM API Reference 147

ham condition handle free()  2005, QNX Software Systems

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
Theham conditionhandlefree()function frees storage related only
to the handle in the client — it doesn’t remove the corresponding
entity.

See also:
ham action handlefree(), hamcondition(), ham conditionhandle(),
ham entity handlefree()

148 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham condition raise()
Attach a condition associated with a condition raise condition

Synopsis:
#include <ha/ham.h>

ham condition t *ham condition raise(
ham entity t *ehdl,
const char *cname,
unsigned rtype,
unsigned rclass,
unsigned rseverity,
unsigned flags);

Library:
libham

Description:
This condition is triggered whenever an entity raises a condition,
which matches the givenrtype, rclass, andrseverity. An entity that
raises a condition, does so with a given set of values for type, class,
and severity. Subscribers to this event can specify the conditions they
are interested in either explicitly or by using the following special
wild cards for each of these values.

CONDRAISETYPEANY /* ANY type : raised condition */
CONDRAISECLASSANY /* ANY class : raised condition */
CONDRAISESEVERITYANY /* ANY severity : raised condition */

Theehdlargument is an entity handle obtained either:

� from aham attach*()call or aham entity*() call

or:

� by callinghamentity handle*()with an existing entity name.
Since conditions are associated with entities, the entity handle
(ehdl) must be available before you can add conditions.

October 6, 2005 Chapter 6 � HAM API Reference 149

ham condition raise()  2005, QNX Software Systems

Returns:
a condition handle

Success.

NULL Failure (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EEXIST The name provided for the condition already exists.

EINVAL The handle, type, or name given is invalid (e.g. it
contains the “/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
ham connect()) and the process that’s calling
ham condition()aren’t the same.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

continued. . .

150 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham condition raise()

Safety

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham condition(), ham conditionstate(), hamattach()
ham attachself() hamentity() hamentity control()
ham entity handle() hamentity handlefree() hamentity node()

October 6, 2005 Chapter 6 � HAM API Reference 151

ham condition remove()  2005, QNX Software Systems

Remove a condition from an entity

Synopsis:
#include <ha/ham.h>

int ham condition remove(ham condition t *chdl,
unsigned flags);

Library:
libham

Description:
Theham conditionremove()function removes a condition from an
entity.

Thechdlargument is a handle to a condition that was previously
obtained by a call toham condition()or tohamconditionhandle().

There are no flags defined at this time.

Theham connect()function must be called before the first call to
ham conditionremove()in a process. If a process callshamconnect()
and then callsfork(), the child process needs to callhamconnect()
again before it can successfully callhamcondition remove()to
remove conditions.

☞

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The handle passed as an argument is invalid.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using

152 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham condition remove()

hamconnect()) and the process that’s calling
hamcondition remove()aren’t the same.

ENOENT There’s no condition corresponding to the handle
supplied.

In addition to the above errors, the HAM returns any error it
encounters while servicing the request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham condition(), ham conditionhandle(), ham connect()

October 6, 2005 Chapter 6 � HAM API Reference 153

ham condition state()  2005, QNX Software Systems

Attach a condition associated with a state transition

Synopsis:
#include <ha/ham.h>

ham condition t *ham condition state(
ham entity t *ehdl,
const char *cname,
unsigned fromstate,
unsigned tostate,
unsigned flags);

Library:
libham

Description:
This condition is triggered when the specified entity changes from a
state matchingfromstateto a state matchingtostate.

CONDSTATEANY can be used to specify a wild card signifying any
STATE. The matching of states is based on either an explicit match or
special conditions explained in the Flags section below.

Theehdlargument is an entity handle obtained either:

� from aham attach*()call or aham entity*() call

or:

� by callinghamentity handle*()with an existing entity name.
Since conditions are associated with entities, the entity handle
(ehdl) must be available before you can add conditions.

Flags

Standard flags that are applicable for conditions are also valid here.
(Seehamcondition()for more details). In addition, the following
flags are also defined:

/* special condition flags */

154 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham condition state()

HCONDSTATEFROMSET /* from state is a set */
HCONDSTATETOSET /* to state is a set */
HCONDSTATEFROMINV /* invert from state set */
HCONDSTATETOINV /* invert to state set */

States can be given using:

� individual values

� the wild cardCONDSTATEANY

� bitmaps that allow several states to be referred to collectively as
sets.

If fromstateor tostaterefers to a set, the corresponding flag
HCONDSTATEFROMSETor HCONDSTATETOSETmust be set.

If you wantfromstateor tostateto refer to the logical negation of a set
of states defineHCONDSTATEFROMINVor HCONDSTATETOINVin
flags. This would logically invert the set of states specified (equivalent
to saying “any state other than this set”).

Returns:
a condition handle

Success.

NULL Failure (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EEXIST The name provided for the condition already exists.

EINVAL The handle, type, or name given is invalid (e.g. it
contains the “/” character) or is NULL.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using

October 6, 2005 Chapter 6 � HAM API Reference 155

ham condition state()  2005, QNX Software Systems

ham connect()) and the process that’s calling
ham condition()aren’t the same.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham condition(), ham conditionraise(), ham attach()
ham attachself() hamentity() hamentity control()
ham entity handle() hamentity handlefree() hamentity node()

156 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham connect(), ham connect nd(),
ham connect node()

Connect to the HAM

Synopsis:
#include <ha/ham.h>

int ham connect(unsigned flags);
int ham connect nd(int nd, unsigned flags);
int ham connect node(const char *nodename, unsigned flags);

Library:
libham

Description:
Theham connect()function initializes a connection to a HAM. The
ham connectnd()andhamconnectnode()functions initialize
connections to remote HAMs.

A process may have only a single connection open to a HAM at any
time.

☞

Thend specified toham connect nd is the node identifier of the
remote node at the time theham connectnd()call is made.

Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usingnetmgrstrtond()or
another function that converts nodenames into node identifiers.

☞

Theham connectnode()function takes as a parameter a fully
qualified node name (FQNN).

You can call these functions any number of times, but because the
library maintains a reference count, you need to callhamdisconnect()
the same number of times to release the connection.

Connections are associated with a specific process ID (pid). If a
process performshamconnect()and then callsfork(), the child

October 6, 2005 Chapter 6 � HAM API Reference 157

ham connect(), ham connect nd(),
ham connect node()  2005, QNX Software Systems

process needs to reconnect to the HAM by callingham connect()
again.

But if a process calls any of the following:

� ham attachself()

� ham attach()

� ham attachnode()

� ham detach()

� ham detachself()

� ham detachname()

� ham detachnamenode()

� ham stop()

� ham stopnd()

� ham stopnode()

� ham entity()

� ham entity node()

� ham verbose()

it doesn’t need to callhamconnect*(), since those functions do so on
their own.

For all otherham*() functions, clients must callham connect()first.

There are no flags defined at this time.

Returns:
0 Success.

-1 An error occurred (errno is set).

158 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham connect(), ham connect nd(),
ham connect node()

Errors:
Upon failure, thehamconnect*()functions return the error as set by
the underlyingopen()library call that failed.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham attachself(), ham disconnect(), hamstop()

In theLibrary Reference: fork(), open(), netmgrstrtond()

October 6, 2005 Chapter 6 � HAM API Reference 159

ham detach()  2005, QNX Software Systems

Detach an entity from the HAM

Synopsis:
#include <ha/ham.h>

int ham detach(ham entity t *ehdl,
unsigned flags);

Library:
libham

Description:
This function detaches an attached entity from the HAM. The entity
being detached must NOT be a self-attached entity.

The handle passed into this function (ehdl) is either returned by a
previousham attach()call or obtained fromham entity handle().

There are no flags defined at this time.

This function automatically callsham connect()and
ham disconnect()for the client.

Theham detach()call automatically raises aHCONDDETACH
condition in the HAM for that entity.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The handle passed as an argument is invalid.

ENOENT There’s no entity corresponding to the handle supplied.

160 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham detach()

In addition to the above errors, the HAM returns any error it
encounters while servicing the request to remove the entity from its
context.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham attach(), ham attachself(), hamconnect(), hamdetachname(),
ham detachself(), hamdisconnect()

In theLibrary Reference: procmgrdaemon()

October 6, 2005 Chapter 6 � HAM API Reference 161

ham detach name(), ham detach name node()  2005,

QNX Software Systems

Detach an entity from the HAM, using an entity name

Synopsis:
#include <ha/ham.h>

int ham detach name(int nd,
const char *ename,
unsigned flags);

int ham detach name node(const char *nodename,
const char *ename,
unsigned flags);

Library:
libham

Description:
These functions detach an attached entity (ename) from a HAM. The
entity being detached must NOT be a self-attached entity.

Thend specifies the node identifier of the remote node on which the
entity being targeted is running, at the time the call is made.

Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usingnetmgrstrtond()or
another function that converts nodenames into node identifiers.

☞

Theham detachnamenode()function is used when a nodename is
used to specify a remote HAM instead of a node identifier (nd).

There are no flags defined at this time.

This function automatically callsham connect()and
ham disconnect()for the client.

Returns:
0 Success.

-1 An error occurred (errno is set).

162 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham detach name(),
ham detach name node()

Errors:
EBADF Error connecting to the HAM.

EINVAL The name passed as an argument is invalid.

ENOENT There’s no entity corresponding to the name supplied.

In addition to the above errors, the HAM returns any error it
encounters while servicing the request to remove the entity from its
context.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham attach(), ham attachself(), hamconnect(), hamdetach(),
ham detachself(), hamdisconnect()

October 6, 2005 Chapter 6 � HAM API Reference 163

ham detach self()  2005, QNX Software Systems

Detach a self-attached entity from the HAM

Synopsis:
#include <ha/ham.h>

int ham detach self(ham entity t *ehdl
unsigned flags);

Library:
libham

Description:
This function detaches a self-attached entity from the HAM. The
entity being detachedmustbe a self-attached entity.

The handle passed into this function (ehdl) is either returned by a
previousham attachself()call or obtained fromham entity handle().

There are no flags defined at this time.

This function automatically callsham connect()and
ham disconnect()for the client.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Error connecting to the HAM.

EINVAL The handle passed as an argument is invalid.

ENOENT There is no entity corresponding to the handle supplied.

In addition to the above errors, the HAM returns any error it
encounters while servicing the request to remove the entity from its
context.

164 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham detach self()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham attach(), ham attachself(), hamconnect(), hamdetach(),
ham detachname(), hamdisconnect()

October 6, 2005 Chapter 6 � HAM API Reference 165

ham disconnect(), ham disconnect nd(),
ham disconnect node()  2005, QNX Software Systems

Disconnect from the HAM

Synopsis:
#include <ha/ham.h>

int ham disconnect(unsigned flags);
int ham disconnect nd(int nd, unsigned flags);
int ham disconnect node(const char *nodename, unsigned flags);

Library:
libham

Description:
Thehamdisconnect()function closes a previously open connection to
a HAM. Theham disconnectnd()andham disconnectnode()
functions close previously opened connections to remote HAMs.

Thend specified toham disconnect nd is the node identifier of
the remote node at the time thehamdisconnectnd()call is made.

Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usingnetmgrstrtond()or
another function that converts nodenames into node identifiers.

☞

Theham disconnectnode()function takes as a parameter a fully
qualified node name (FQNN).

Because the library maintains a reference count, the actual connection
to the HAM is released only when the number of calls made to
ham disconnect()matches the number of calls previously made to
ham connect().

When a process callsham connect()and then callsfork(), the
connection is no longer valid in the child process. To reconnect to the
HAM, the child process must call either:

� ham connect()directly, which will automatically close the existing
connection and reopen a new one

166 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham disconnect(),
ham disconnect nd(), ham disconnect node()

or:

� ham disconnect(), followed byham connect().

There are no flags defined at this time.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL There’s no valid connection to the HAM to disconnect.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham attachself(), ham connect(), ham connectnd(),
ham connectnode(), hamstop()

In theLibrary Reference: fork()

October 6, 2005 Chapter 6 � HAM API Reference 167

ham entity(), ham entity node()  2005, QNX Software Systems

Create entity placeholder objects in a HAM

Synopsis:
#include <ha/ham.h>

ham entity t *ham entity(const char *ename,
int nd,
unsigned flags);

ham entity t *ham entity node(const char *ename,
const char *nodename,
unsigned flags);

Library:
libham

Description:
These functions are used to create placeholders for entity objects in a
HAM. The ham entity node()function is used when a nodename is
used to specify a remote HAM instead of a node identifier (nd).

You can use these functions to create entities, and associate conditions
and actions with them, before the process associated with an entity is
started (or attached). Subsequenthamattach*()calls by entities can
attach to these placeholder and thereby enable conditions and actions
when they occur.

Thend variable specifies the node identifier of the remote node at the
time the call is made.

Since node identifiers are transient objects, we recommend that the
value fornd is obtained at the time of the call, usingnetmgrstrtond()
or another function that converts nodenames into node identifiers.

☞

Theham entity node()function takes as a parameter a fully qualified
node name (FQNN).

168 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham entity(), ham entity node()

Returns:
an entity handle

Success.

NULL Failure (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The name given inenameis invalid (e.g. it contains the
“/” character) or is NULL.

ENAMETOOLONG

The name given (inaname) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOMEM Not enough memory to create a new handle.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

October 6, 2005 Chapter 6 � HAM API Reference 169

ham entity(), ham entity node()  2005, QNX Software Systems

See also:
ham attach(), ham attachself(), hamcondition(),
ham conditioncontrol(), ham conditionhandle(),
ham conditionhandlefree(), ham conditionremove(), hamdetach(),
ham detachname(), hamdetachself(),

170 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham entity condition raise()
Used by an entity to raise a condition

Synopsis:
#include <ha/ham.h>

int ham entity condition raise(
ham entity t *ehdl,
unsigned rtype,
unsigned rclass,
unsigned rseverity,
unsigned flags);

Library:
libham

Description:
This function is used by an entity to notify a HAM of an interesting
event of its choice. This in turn triggers aCONDITION RAISE in the
HAM, which will search for matching subscribers for this event and
execute all associated actions.

The values ofrtype, rclass, andrseveritycan be used to permit finer
grain matching and to gather additional information relating to the
condition.

To learn more about the matching mechanism, refer to the API
documentation forhamcondition raise().

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The handle specified inehdl is invalid.

October 6, 2005 Chapter 6 � HAM API Reference 171

ham entity condition raise()  2005, QNX Software Systems

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
hamconnect()) and the process that’s calling this
function are not the same.

ENOENT There’s no entity by the given handle (ehdl).

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham condition(), ham conditionraise(), ham conditionstate(),
ham attach() hamattachself() hamentity() hamentity control()
ham entity handle() hamentity handlefree() hamentity node()

172 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham entity condition state()
Used by an entity to notify the HAM of a state transition

Synopsis:
#include <ha/ham.h>

int ham entity condition state(
ham entity t *ehdl,
unsigned tostate,
unsigned flags);

Library:
libham

Description:
This function enables an entity to report a transition to the HAM; the
valuetostateindicates the transitional state. The HAM in turn triggers
a condition state event for this entity, and will search for matching
subscribers for this event and execute all associated actions. For more
details of the matching mechanisms refer to the API documentation
for ham conditionstate().

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL The handle specified inehdl is invalid.

The connection to the HAM is invalid. This happens
when the process that opened the connection (using
hamconnect()) and the process that’s calling this
function are not the same.

ENOENT There’s no entity by the given handle (ehdl).

October 6, 2005 Chapter 6 � HAM API Reference 173

ham entity condition state()  2005, QNX Software Systems

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham condition(), ham conditionraise(), ham conditionstate(),
ham attach() hamattachself() hamentity() hamentity control()
ham entity handle() hamentity handlefree() hamentity node()

174 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham entity control()
Perform control operations on an entity object in a HAM

Synopsis:
#include <ha/ham.h>

int ham entity control(ham entity t *ehdl,
int command,
unsigned flags);

Library:
libham

Description:
Theham entity control() function can be used to control the state of
an entity object in a HAM. This function is designed to be extensible
with additional commands. Currently, the following commands are
defined:

HENABLE, /* enable item
HDISABLE, /* disable item
HADDFLAGS, /* add flag
HREMOVEFLAGS, /* remove flag
HSETFLAGS, /* set flag to specific
HGETFLAGS, /* get flag

When an entity item is enabled (the default), any event that occurs in
relation to this event will trigger appropriate conditions and actions
related to the entity. If an entity item is disabled, no events relating to
that entity will bereacted to. If an entity is disabled, all conditions
and actions under it are also disabled. Individual conditions and
actions can be enabled and disabled using the corresponding control
functions for conditions and actions, respectively.

TheHADDFLAGS, HREMOVEFLAGS, andHSETFLAGScommands
can be used to modify the set of flags associated with the entity being
controlled. Add flags and remove flags are used to either add to or
remove from the current set of flags, the specified set of flags (as

October 6, 2005 Chapter 6 � HAM API Reference 175

ham entity control()  2005, QNX Software Systems

given inflags). The set flags function is called when the current set of
flags is to be replaced byflags.

Flags

Any flag that is valid for the corresponding entity can be used when
ham entity control() is being used to set flags.

For theHENABLE andHDISABLE commands:

HRECURSE Applies the command recursively.

Returns:
For enable, disable, add flags, remove flags, and set flags functions:

0 Success.

-1 An error occurred (errno is set).

For get flags function

flags Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL Thecommandor flagsvariable is invalid.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

176 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham entity control()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham action control(), hamconditioncontrol()

October 6, 2005 Chapter 6 � HAM API Reference 177

ham entity handle(), ham entity handle node()  2005,

QNX Software Systems

Get a handle to an entity

Synopsis:
#include <ha/ham.h>

ham entity t *ham entity handle(int nd,
const char *ename,
unsigned flags);

ham entity t *ham entity handle node(const char *nodename,
const char *ename,
unsigned flags);

Library:
libham

Description:
Theham entity handle()function returns a handle to an entity
(ename). The handle can then be passed to other functions that expect
a handle to an entity (such asham condition()or
ham entity handlefree()).

The handle returned is opaque — its contents are internal to the
library.

If a node (nd) is specified, the handle is to an entity/condition/action
combination that refers to a process on that remote node. The
ham entity handlenode()function is used when a nodename is used
to specify a remote HAM instead of a node identifier (nd).

There are no flags defined at this time.

Returns:
A valid ham entity t or NULL if an error occurred (errno is set).

178 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham entity handle(),
ham entity handle node()

Errors:
EINVAL The name given inenameis invalid (e.g. it contains the

“/” character) or is NULL.

ENAMETOOLONG

The name given (inename) is too long, i.e. it exceeds
POSIX PATH MAX (defined in<limits.h>). Note
that thecombined lengthof an entity/condition/action
name is also limited byPOSIX PATH MAX .

ENOENT There’s no entity by this name defined in the current
context of the HAM.

ENOMEM Not enough memory to create a new handle.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
A call to hamentity handle()and a subsequent use of the handle
returned in a call such asham condition()are completely
asynchronous. Therefore, a valid action/condition/entity may no
longer exist when the handle is used at a later time.

In such an event, thehamcondition*() functions will return an error
(ENOENT) that the action in the condition doesn’t exist in the given
entity.

October 6, 2005 Chapter 6 � HAM API Reference 179

ham entity handle(), ham entity handle node()  2005,

QNX Software Systems

See also:
ham action handle(), ham action handlefree(), ham condition(),
ham conditionhandle(), hamconditionhandlefree(),
ham conditionremove(), ham entity handlefree()

180 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham entity handle free()
Free a previously obtained handle to an entity

Synopsis:
#include <ha/ham.h>

int ham entity handle free(ham entity t *ehdl);

Library:
libham

Description:
Theham entity handlefree()function frees a handle associated with
an entity (ehdl) and reclaims all storage associated with the given
handle.

The handle (ehdl) must be obtained fromhamentity handle(),
ham attach(), or ham attachself(). Once a handle is freed, it is no
longer available to refer to any condition. The
ham entity handlefree()call frees storage allocated for the handle but
does not remove the condition itself, which is in the HAM.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EINVAL The name given inenameisn’t valid.

Classification:
QNX 6

October 6, 2005 Chapter 6 � HAM API Reference 181

ham entity handle free()  2005, QNX Software Systems

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

Caveats:
Theham entity handlefree()function frees storage related only to
the handle in the client — it doesn’t remove the corresponding entity.

See also:
ham action handlefree(), hamcondition(), ham conditionhandle(),
ham entity handlefree()

182 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham heartbeat()
Send a heartbeat to the HAM

Synopsis:
#include <ha/ham.h>

int ham heartbeat(void);

Library:
libham

Description:
Self-attached entities that have committed to sending heartbeats at
prescribed intervals need to callham heartbeat()when they want to
transmit a heartbeat.

Theham heartbeat()function does nothing if the client isn’t a
self-attached entity or hasn’t committed to sending heartbeats.

Returns:
This function always succeeds.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

October 6, 2005 Chapter 6 � HAM API Reference 183

ham heartbeat()  2005, QNX Software Systems

Caveats:
Although this function always succeeds, the HAM doesn’t always
receive the heartbeat right away.

For example, if a client commits to sending a heartbeat every 5
seconds (at 5-, 10-, 15-second intervals, and so on), but instead
transmits at the 2-second mark, then the HAM won’t receive a
heartbeat until the 5-second mark.

Or if the client sends a heartbeat at the 7-second mark and another at
the 8-second mark, then the HAM will receive onlyone heartbeatat
the 10-second mark.

See also:
ham attachself(), ham detachself()

184 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham stop(), ham stop nd(),
ham stop node()

Stop the HAM

Synopsis:
#include <ha/ham.h>

int ham stop(void);
int ham stop nd(int nd);
int ham stop node(const char *nodename);

Library:
libham

Description:
Theham stop()function instructs the HAM to terminate. The
ham stopnd(), andhamstopnode()functions are used to terminate
remote HAMs. These are the only proper ways to stop the HAM.

Thend specified toham stopnd() is the node identifier of the remote
node at the time thehamstopnd()call is made.

Since node identifiers are transient objects, you should obtain the
value fornd immediately before the call, usingnetmgrstrtond()or
another function that converts nodenames into node identifiers.

☞

Theham stopnode()function takes as a parameter a fully qualified
node name (FQNN). Theham stopnode()function is used when a
nodename is used to specify a remote HAM instead of a node
identifier (nd).

Since the HAM and its “clone” the Guardian monitor each other, and
re-spawn should the other fail, the HAM must first terminate the
Guardian before it terminates itself.

Returns:
0 Success.

-1 An error occurred (errno is set).

October 6, 2005 Chapter 6 � HAM API Reference 185

ham stop(), ham stop nd(), ham stop node()  2005,

QNX Software Systems

Errors:
EBADF Couldn’t connect to the HAM.

In addition to the above, the HAM returns any error it encounters
while servicing the request to terminate.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

186 Chapter 6 � HAM API Reference October 6, 2005

 2005, QNX Software Systems ham verbose()
Modifies the verbosity of a HAM

Synopsis:
#include <ha/ham.h>

int ham verbose(const char *nodename, int op, int value);

Library:
libham

Description:
Theham verbosefunction can be used to modify the verbosity of a
HAM. This is used to programmatically modify the verbosity. (The
ham stop()utility can also be used to do this.)

These are the variables:

op Specifies the operation on the verbosity. It can be any
one of:

� VERBOSESET INCR=1 — increment verbosity

� VERBOSESET DECR— decrement verbosity

� VERBOSESET— set verbosity (specific value)

� VERBOSEGET — get verbosity

value Specifies the increment or decrement for the verbosity.
valuemust be a non-negative integer. Avalueof zero
will set the appropriate increment or decrement to 1.

nodename Specifies the target node on which the change will be
made.

Returns:
For set functions:

0 Success.

October 6, 2005 Chapter 6 � HAM API Reference 187

ham verbose()  2005, QNX Software Systems

-1 An error occurred (errno is set).

For get function:

verbosity Success.

-1 An error occurred (errno is set).

Errors:
EBADF Couldn’t connect to the HAM.

EINVAL Thevalueor opvariable is invalid.

In addition to the above errors, the HAM returns any error it
encounters while servicing this request.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ham stop(),

188 Chapter 6 � HAM API Reference October 6, 2005

Chapter 7

Client Recovery Library Reference

October 6, 2005 Chapter 7 � Client Recovery Library Reference 189

 2005, QNX Software Systems

The HAT Client Recovery Library includes the following convenience
functions you can use in your applications to transparently restore
client/server connections in the event of failures:

Function Description

ha attach() Attach a recovery function to a
connection to make it HA-aware.

ha close() Detach an attached HAfd, then
close it.

ha connectionctrl() Control the operation of a HA-aware
connection.

ha ConnectAttach(), ha ConnectAttachr() Create a connection using
ConnectAttach()and attach it to the
HA lib.

ha ConnectDetach(), ha ConnectDetachr() Detach an attachedfd, then close the
connection usingConnectDetach().

ha creat(), ha creat64() Create a connection and attach it to
the HA lib.

ha detach() Detach a connection previously
attached viaha attach().

ha dup() Duplicate an HA connection.

ha fclose() Detach an attached HAfd for a file
stream, then close it.

ha fopen() Open a file stream and attach it to
the HA lib.

ha open(), ha open64() Open a connection and attach it to
the HA lib.

ha ReConnectAttach() Reopen a connection while
performing recovery.

continued. . .

October 6, 2005 Chapter 7 � Client Recovery Library Reference 191

 2005, QNX Software Systems

Function Description

ha reopen() Reopen a connection while
performing recovery.

For information on using theseha *() functions, see the chapter Using
the Client Recovery Library in this guide.

☞

192 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha attach()
Attach a recovery function to a connection to make it HA-aware

Synopsis:
#include <ha/cover.h>

int ha attach(int coid,
RFp rfn,
void *rhdl,
unsigned flags);

Library:
libha

Description:
Theha attach()function attaches a recovery function to a connection
in order to make the connection identified bycoid HA-aware. If any
operation on the connectioncoid returns anEBADF error, the recovery
function pointed to byrfn will be called. The recovery function is
defined by the following type declaration in<ha/types.h>:

typedef int (*RFp)(int coid, void *rhdl);

The recovery function identified byrfn will be called withrhdl as a
parameter. Therhdl parameter is an opaque handle to data that will be
interpreted and used by the recovery function itself. The recovery
function is expected to perform client-specific recovery on the
existing connection.

The recovery function returns a connection ID associated with the
recovered connection. This connection ID must be the same as the
one that had failed. The client can choose to recover in any way it
thinks appropriate. It could reconnect to the same server (if the
service is available), and then reconstruct its state with respect to the
connection as appropriate from the client’s perspective.

The client could also reconnect to a new server. The client recovery
function must return the same connection ID in order to indicate
successful recovery to the HA library so that the library can re-initiate
the previous failed operation on the connection.

October 6, 2005 Chapter 7 � Client Recovery Library Reference 193

ha attach()  2005, QNX Software Systems

If the client doesn’t want to — or can’t — recover, it can return -1 to
the library. The library will then immediately propagate the error
relating to the failed operation on the connection back to the caller.
For convenience, the HA library providesha reopen()and
ha ReConnectAttach()calls that close the old connection and obtain
the new connection appropriately.

You normally callha attach()after a connection is established and a
valid coid is available.

The other method to make a connection HA-aware is to call the
convenience functionsha open(), ha creat|64(),
ha ConnectAttach| r(), or ha fopen().

Currently the following flag is defined:

HAREPLACERECOVERYFN

Indicates that the call toha attach()is replacing the recovery
function with a new one. You can replace recovery functions
only if the connection already has a recovery function
associated with it.

Returns:
0 Success

-1 An error occurred (errno is set).

Errors:
EBADF There’s no connection identified bycoid.

Or, HAREPLACERECOVERYFNis set, but there’s no
HA-aware connection identified bycoid.

EEXIST There’s already an HA-aware connection identified by
coid.

The flagHAREPLACERECOVERYFNisn’t set.

ENOMEM Memory couldn’t be allocated while creating the
structures in the library.

194 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha attach()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ha close(), ha detach(), ha ConnectAttach(), ha ConnectDetach(),
ha creat(), ha fclose(), ha fopen(), ha open(), ha ReConnectAttach(),
ha reopen()

October 6, 2005 Chapter 7 � Client Recovery Library Reference 195

ha close()  2005, QNX Software Systems

Detach an attached HA file descriptor, then close it

Synopsis:
#include <ha/unistd.h>

int ha close(int fd);

Library:
libha

Description:
Theha close()convenience function detaches a connection that was
previously attached usingha attach(), and then closes the connection.

Thefd is the file descriptor originally obtained fromha open().

Returns:
0 Success

-1 An error occurred (errno is set).

Errors:
Theha close()function returns errors as returned by either the
underlyingclose()call or theha detach()call.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

196 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha close()

See also:
ha attach(), ha ConnectDetach(), ha detach(), ha open()

In theLibrary Reference: close()

October 6, 2005 Chapter 7 � Client Recovery Library Reference 197

ha connection ctrl()  2005, QNX Software Systems

Control the operation of a HA-aware connection

Synopsis:
#include <ha/cover.h>
int ha connection ctrl(int coid, int command, void *args)

Library:
libha

Description:
Theha connectionctrl() function can be used to control the operation
of the HA-aware conenction. Specifically it can be used to control the
recovery method, temporarily suspend recovery and also control the
number of times that will be attempted both consecutively for a single
failure, or across all failures. Currently the following commands are
defined:

HA RECOVERY ACOUNT

This sets the maximum number of times recovery is performed
for this connection. The value is specified by passing it via
“args” as an integer. A negative value implies that there is no
limit on the number of times recovery will be performed, and
this is the default state of the connection when it is made HA
aware.

HA RECOVERY ICOUNT

This sets the maximum number of iterations, recovery is
performed for this connection, each time a connection is found
to have failed. This count is reset each time the connection is
successfully recovered. The value is specified by passing it via
“args” as an integer. A negative value implies that there is no
limit on the number of times recovery will be performed, and
this is the default state of the connection when it is made HA
aware.

HA RECOVERY SUSPEND

Temporarily suspends any recovery on this connection. It will
behave like a normal connection.

198 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha connection ctrl()

HA RECOVERY ENABLE

Re-enables any recovery on this connection. All other recovery
options are unaffected. This just toggles the “recovery
enabled/disabled” bit.

HA RECOVERY RESETICOUNT

Resets the iteration count used byHA RECOVERY ICOUNT
above. This sets the internal count per iteration to zero.

HA RECOVERY RESETACOUNT

Resets the total count used byHA RECOVERY ACOUNT above.
This sets the internal count of recoveries to zero.

Returns:
0 Success.

-1 An error occurred (errno is set).

Errors:
EBADF No connection is specified by thiscoid, or connection is

not HA-aware.

EINVAL Invalid command.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

October 6, 2005 Chapter 7 � Client Recovery Library Reference 199

ha connection ctrl()  2005, QNX Software Systems

See also:
ha attach(), ha detach(), ha open(), ha reopen(),
ha ConnectAttach(), ha ConnectDetach()

200 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha ConnectAttach(),
ha ConnectAttach r()

Create a connection and attach it to the HA lib

Synopsis:
#include <ha/neutrino.h>

int ha ConnectAttach(Uint32t *nd,
pid t pid,
int chid,
unsigned index,
unsigned flags,
RFp rfn,
void *rhdl,
unsigned haflags);

int ha ConnectAttach r(Uint32t *nd,
pid t pid,
int chid,
unsigned index,
unsigned flags,
RFp rfn,
void *rhdl,
unsigned haflags);

Library:
libha

Description:
Theha ConnectAttach()andha ConnectDetachr() functions are
identical except in the way they return errors. (For details, see the
“Returns” section.)

In addition to creating the connection using the standard
ConnectAttach| r() call, these convenience functions also call
ha attach()with the connection returned by theConnectAttach()call.

The parametersrfn(), andrhdl(), andhaflags()are passed to the
ha attach()call along with the connection ID returned by the
ConnectAttach()call.

The remaining parameters are passed to the corresponding parameters
in theConnectAttach()call in their appropriate positions.

October 6, 2005 Chapter 7 � Client Recovery Library Reference 201

ha ConnectAttach(), ha ConnectAttach r()  2005, QNX

Software Systems

Returns:
The only difference between these functions is the way they indicate
errors:

ha ConnectAttach()

A connection ID that’s used by the message primitives. If an
error occurs, -1 is returned anderrno is set.

ha ConnectAttachr()

A connection ID that’s used by the message primitives. This
function does NOT seterrno. If an error occurs, the negative of
a value from the errors returned by either the underlying
ConnectAttach()call or theha attach()call.

Errors:
Theha ConnectAttach| r() call returns errors as returned by either
the underlyingConnectAttach()call or theha attach()call.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ha attach(), ha close(), ha ConnectAttach(), ha creat(), ha detach(),
ha open()

202 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha ConnectAttach(),
ha ConnectAttach r()

In theLibrary Reference: ConnectAttach()

October 6, 2005 Chapter 7 � Client Recovery Library Reference 203

ha ConnectDetach(), ha ConnectDetach r()  2005, QNX

Software Systems

Detach an attached file descriptor, then close the connection

Synopsis:
#include <ha/neutrino.h>

int ha ConnectDetach(int coid);

int ha ConnectDetach r(int coid);

Library:
libha

Description:
Theha ConnectDetach()andha ConnectDetachr() functions are
identical except in the way they return errors. (For details, see the
“Returns” section.)

Theha ConnectDetach| r() call detaches a connection (coid) that
was previously attached usingha attach(), and then closes the
connection by calling the appropriateConnectDetach| r() call.

Returns:
The only difference between these functions is the way they indicate
errors:

ha ConnectDetach()

If an error occurs, -1 is returned anderrno is set. Any other
value returned indicates success.

ha ConnectDetachr()

EOK is returned on success. This function does NOT seterrno.
If an error occurs, any value from the errors returned by either
the underlyingConnectDetach()call or theha detach()call
may be returned.

204 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha ConnectDetach(),
ha ConnectDetach r()

Errors:
Theha ConnectDetach| r() call returns errors as returned by either
the underlyingConnectDetach()call or theha detach()call.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ha attach(), ha ConnectAttach(), ha detach()

In theLibrary Reference: ConnectDetach()

October 6, 2005 Chapter 7 � Client Recovery Library Reference 205

ha creat(), ha creat64()  2005, QNX Software Systems

Create a connection and attach it to the HA lib

Synopsis:
#include <ha/fcntl.h>

int ha creat(const char *path,
mode t mode,
RFp rfn,
void *rhdl,
unsigned haflags);

int ha creat64(const char *path,
mode t mode,
RFp rfn,
void *rhdl,
unsigned haflags);

Library:
libha

Description:
In addition to opening the connection using the standardcreate|64()
call, these convenience functions also callha attach()with the
connection returned by thecreat()call.

The parametersrfn(), andrhdl(), andhaflags()are passed to the
ha attach()call along with the connection ID returned by thecreat()
call.

The remaining parameters are passed to the corresponding parameters
in thecreat()call in their appropriate positions.

Returns:
A new connection ID or -1 if an error occurred (errno is set).

206 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha creat(), ha creat64()

Errors:
Theha creat()call returns errors as returned by either the underlying
creat()call or theha attach()call.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ha open(), ha attach(), ha close(), ha detach()

In theLibrary Reference: creat()

October 6, 2005 Chapter 7 � Client Recovery Library Reference 207

ha detach()  2005, QNX Software Systems

Detach a previously attached connection

Synopsis:
#include <ha/cover.h>

int ha attach(int coid)

Library:
libha

Description:
Theha detach()function detaches a connection from the HA library.
This effectively makes the connection non HA-aware. After the
detach operation is complete, no more recovery will be performed for
any message operations on this connection.

The connection referred to bycoid must be a connection previously
attached to usingha attach(). Normally, you detach connections just
prior to closing them. The functionsha close(),
ha ConnectDetach| r(), andha fclose()perform the required
ha detach()operation before closing the connection.

Returns:
0 Success

-1 An error occurred (errno is set).

Errors:
EBADF There’s no connectioncoid that’s currently attached.

Classification:
QNX 6

208 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha detach()

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ha attach(), ha close(), ha ConnectDetach(), ha fclose()

October 6, 2005 Chapter 7 � Client Recovery Library Reference 209

ha dup()  2005, QNX Software Systems

Duplicate an HA connection

Synopsis:
#include <ha/unistd.h>

int ha dup(int oldfd);

Library:
libha

Description:
Theha dup()function duplicates the HA-aware file descriptor
specified byoldfd. The functionality ofha dup() is similar to that of
the standarddup()call, with the addition that the new file descriptor
also shares the recovery mechanisms associated witholdfd.

Changing the recovery function for one file descriptor will
automatically change the recovery function for the other as well.

Note that HA connections are also reference-counted acrossha dup()
calls. This implies that when HA connections that have beendup()’d
are closed, the recovery functions will continue to exist until the last
reference to them has been closed.

Returns:
The new file descriptor or -1 if an error occurred (errno is set).

Errors:
EBADF The connection identified byoldfd isn’t an HA-aware

connection.

ENOMEM Couldn’t allocate memory for structures in the library
to successfully duplicate the connection.

In addition, theha dup()call returns any errors returned by the
underlyingdup()call.

210 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha dup()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ha attach(), ha close(), ha detach(), ha open()

In theLibrary Reference: dup()

October 6, 2005 Chapter 7 � Client Recovery Library Reference 211

ha fclose()  2005, QNX Software Systems

Detach an attached HA file descriptor for a file stream, then close it

Synopsis:
#include <ha/stdio.h>

int ha fclose(FILE *stp);

Library:
libha

Description:
Theha fclose()convenience function detaches a connection
associated with the file streamstpthat was previously attached using
ha attach(), and then closes the connection.

Returns:
0 Success

-1 An error occurred (errno is set).

Errors:
Theha fclose()function returns errors as returned by either the
underlyingfclose()call or theha detach()call.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

212 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha fclose()

See also:
ha attach(), ha ConnectDetach(), ha detach(), ha open()

In theLibrary Reference: fclose()

October 6, 2005 Chapter 7 � Client Recovery Library Reference 213

ha fopen()  2005, QNX Software Systems

Open a file stream and attach it to the HA lib

Synopsis:
#include <ha/stdio.h>

int ha fopen(const char *path,
const char *mode,
RFp rfn,
void *rhdl,
unsigned haflags);

Library:
libha

Description:
In addition to opening the connection using the standardfopen()call,
this convenience function also callsha attach()with the connection
returned by thefopen()call.

The parametersrfn(), andrhdl(), andhaflags()are passed to the
ha attach()call along with the connection ID returned by the
underlyingfopen()call.

The remaining parameters are passed to the corresponding parameters
in thefopen()call in their appropriate positions.

Returns:
A pointer to a file stream orNULL if an error occurs (errno is set).

Errors:
Theha fopen()call returns errors as returned by either the underlying
fopen()call or theha attach()call.

Classification:
QNX 6

214 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha fopen()

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ha attach(), ha detach(), ha fclose()

In theLibrary Reference: fclose(), fopen()

October 6, 2005 Chapter 7 � Client Recovery Library Reference 215

ha open(), ha open64()  2005, QNX Software Systems

Open a connection and attach it to the HA lib

Synopsis:
#include <ha/fcntl.h>

int ha open(const char *path,
int oflag,
RFp rfn,
void *rhdl,
unsigned haflags, ...);

int ha open64(const char *path,
int oflag,
RFp rfn,
void *rhdl,
unsigned haflags, ...);

Library:
libha

Description:
In addition to opening the connection using the standardopen|64()
call, these convenience functions also callha attach()with the
connection returned by theopen()call.

The parametersrfn(), andrhdl(), andhaflags()are passed to the
ha attach()call along with the connection ID returned by theopen()
call.

The remaining parameters are passed to the corresponding parameters
in theopen()call in their appropriate positions.

Returns:
A new connection ID or -1 if an error occurred (errno is set).

216 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha open(), ha open64()

Errors:
Theha open()call returns errors as returned by either the underlying
open()call or theha attach()call.

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ha attach(), ha creat(), ha close(), ha detach()

In theLibrary Reference: open()

October 6, 2005 Chapter 7 � Client Recovery Library Reference 217

ha ReConnectAttach()  2005, QNX Software Systems

Reopen a connection while performing recovery

Synopsis:
#include <ha/neutrino.h>

int ha ReConnectAttach(int oldcoid,
Uint32t nd,

pid t pid,
int chid,
unsigned index,
unsigned flags);

Library:
libha

Description:
You can use theha ReConnectAttach()convenience function to
reopen a connection while in the recovery phase. Theoldcoid
argument refers to the connection that has failed. The
ha ReConnectAttach()function closes the previous connection and
opens a new connection using the parameters specified by calling
ConnectAttach().

Theha ReConnectAttach()function also verifies that the new
connection ID returned is the same as theoldcoid (as required by the
HA library mechanism).

Returns:
A new connection ID or -1 if an error occurred (errno is set).

Errors:
Theha ReConnectAttach()call returns errors as returned by the
underlyingConnectAttach()call.

218 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha ReConnectAttach()

Classification:
QNX 6

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ha attach(), ha close(), ConnectAttach(), ConnectDetach(),
ha detach(), ha open()

In theLibrary Reference: ConnectAttach()

October 6, 2005 Chapter 7 � Client Recovery Library Reference 219

ha reopen()  2005, QNX Software Systems

Reopen a connection while performing recovery

Synopsis:
#include <ha/fcntl.h>

int ha reopen(int oldfd,
const char *path,
int oflag, ...);

Library:
libha

Description:
You can use theha reopen()convenience function to reopen a
connection while in the recovery phase. Theoldfd argument refers to
the connection that has failed. Theha reopen()function closes the
previous connection and opens a new connection using the parameters
specified by callingopen().

Theha reopen()function also verifies that the new connection ID
returned is the same as theoldfd (as required by the HA library
mechanism). If the new connection ID obtained is not the same as
oldfd, it will attempt to obtain the samefd, by calling thedup2()
function.

Returns:
A new connection ID or -1 if an error occurred (errno is set).

Errors:
Theha reopen()call returns errors as returned by the underlying
open()call.

Classification:
QNX 6

220 Chapter 7 � Client Recovery Library Reference October 6, 2005

 2005, QNX Software Systems ha reopen()

Safety

Cancellation point No

Interrupt handler No

Signal handler No

Thread Yes

See also:
ha attach(), ha close(), ha detach(), ha open(), ReConnectAttach()

In theLibrary Reference: open()

October 6, 2005 Chapter 7 � Client Recovery Library Reference 221

Appendix A

Examples

In this appendix. . .
Simple restart 225
Compound restart 226
Death/condition notification 228
Heartbeating clients (liveness detection)231
Process starvation 238

October 6, 2005 Appendix: A � Examples 223

 2005, QNX Software Systems Simple restart

Simple restart
The most basic form of recovery is the simple death-restart
mechanism. Since the QNX Neutrino realtime operating system
provides virtually all non-kernel functionality via user-installable
programs, and since it offers complete memory protection, not only
for user applications, but also for OS components (device drivers,
filesystems, etc.), a resource manager or other server program can be
easilydecoupled from the OS.

This decoupling lets you safely stop, start, and upgrade resource
managers or other key programsdynamically, without compromising
the availability of the rest of the system.

Consider the following code, where we restart theinetd daemon:

/* addinet.c */

#include <stdio.h>

#include <string.h>
#include <stdlib.h>

#include <unistd.h>

#include <sys/stat.h>
#include <sys/netmgr.h>

#include <fcntl.h>

#include "ha/ham.h"

int main(int argc, char *argv[])

{
int status;

char *inetdpath;

ham entity t *ehdl;
ham condition t *chdl;

ham action t *ahdl;

int inetdpid;
if (argc > 1)

inetdpath = strdup(argv[1]);
else

inetdpath = strdup("/usr/sbin/inetd");

if (argc > 2)
inetdpid = atoi(argv[2]);

else

inetdpid = -1;
ham connect(0);

ehdl = ham attach("inetd", ND LOCAL NODE, inetdpid, inetdpath, 0);

if (ehdl != NULL)
{

chdl = ham condition(ehdl,CONDDEATH, "death", HREARMAFTERRESTART);

if (chdl != NULL) {
ahdl = ham action restart(chdl, "restart", inetdpath,

HREARMAFTERRESTART);

if (ahdl == NULL)
printf("add action failed\n");

October 6, 2005 Appendix: A � Examples 225

Compound restart  2005, QNX Software Systems

}
else

printf("add condition failed\n");

}
else

printf("add entity failed\n");

ham disconnect(0);
exit(0);

}

The above example attaches theinetd process to a HAM, and then
establishes a conditiondeathand an actionrestartunder it.

Wheninetd terminates, the HAM will automatically restart it by
running the program specified byinetdpath. If inetd were already
running on the system, we can pass thepid of the existinginetd into
inetdpid and it will be attached to directly. Otherwise, the HAM
will start and begin to monitorinetd.

You could use the same code to monitor, say,slogger (by specifying
/usr/sbin/slogger), mqueue (by specifying/sbin/mqueue),
etc. Just remember to specify thefull pathof the executable with all
its required command-line parameters.

Compound restart
Recovery often involves more than restarting a single component. The
death of one component might actually require restarting and resetting
many other components. We might also have to do some initial
cleanup before the dead component is restarted.

A HAM lets you specify a list of actions that will be performed when
a given condition is triggered. For example, suppose the entity being
monitored isfs-nfs2, and there’s a set of directories that have been
mounted and are currently in use. Iffs-nfs2 were to die, the simple
restart of that component won’t remount the directories and make
them available again! We’d have to restartfs-nfs2, and then follow
that up with the explicit mounting of the appropriate directories.

Similarly, if io-net were to die, it would take down the network
drivers and TCP/IP stack (npm-tcpip.so) with it. So restarting
io-net involves also reloading the TCP/IP stack and reinitializing

226 Appendix: A � Examples October 6, 2005

 2005, QNX Software Systems Compound restart

the network driver. Also, any other components that use the network
connection will also need to be reset (likeinetd) so that they can
reestablish their connections again.

Consider the following example of performing a compound restart
mechanism.

/* addnfs.c */

#include <stdio.h>

#include <string.h>
#include <stdlib.h>

#include <unistd.h>

#include <sys/stat.h>
#include <sys/netmgr.h>

#include <fcntl.h>
#include <ha/ham.h>

int main(int argc, char *argv[])
{

int status;

ham entity t *ehdl;
ham condition t *chdl;

ham action t *ahdl;

char *fsnfspath;
int fsnfs2pid;

if (argc > 1)

fsnfspath = strdup(argv[1]);
else

fsnfspath = strdup("/usr/sbin/fs-nfs2");

if (argc > 2)
fsnfs2pid = atoi(argv[2]);

else
fsnfs2pid = -1;

ham connect(0);

ehdl = ham attach("Fs-nfs2", ND LOCAL NODE, fsnfs2pid, fsnfspath, 0);
if (ehdl != NULL)

{

chdl = ham condition(ehdl,CONDDEATH, "Death", HREARMAFTERRESTART);
if (chdl != NULL) {

ahdl = ham action restart(chdl, "Restart", fsnfspath,

HREARMAFTERRESTART);
if (ahdl == NULL)

printf("add action failed\n");

/* else {
ahdl = ham action waitfor(chdl, "Delay1", NULL, 2000, HREARMAFTERRESTART);

if (ahdl == NULL)

printf("add action failed\n");
ahdl = ham action execute(chdl, "MountPPCBE",

"/bin/mount -t nfs 10.12.1.115:/ppcbe /ppcbe",
HREARMAFTERRESTART|((fsnfs2pid == -1) ? HACTIONDONOW:0));

if (ahdl == NULL)

printf("add action failed\n");
ahdl = ham action waitfor(chdl, "Delay2", NULL, 2000, HREARMAFTERRESTART);

if (ahdl == NULL)

printf("add action failed\n");
ahdl = ham action execute(chdl, "MountWeb",

"/bin/mount -t nfs 10.12.1.115:/web /web",

October 6, 2005 Appendix: A � Examples 227

Death/condition notification  2005, QNX Software Systems

HREARMAFTERRESTART|((fsnfs2pid == -1) ? HACTIONDONOW:0));
if (ahdl == NULL)

printf("add action failed\n");

} */
}

else

printf("add condition failed\n");
}

else
printf("add entity failed\n");

ham disconnect(0);

exit(0);
}

This example attachesfs-nfs2 as an entity, and then attaches a
series ofexecuteandwaitfor actions to the conditiondeath. When
fs-nfs2 dies, HAM will restart it and also remount the remote
directories that need to be remounted in sequence. Note that you can
specifydelaysas actions and also wait for specific names to appear in
the namespace.

Death/condition notification
Fault notification is a crucial part of the availability of a system. Apart
from performing recovery per se, we also need to keep track of
failures in order to be able to analyze the system at a later point.

For fault notification, you can use standard notification mechanisms
such as pulses or signals. Clients specify what pulse/signal with
specific values they want for each notification, and a HAM delivers
the notifications at the appropriate times.

/* regevent.c */

#include <stdio.h>
#include <string.h>

#include <stdlib.h>

#include <unistd.h>
#include <sys/stat.h>

#include <fcntl.h>

#include <errno.h>
#include <sys/neutrino.h>

#include <sys/iomsg.h>

#include <sys/netmgr.h>
#include <signal.h>

#include <ha/ham.h>

#define PCODEINETDDEATH PULSE CODE MINAVAIL+1

#define PCODEINETDDETACH PULSE CODE MINAVAIL+2

228 Appendix: A � Examples October 6, 2005

 2005, QNX Software Systems Death/condition notification

#define PCODENFSDELAYED PULSE CODE MINAVAIL+3
#define PCODEINETDRESTART1 PULSE CODE MINAVAIL+4

#define PCODEINETDRESTART2 PULSE CODE MINAVAIL+5

#define MYSIG SIGRTMIN+1

int fsnfs value;

/* Signal handler to handle the death notify of fs-nfs2 */
void MySigHandler(int signo, siginfo t *info, void *extra)

{

printf("Received signal %d, with code = %d, value %d\n",
signo, info->si code, info->si value.sival int);

if (info->si value.sival int == fsnfs value)

printf("FS-nfs2 died, this is the notify signal\n");
return;

}

int main(int argc, char *argv[])

{

int chid, coid, rcvid;
struct pulse pulse;

pid t pid;

int status;
int value;

ham entity t *ehdl;
ham condition t *chdl;

ham action t *ahdl;

struct sigaction sa;
int scode;

int svalue;

/* we need a channel to receive the pulse notification on */

chid = ChannelCreate(0);

/* and we need a connection to that channel for the pulse to be

delivered on */

coid = ConnectAttach(0, 0, chid, NTO SIDE CHANNEL, 0);

/* fill in the event structure for a pulse */

pid = getpid();
value = 13;

ham connect(0);
/* Assumes there is already an entity by the name "inetd" */

chdl = ham condition handle(ND LOCAL NODE, "inetd","death",0);

ahdl = ham action notify pulse(chdl, "notifypulsedeath",ND LOCAL NODE, pid, chid,
PCODEINETDDEATH, value, HREARMAFTERRESTART);

ham action handle free(ahdl);

ham condition handle free(chdl);
ehdl = ham entity handle(ND LOCAL NODE, "inetd", 0);

chdl = ham condition(ehdl, CONDDETACH, "detach", HREARMAFTERRESTART);

ahdl = ham action notify pulse(chdl, "notifypulsedetach",ND LOCAL NODE, pid, chid,
PCODEINETDDETACH, value, HREARMAFTERRESTART);

ham action handle free(ahdl);

ham condition handle free(chdl);
ham entity handle free(ehdl);

fsnfs value = 18; /* value we expect when fs-nfs dies */

scode = 0;
svalue = fsnfs value;

sa.sa sigaction = MySigHandler;

October 6, 2005 Appendix: A � Examples 229

Death/condition notification  2005, QNX Software Systems

sigemptyset(&sa.sa mask);
sa.sa flags = SA SIGINFO;

sigaction(MYSIG, &sa, NULL);

/*
Assumes there is an entity by the name "Fs-nfs2".

We use "Fs-nfs2" to symbolically represent the entity

fs-nfs2. Any name can be used to represent the
entity, but it’s best to use a readable and meaningful name.

*/
ehdl = ham entity handle(ND LOCAL NODE, "Fs-nfs2", 0);

/*
Add a new condition, which will be an "independent" condition

this means that notifications/actions inside this condition

are not affected by "waitfor" delays in other action
sequence threads

*/

chdl = ham condition(ehdl,CONDDEATH, "DeathSep",
HCONDINDEPENDENT|HREARMAFTERRESTART);

ahdl = ham action notify signal(chdl, "notifysignaldeath",ND LOCAL NODE, pid, MYSIG,

scode, svalue, HREARMAFTERRESTART);
ham action handle free(ahdl);

ham condition handle free(chdl);

ham entity handle free(ehdl);
chdl = ham condition handle(ND LOCAL NODE, "Fs-nfs2","Death",0);

/*
this actions is added to a condition that does not

have a hcondnowait. Since we are unaware what the condition

already contains, we might end up getting a delayed notification
since the action sequence might have "arbitrary" delays, and

"waits" in it.

*/
ahdl = ham action notify pulse(chdl, "delayednfsdeathpulse", ND LOCAL NODE,

pid, chid, PCODENFSDELAYED, value, HREARMAFTERRESTART);

ham action handle free(ahdl);
ham condition handle free(chdl);

ehdl = ham entity handle(ND LOCAL NODE, "inetd", 0);

chdl = ham condition(ehdl, CONDRESTART, "restart",
HREARMAFTERRESTART|HCONDINDEPENDENT);

ahdl = ham action notify pulse(chdl, "notifyrestart imm", ND LOCAL NODE,

pid, chid, PCODEINETDRESTART1, value, HREARMAFTERRESTART);
ham action handle free(ahdl);

ahdl = ham action waitfor(chdl, "delay",NULL,6532, HREARMAFTERRESTART);
ham action handle free(ahdl);

ahdl = ham action notify pulse(chdl, "notifyrestart delayed", ND LOCAL NODE,

pid, chid, PCODEINETDRESTART2, value, HREARMAFTERRESTART);
ham action handle free(ahdl);

ham condition handle free(chdl);

ham entity handle free(ehdl);
while (1) {

rcvid = MsgReceivePulse(chid, &pulse, sizeof(pulse), NULL);

if (rcvid < 0) {
if (errno != EINTR) {

exit(-1);

}
}

else {

switch (pulse.code) {
case PCODEINETDDEATH:

printf("Inetd Death Pulse\n");

230 Appendix: A � Examples October 6, 2005

 2005, QNX Software Systems Heartbeating clients (liveness detection)

break;
case PCODENFSDELAYED:

printf("Fs-nfs2 died: this is the possibly delayed pulse\n");

break;
case PCODEINETDDETACH:

printf("Inetd detached, so quitting\n");

goto the end;
case PCODEINETDRESTART1:

printf("Inetd Restart Pulse: Immediate\n");
break;

case PCODEINETDRESTART2:

printf("Inetd Restart Pulse: Delayed\n");
break;

}

}
}

/*

At this point we are no longer waiting for the
information about inetd, since we know that it

has exited.

We will still continue to obtain information about the
death of fs-nfs2, since we did not remove those actions

if we exit now, the next time those actions are executed

they will fail (notifications fail if the receiver does
exist anymore), and they will automatically get removed and

cleaned up.
*/

the end:

ham disconnect(0);
exit(0);

}

In the above example a client registers for various different types of
notifications relating to significant events concerninginetd and
fs-nfs2. Notifications can be sent immediately or after a certain
delay.

The notifications can also be received for each condition
independently— for the entity’s death (CONDDEATH), restart
(CONDRESTART), and detaching (CONDDETACH).

TheCONDRESTARTis asserted by a HAM when an entity is
successfully restarted.

Heartbeating clients (liveness detection)
Sometimes components become unavailable not because of the
occurrence of a specific “bad” event, but because the components
become unresponsive by getting stuck somewhere to the extent that
the service they provide becomes effectively unavailable.

October 6, 2005 Appendix: A � Examples 231

Heartbeating clients (liveness detection)  2005, QNX Software Systems

One example of this is when a process or a collection of
processes/threads enters a state of deadlock or starvation, where none
or only some of the involved processes can make any useful progress.
Such situations are often difficult to pinpoint since they occur quite
randomly.

You can have your clients assert “liveness” properties by actively
sending heartbeats to a HAM. When a process deadlocks (or starves)
and makes no progress, it will no longer heartbeat, and the HAM will
automatically detect this condition and take corrective action.

The corrective action can range from simply terminating the
offending application to restarting it and also delivering notifications
about its state to other components that depend on the safe and correct
functioning of this component. If necessary, a HAM can restart those
other components as well.

We can demonstrate this condition by showing a simple process that
has two threads that use mutual-exclusion locks incorrectly (by a
design flaw), which causes them on occasion to enter a state of
deadlock — each of the threads holds a resource that the other wants.

Essentially, each thread runs through a segment of code that involves
the use of two mutexes.

Thread 1 Thread 2

... ...
while true while true
do do

obtain lock a obtain lock b
(compute section1) (compute section1)
obtain lock b obtain lock a

(compute section2) (compute section2)
release lock b release lock a
release lock a release lock b

done done
... ...

The code segments for each thread are shown below. The only
difference between the two is the order in which the locks are
obtained. The two threads deadlock upon execution, quite randomly;

232 Appendix: A � Examples October 6, 2005

 2005, QNX Software Systems Heartbeating clients (liveness detection)

the exact moment of deadlock is related to the lengths of the
“compute sections” of the two threads.

/* mutexdeadlock.c */

#include <errno.h>
#include <stdio.h>

#include <stdlib.h>

#include <string.h>
#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>
#include <signal.h>

#include <pthread.h>
#include <process.h>

#include <sys/neutrino.h>

#include <sys/procfs.h>
#include <sys/procmgr.h>

#include <ha/ham.h>

pthread mutex t mutex a = PTHREAD MUTEX INITIALIZER;

pthread mutex t mutex b = PTHREAD MUTEX INITIALIZER;

FILE *logfile;

pthread t threadID;

int doheartbeat=0;

#define COMPUTE DELAY 100

void *func1(void *arg)

{
int id;

/* obtain the two locks in the order

a -> b
perform some computation and then

release the locks ...

do this continuously
*/

id = pthread self();
while (1) {

delay(85); /* delay to let the other one go */

if (doheartbeat)
ham heartbeat();

pthread mutex lock(&mutex a);

fprintf(logfile, "Thread 1: Obtained lock a\n");
fprintf(logfile, "Thread 1: Waiting for lock b\n");

pthread mutex lock(&mutex b);
fprintf(logfile, "Thread 1: Obtained lock b\n");

fprintf(logfile, "Thread 1: Performing computation\n");

delay(rand()%COMPUTE DELAY+5); /* delay for computation */
fprintf(logfile, "Thread 1: Unlocking lock b\n");

pthread mutex unlock(&mutex b);

fprintf(logfile, "Thread 1: Unlocking lock a\n");
pthread mutex unlock(&mutex a);

}

return(NULL);
}

October 6, 2005 Appendix: A � Examples 233

Heartbeating clients (liveness detection)  2005, QNX Software Systems

void *func2(void *arg)
{

int id;
/* obtain the two locks in the order

b -> a

perform some computation and then
release the locks ...

do this continuously
*/

id = pthread self();
while (1) {

delay(25);

if (doheartbeat)
ham heartbeat();

pthread mutex lock(&mutex b);

fprintf(logfile, "\tThread 2: Obtained lock b\n");
fprintf(logfile, "\tThread 2: Waiting for lock a\n");

pthread mutex lock(&mutex a);

fprintf(logfile, "\tThread 2: Obtained lock a\n");
fprintf(logfile, "\tThread 2: Performing computation\n");

delay(rand()%COMPUTE DELAY+5); /* delay for computation */

fprintf(logfile, "\tThread 2: Unlocking lock a\n");
pthread mutex unlock(&mutex a);

fprintf(logfile, "\tThread 2: Unlocking lock b\n");
pthread mutex unlock(&mutex b);

}

return(NULL);
}

int main(int argc, char *argv[])
{

pthread attr t attrib;

struct sched param param;
ham entity t *ehdl;

ham condition t *chdl;

ham action t *ahdl;
int i=0;

char c;

logfile = stderr;

while ((c = getopt(argc, argv, "f:l")) != -1) {
switch(c) {

case ’f’: /* log file */

logfile = fopen(optarg, "w");
break;

case ’l’: /* do liveness heartbeating */

if (access("/proc/ham",F OK) == 0)
doheartbeat=1;

break;

}
}

setbuf(logfile, NULL);
srand(time(NULL));

fprintf(logfile, "Creating separate competing compute thread\n");

pthread attr init (&attrib);

pthread attr setinheritsched (&attrib, PTHREAD EXPLICIT SCHED);

234 Appendix: A � Examples October 6, 2005

 2005, QNX Software Systems Heartbeating clients (liveness detection)

pthread attr setschedpolicy (&attrib, SCHED RR);
param.sched priority = getprio (0);

pthread attr setschedparam (&attrib, ¶m);

if (doheartbeat) {

/* attach to ham */

ehdl = ham attach self("mutex-deadlock",1000000000UL,5 ,5, 0);
chdl = ham condition(ehdl, CONDHBEATMISSEDHIGH, "heartbeat-missed-high", 0);

ahdl = ham action execute(chdl, "terminate",
"/proc/boot/mutex-deadlock-heartbeat.sh", 0);

}

/* create competitor thread */
pthread create (&threadID, &attrib, func1, NULL);

pthread detach(threadID);

func2(NULL);

exit(0);
}

Upon execution, what we see is:

1 Starting two-threaded process.

The threads will execute as described earlier, but will
eventually deadlock. We’ll wait for a reasonable amount of
time (a few seconds) until they do end in deadlock. The threads
write out a simple execution log into
/dev/shmem/mutex-deadlock.log.

2 Waiting for them to deadlock.

Here’s the current state of the threads in process 73746:
pid tid name prio STATE Blocked

73746 1 oot/mutex-deadlock 10r MUTEX 73746-02 #-21474
73746 2 oot/mutex-deadlock 10r MUTEX 73746-01 #-21474

And here’s the tail from the threads’ log file:
Thread 2: Obtained lock b
Thread 2: Waiting for lock a
Thread 2: Obtained lock a
Thread 2: Performing computation
Thread 2: Unlocking lock a
Thread 2: Unlocking lock b
Thread 2: Obtained lock b
Thread 2: Waiting for lock a
Thread 1: Obtained lock a
Thread 1: Waiting for lock b

3 Extracting core current process information:

October 6, 2005 Appendix: A � Examples 235

Heartbeating clients (liveness detection)  2005, QNX Software Systems

/tmp/mutex-deadlock.core:
processor=PPC num cpus=2

cpu 1 cpu=602370 name=604e speed=299

flags=0xc0000001 FPU MMU EAR
cpu 2 cpu=602370 name=604e speed=299

flags=0xc0000001 FPU MMU EAR

cyc/sec=16666666 tod adj=999522656000000000 nsec=5190771360840 inc=999960
boot=999522656 epoch=1970 intr=-2147483648

rate=600000024 scale=-16 load=16666
MACHINE="mtx604-smp" HOSTNAME="localhost"

hwflags=0x000004

pretend cpu=0 init msr=36866
pid=73746 parent=49169 child=0 pgrp=73746 sid=1

flags=0x000300 umask=0 base addr=0x48040000 init stack=0x4803fa20

ruid=0 euid=0 suid=0 rgid=0 egid=0 sgid=0
ign=0000000006801000 queue=ff00000000000000 pending=0000000000000000

fds=4 threads=2 timers=0 chans=1

thread 1 REQUESTED
ip=0xfe32f838 sp=0x4803f920 stkbase=0x47fbf000 stksize=528384

state=MUTEX flags=0 last cpu=1 timeout=00000000

pri=10 realpri=10 policy=RR
thread 2

ip=0xfe32f838 sp=0x47fbef80 stkbase=0x47f9e000 stksize=135168

state=MUTEX flags=4020000 last cpu=2 timeout=00000000
pri=10 realpri=10 policy=RR

The processes are deadlocked, with each process holding one lock
and waiting for the other.

The process is made to heartbeat
Now consider the case where the client can be made to heartbeat so
that a HAM will automatically detect when it’s unresponsive and will
terminate it.

Thread 1 Thread 2

... ...
while true while true
do do
obtain lock a obtain lock b

(compute section1) (compute section1)
obtain lock b obtain lock a
send heartbeat send heartbeat
(compute section2) (compute section2)

release lock b release lock a
release lock a release lock b

done done
... ...

236 Appendix: A � Examples October 6, 2005

 2005, QNX Software Systems Heartbeating clients (liveness detection)

Here the process is expected to send heartbeats to a HAM. By placing
the heartbeat call within the inside loop, the deadlock condition is
trapped. The HAM notices that the heartbeats have stopped and can
then perform recovery.

Let’s look at what happens now:

1 Starting two-threaded process.

The threads will execute as described earlier, but will
eventually deadlock. We’ll wait for a reasonable amount of
time (a few seconds) until they do end in deadlock. The threads
write out a simple execution log into
/dev/shmem/mutex-deadlock-heartbeat.log. The
HAM detects that the threads have stopped heartbeating and
terminates the process, after saving its state for postmortem
analysis.

2 Waiting for them to deadlock.

Here’s the current state of the threads in process 462866 and the
state of mutex-deadlock when it missed heartbeats:

pid tid name prio STATE Blocked

462866 1 oot/mutex-deadlock 10r MUTEX 462866-03 #-2147
462866 2 oot/mutex-deadlock 63r RECEIVE 1

462866 3 oot/mutex-deadlock 10r MUTEX 462866-01 #-2147

Entity state from HAM

Path : mutex-deadlock

Entity Pid : 462866

Num conditions : 1
Condition type : ATTACHEDSELF

Stats:

HeartBeat Period: 1000000000
HB Low Mark : 5

HB High Mark : 5

Last Heartbeat : 2001/09/03 14:40:41:406575120
HeartBeat State : MISSEDHIGH

Created : 2001/09/03 14:40:40:391615720
Num Restarts : 0

And here’s the tail from the threads’ log file:
Thread 2: Obtained lock b
Thread 2: Waiting for lock a
Thread 2: Obtained lock a
Thread 2: Performing computation
Thread 2: Unlocking lock a

October 6, 2005 Appendix: A � Examples 237

Process starvation  2005, QNX Software Systems

Thread 2: Unlocking lock b
Thread 2: Obtained lock b
Thread 2: Waiting for lock a
Thread 1: Obtained lock a
Thread 1: Waiting for lock b

3 Extracting core current process information:
/tmp/mutex-deadlock.core:

processor=PPC num cpus=2

cpu 1 cpu=602370 name=604e speed=299
flags=0xc0000001 FPU MMU EAR

cpu 2 cpu=602370 name=604e speed=299

flags=0xc0000001 FPU MMU EAR
cyc/sec=16666666 tod adj=999522656000000000 nsec=5390696363520 inc=999960

boot=999522656 epoch=1970 intr=-2147483648

rate=600000024 scale=-16 load=16666
MACHINE="mtx604-smp" HOSTNAME="localhost"

hwflags=0x000004

pretend cpu=0 init msr=36866
pid=462866 parent=434193 child=0 pgrp=462866 sid=1

flags=0x000300 umask=0 base addr=0x48040000 init stack=0x4803f9f0
ruid=0 euid=0 suid=0 rgid=0 egid=0 sgid=0

ign=0000000006801000 queue=ff00000000000000 pending=0000000000000000

fds=5 threads=3 timers=1 chans=4
thread 1 REQUESTED

ip=0xfe32f838 sp=0x4803f8f0 stkbase=0x47fbf000 stksize=528384

state=MUTEX flags=0 last cpu=2 timeout=00000000
pri=10 realpri=10 policy=RR

thread 2

ip=0xfe32f1a8 sp=0x47fbef50 stkbase=0x47f9e000 stksize=135168
state=RECEIVE flags=4000000 last cpu=2 timeout=00000000

pri=63 realpri=63 policy=RR

blocked chid=1
thread 3

ip=0xfe32f838 sp=0x47f9df80 stkbase=0x47f7d000 stksize=135168

state=MUTEX flags=4020000 last cpu=1 timeout=00000000
pri=10 realpri=10 policy=RR

Process starvation
We can demonstrate this condition by showing a simple process
containing two threads that use mutual exclusion locks to manage a
critical section. Thread 1 runs at a high priority, while Thread 2 runs
at a lower priority. Essentially, each thread runs through a segment of
code that looks like this:

Thread1 Thread 2

... ...

238 Appendix: A � Examples October 6, 2005

 2005, QNX Software Systems Process starvation

(Run at high priority) (Run at low priority)
while true while true
do do

obtain lock a obtain lock a
(compute section1) (compute section1)

release lock a release lock a
done done
... ...

The code segments for each thread is shown below; the only
difference being the priorities of the two threads. Upon execution,
Thread 2 eventually starves.

/* mutexstarvation.c */

#include <errno.h>

#include <stdio.h>
#include <stdlib.h>

#include <string.h>

#include <unistd.h>
#include <sys/types.h>

#include <sys/wait.h>

#include <signal.h>
#include <pthread.h>

#include <process.h>

#include <sys/neutrino.h>
#include <sys/procfs.h>

#include <sys/procmgr.h>

#include <ha/ham.h>

pthread mutex t mutex a = PTHREAD MUTEX INITIALIZER;

FILE *logfile;

int doheartbeat=0;

#define COMPUTE DELAY 900

void *func1(void *arg)

{

int id;

id = pthread self();

while (1) {
pthread mutex lock(&mutex a);

fprintf(logfile, "Thread 1: Locking lock a\n");

delay(rand()%COMPUTE DELAY+50); /* delay for computation */
fprintf(logfile, "Thread 1: Unlocking lock a\n");

pthread mutex unlock(&mutex a);
}

return(NULL);

}

void *func2(void *arg)

{

int id;

October 6, 2005 Appendix: A � Examples 239

Process starvation  2005, QNX Software Systems

id = pthread self();

while (1) {

pthread mutex lock(&mutex a);
fprintf(logfile, "\tThread 2: Locking lock a\n");

if (doheartbeat)

ham heartbeat();
delay(rand()%COMPUTE DELAY+50); /* delay for computation */

fprintf(logfile, "\tThread 2: Unlocking lock a\n");
pthread mutex unlock(&mutex a);

}

return(NULL);
}

int main(int argc, char *argv[])
{

pthread attr t attrib;

struct sched param param;
ham entity t *ehdl;

ham condition t *chdl;

ham action t *ahdl;
int i=0;

char c;

pthread attr t attrib2;
struct sched param param2;

pthread t threadID;
pthread t threadID2;

logfile = stderr;
while ((c = getopt(argc, argv, "f:l")) != -1) {

switch(c) {

case ’f’: /* log file */
logfile = fopen(optarg, "w");

break;

case ’l’: /* do liveness heartbeating */
if (access("/proc/ham",F OK) == 0)

doheartbeat=1;

break;
}

}

setbuf(logfile, NULL);

srand(time(NULL));
fprintf(logfile, "Creating separate competing compute thread\n");

if (doheartbeat) {
/* attach to ham */

ehdl = ham attach self("mutex-starvation",1000000000UL, 5, 5, 0);

chdl = ham condition(ehdl, CONDHBEATMISSEDHIGH, "heartbeat-missed-high", 0);
ahdl = ham action execute(chdl, "terminate",

"/proc/boot/mutex-starvation-heartbeat.sh", 0);

}
/* create competitor thread */

pthread attr init (&attrib2);

pthread attr setinheritsched (&attrib2, PTHREAD EXPLICIT SCHED);
pthread attr setschedpolicy (&attrib2, SCHED RR);

param2.sched priority = sched get priority min(SCHED RR);

pthread attr setschedparam (&attrib2, ¶m2);

pthread create (&threadID2, &attrib2, func2, NULL);

240 Appendix: A � Examples October 6, 2005

 2005, QNX Software Systems Process starvation

delay(3000); /* let the other thread go on for a while... */

pthread attr init (&attrib);
pthread attr setinheritsched (&attrib, PTHREAD EXPLICIT SCHED);

pthread attr setschedpolicy (&attrib, SCHED RR);

param.sched priority = sched get priority max(SCHED RR);
pthread attr setschedparam (&attrib, ¶m);

pthread create (&threadID, &attrib, func1, NULL);

pthread join(threadID, NULL);
pthread join(threadID2, NULL);

exit(0);

}

Upon execution, here’s what we see:

1 Starting two-threaded process.

The threads will execute as described earlier, but eventually
Thread 2 will starve. We’ll wait for a reasonable amount of
time (some seconds) until Thread 2 ends up starving. The
threads write out a simple execution log into
/dev/shmem/mutex-starvation.log.

2 Waiting for them to run for a while.

Here’s the current state of the threads in process 622610:
pid tid name prio STATE Blocked

622610 1 t/mutex-starvation 10r JOIN 3
622610 2 t/mutex-starvation 1r MUTEX 622610-03 #-2147

622610 3 t/mutex-starvation 63r NANOSLEEP

And here’s the tail from the threads’ log file:
Thread 1: Unlocking lock a
Thread 1: Locking lock a
Thread 1: Unlocking lock a
Thread 1: Locking lock a
Thread 1: Unlocking lock a
Thread 1: Locking lock a
Thread 1: Unlocking lock a
Thread 1: Locking lock a
Thread 1: Unlocking lock a
Thread 1: Locking lock a

3 Extracting core current process information:

October 6, 2005 Appendix: A � Examples 241

Process starvation  2005, QNX Software Systems

/tmp/mutex-starvation.core:
processor=PPC num cpus=2

cpu 1 cpu=602370 name=604e speed=299

flags=0xc0000001 FPU MMU EAR
cpu 2 cpu=602370 name=604e speed=299

flags=0xc0000001 FPU MMU EAR

cyc/sec=16666666 tod adj=999522656000000000 nsec=5561011550640 inc=999960
boot=999522656 epoch=1970 intr=-2147483648

rate=600000024 scale=-16 load=16666
MACHINE="mtx604-smp" HOSTNAME="localhost"

hwflags=0x000004

pretend cpu=0 init msr=36866
pid=622610 parent=598033 child=0 pgrp=622610 sid=1

flags=0x000300 umask=0 base addr=0x48040000 init stack=0x4803fa10

ruid=0 euid=0 suid=0 rgid=0 egid=0 sgid=0
ign=0000000006801000 queue=ff00000000000000 pending=0000000000000000

fds=4 threads=3 timers=0 chans=1

thread 1 REQUESTED
ip=0xfe32f8c8 sp=0x4803f8a0 stkbase=0x47fbf000 stksize=528384

state=JOIN flags=0 last cpu=1 timeout=00000000

pri=10 realpri=10 policy=RR
thread 2

ip=0xfe32f838 sp=0x47fbef80 stkbase=0x47f9e000 stksize=135168

state=MUTEX flags=4000000 last cpu=2 timeout=00000000
pri=1 realpri=1 policy=RR

thread 3
ip=0xfe32f9a0 sp=0x47f9df20 stkbase=0x47f7d000 stksize=135168

state=NANOSLEEP flags=4000000 last cpu=2 timeout=0x1001000

pri=63 realpri=63 policy=RR

Thread 2 is made to heartbeat
Now consider the case where Thread 2 is made to heartbeat. A HAM
will automatically detect when the thread is unresponsive and can
terminate it and/or perform recovery.

Thread 1 Thread 2

... ...
(Run at high priority) (Run at low priority)
while true while true
do do

obtain lock a obtain lock a
send heartbeat

(compute section1) (compute section1)
release lock a release lock a

done done
... ...

242 Appendix: A � Examples October 6, 2005

 2005, QNX Software Systems Process starvation

Here Thread 2 is expected to send heartbeats to a HAM. By placing
the heartbeat call within the inside loop, the HAM detects when
Thread 2 begins to starve.

The threads will execute as described earlier, but eventually Thread 2
will starve. We’ll wait for a reasonable amount of time (some
seconds) until it does. The threads write out a simple execution log
into /dev/shmem/mutex-starvation-heartbeat.log. The
HAM detects that the thread has stopped heartbeating and terminates
the process, after saving its state for postmortem analysis.

Let’s look at what happens:

1 Waiting for some time.

Here’s the current state of the threads in process 753682 and the
state of mutex-starvation when it missed heartbeats:

pid tid name prio STATE Blocked

753682 1 t/mutex-starvation 10r JOIN 4

753682 2 t/mutex-starvation 63r RECEIVE 1
753682 3 t/mutex-starvation 1r MUTEX 753682-04 #-2147

753682 4 t/mutex-starvation 63r NANOSLEEP

Entity state from HAM

Path : mutex-starvation

Entity Pid : 753682
Num conditions : 1

Condition type : ATTACHEDSELF

Stats:
HeartBeat Period: 1000000000

HB Low Mark : 5

HB High Mark : 5
Last Heartbeat : 2001/09/03 14:44:37:796119160

HeartBeat State : MISSEDHIGH

Created : 2001/09/03 14:44:34:780239800
Num Restarts : 0

And here’s the tail from the threads’ log file:
Thread 1: Unlocking lock a
Thread 1: Locking lock a
Thread 1: Unlocking lock a
Thread 1: Locking lock a
Thread 1: Unlocking lock a
Thread 1: Locking lock a
Thread 1: Unlocking lock a
Thread 1: Locking lock a
Thread 1: Unlocking lock a
Thread 1: Locking lock a

October 6, 2005 Appendix: A � Examples 243

Process starvation  2005, QNX Software Systems

2 Extracting core current process information:
/tmp/mutex-starvation.core:

processor=PPC num cpus=2

cpu 1 cpu=602370 name=604e speed=299
flags=0xc0000001 FPU MMU EAR

cpu 2 cpu=602370 name=604e speed=299

flags=0xc0000001 FPU MMU EAR
cyc/sec=16666666 tod adj=999522656000000000 nsec=5627098907040 inc=999960

boot=999522656 epoch=1970 intr=-2147483648

rate=600000024 scale=-16 load=16666
MACHINE="mtx604-smp" HOSTNAME="localhost"

hwflags=0x000004
pretend cpu=0 init msr=36866

pid=753682 parent=729105 child=0 pgrp=753682 sid=1

flags=0x000300 umask=0 base addr=0x48040000 init stack=0x4803f9f0
ruid=0 euid=0 suid=0 rgid=0 egid=0 sgid=0

ign=0000000006801000 queue=ff00000000000000 pending=0000000000000000

fds=5 threads=4 timers=1 chans=4
thread 1 REQUESTED

ip=0xfe32f8c8 sp=0x4803f880 stkbase=0x47fbf000 stksize=528384

state=JOIN flags=0 last cpu=2 timeout=00000000
pri=10 realpri=10 policy=RR

thread 2

ip=0xfe32f1a8 sp=0x47fbef50 stkbase=0x47f9e000 stksize=135168
state=RECEIVE flags=4000000 last cpu=2 timeout=00000000

pri=63 realpri=63 policy=RR

blocked chid=1
thread 3

ip=0xfe32f838 sp=0x47f9df80 stkbase=0x47f7d000 stksize=135168
state=MUTEX flags=4000000 last cpu=2 timeout=00000000

pri=1 realpri=1 policy=RR

thread 4
ip=0xfe32f9a0 sp=0x47f7cf20 stkbase=0x47f5c000 stksize=135168

state=NANOSLEEP flags=4000000 last cpu=1 timeout=0x1001000

pri=63 realpri=63 policy=RR

244 Appendix: A � Examples October 6, 2005

Glossary

October 6, 2005 Glossary 245

 2005, QNX Software Systems

action

A specific task the HAM will perform under certain associated
conditions. Examples of actions include executing an external
process, restarting a process that has died, sending a signal or pulse
notification, etc.

availability

The ability of a system to provide its intended service without
interruption for extended periods of time.

clustering

A method of distributing processing among several computers in
order to reduce the number ofSPOFs. QNX native networking offers
transparent network-wide processing, which facilitates building
clustered HA applications.

condition

An event that will trigger certainactions for the HAM to perform.
Examples of conditions include the death of entity, a missed
heartbeat, etc.

entity

A process that the HAM will monitor. Entities can explicitly ask to be
monitored (i.e. asself-attachedentities), or they may be monitored
without ever realizing it.

five nines

The celebratedavailability metric that refers to a system’s ability to
remain up and running 99.999% of the time per year.

Guardian

The HAM’s “clone”, a stand-in process that the HAM creates to
ensure uninterrupted HA management within the QNX environment.

October 6, 2005 Glossary 247

 2005, QNX Software Systems

HAT

High Availability Toolkit.

HAM

High Availability Manager.

heartbeat

A “wellness” or “liveness” notification sent at specific intervals by a
client to the HAM.

hot swap

The ability to remove or insert a component in a live system.

MMU

Memory Management Unit. A device on many CPUs that alerts the
OS if a process tries to access memory that’s been allocated to another
process.

MTTF

Mean Time To Failure. This is the average length of time that the
system will remain in service before failing. You want this to be as
long as possible.

MTTR

Mean Time To Repair. This is the amount of time it takes for the
system to resume operation after any component fails or is upgraded.
You want this to be as small as possible.

Neutrino

Name of the QNX microkernel.

SPOF

Single point of failure. Any particular “weak link” in a system would
be considered a SPOF, because its demise would put the entire system
at risk.

248 Glossary October 6, 2005

 2005, QNX Software Systems

watchdog

A trusted piece of hardware whose main purpose is to trigger code
that will check the sanity of the system. There are software watchdogs
as well; the HAM may be considered a “smart watchdog.”

October 6, 2005 Glossary 249

Index

!

“five nines” metric 3

A

action
adding a notify pulse action to

an action on failure 93
adding a notify signal action to

an action on failure 96
adding a restart 122
control 80
defined 24
executing a waitfor action on

action fail 99
executing an external

command 84
executing an external command

on action fail 88
inserting delays into a sequence

of actions 126
log activity 109

logging messages on action
fail 90

removing from a condition 120
restart can be associated only

with death conditions 122
restarting a program 123

action fail
defined 27

C

checkpoint 69
close() 196
code example

compound restart 226
death/condition

notification 228
heartbeating clients (liveness

detection) 231
process starvation 238
simple restart 225

CONDABNORMALDEATH 40
CONDANY 41
CONDATTACH 41

October 6, 2005 Index 251

Index  2005, QNX Software Systems

CONDDEATH 40, 138
CONDDETACH 40, 138
CONDHBEATMISSEDHIGH 41,

138
CONDHBEATMISSEDLOW 41, 138
condition

associated with a condition raise
condition 149

defined 22
flags 42
freeing 147
removing 152
restart 123
setting up 137
triggered on state change 154
types of 40, 137

CONDRESTART 41, 138
ConnectAttach() 201, 218
ConnectDetach() 204
connection

attaching a recovery
function 193

attaching to the HA lib 201,
206, 216

closing 166, 196, 204
creating 201, 206
detaching 196, 204, 208, 212
duplicating 210
opening 216
reopening during

recovery 218, 220
setting up 157

creat() 206

D

deadlock 233
death

and restart actions 122
dup() 210

E

entity
attaching 129
control 141, 175
defined 20
detaching 160, 162, 164
externally attached 21
getting a handle to an 178
global 22
handle 137
self-attached 21, 134, 160, 164

externally attached entity 21

F

failure
designing for in order to

recover 5
fclose() 212
file stream

attaching to the HA lib 214
detaching a connection

associated with a 212
fopen() 214

252 Index October 6, 2005

 2005, QNX Software Systems Index

G

global entity 22
Guardian (HAM “stand-in”) 19,

30, 32

H

HA
microkernel architecture

inherently suited for 9
ha attach() 193, 196, 212, 216
ha close() 196
ha ConnectAttach() 194, 201
ha ConnectAttachr() 194
ha ConnectDetach() 204
ha creat() 194, 206
ha creat64() 194
ha detach() 208, 212
ha dup() 210
ha fclose() 212
ha fopen() 194, 214
HAM

as self-monitoring manager 9
hierarchy 20
multistage recovery 5
starting 53
stopping 54

ham (utility) 53
ham action control() 80
ham action execute() 84, 123
ham action fail execute() 88
ham action fail log() 90
ham action fail notify pulse() 93
ham action fail notify pulsenode()

93

ham action fail notify signal() 96
ham action fail notify signal node()

96
ham action fail waitfor() 99
ham action handle() 102
ham action handlefree() 105
ham action log() 109
ham action notify pulse() 112
ham action notify pulsenode()

112
ham action notify signal() 116
ham action notify signal node()

116
ham action remove() 120
ham action restart() 122
ham action waitfor() 126
ham attach() 129
ham attachnode() 129
ham attachself() 134
ham condition() 137
ham conditionhandle() 144
ham conditionhandlefree() 147
ham conditionraise() 149
ham conditionremove() 152
ham conditionstate() 154
ham connect() 157
ham connect*()

reference counts and 157
ham connectnd() 157
ham connectnode() 157
hamctrl (utility) 54
ham detach() 160
ham detachname() 162
ham detachnamenode() 162
ham detachself() 164
ham disconnect() 166

reference counts and 166

October 6, 2005 Index 253

Index  2005, QNX Software Systems

ham disconnectnd() 166
ham disconnectnode() 166
ham entity() 168
ham entity conditionraise() 171
ham entity conditionstate() 173
ham entity control() 141, 175
ham entity handle() 178
ham entity handlefree() 181
ham heartbeat() 183
ham stop() 54
ham verbose() 187
handle

entity 178
freeing 105, 181
functions that expect 102
getting 102
getting a condition 144
subsequent use of after a call to

ham action handle() 104
subsequent use of after a call to

ham conditionhandle()
146

subsequent use of after a call to
ham entity handle() 179

ha open() 194, 216
ha ReConnectAttach() 194, 218
ha reopen() 194, 220
HAREPLACERECOVERYFN 194
HCONDINDEPENDENT 138
HCONDNOWAIT 139
heartbeat

as a way to detect
deadlock 236

as a way to detect
starvation 243

clients assert “liveness” by
sending 232

possible delay in receiving 184
resetting the state of 107
setting interval for 135
transmitting 183

HREARMAFTERRESTART 107,
113, 123, 127, 139

caveat regarding 117

I

inetd

restarting 225

M

message passing 16
MMU 4
MTTR 14

N

Neutrino microkernel 15

O

open() 159, 216, 220

P

placeholders

254 Index October 6, 2005

 2005, QNX Software Systems Index

for entity objects 168
POSIX process model 15
postmortem analysis 4, 237, 243
pulse

setting up notification of 112

Q

QNX
key factors for intrinsic HA 15
microkernel architecture

inherently reduces SPOFs
4

R

recovery
functions

attaching to a
connection 193

defined in<ha/types.h>
193

restart
action 122
condition 123

S

self-attached entity 21, 134, 160,
164

session 1 129, 134
signal

setting up notification of 116
software faults

detecting 13
isolating 4
main cause of system failure 3
traditional ways to handle 13

SPOF 4
starting a HAM 53
starvation

condition resulting from mutex
problem 241

detected by HAM 243
stopping a HAM 54

V

verbosity
modifying 187

W

watchdog 13, 19

October 6, 2005 Index 255

