
QNX® SDK for Apps and Media 1.0

QNX® SDK for Apps and Media 1.0

Multimedia Architecture Guide

©2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All rights
reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, Foundry27 are trademarks of
BlackBerry Limited that are registered and/or used in certain jurisdictions, and
used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Monday, April 14, 2014

Table of Contents

About This Guide ...5
Typographical conventions ...6

Technical support ...8

Chapter 1: Multimedia Architecture ...9

Device detection and information retrieval ...13

Metadata synchronization and retrieval ...15

Media playback ..18

Multimedia Architecture Guide

Table of Contents

About This Guide

The Multimedia Architecture Guide provides an overview of the multimedia components

in the QNX® SDK for Apps and Media 1.0 and describes how they work together.

This table may help you find what you need in this guide:

Go to:To find out about:

Multimedia Architecture (p. 9)The layers in the multimedia architecture

and the communication between

components

Device detection and information retrieval

(p. 13)

The components used to detect media

devices

Metadata synchronization and retrieval (p.

15)

The components used to upload media

metadata

Media playback (p. 18)The components used to play media

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Multimedia Architecture

The QNX® SDK for Apps and Media 1.0 uses several resource managers, services,

and libraries to perform the multimedia tasks of detecting mediastores, synchronizing

media metadata with databases, and playing audio and video files.

These components form part of a robust and versatile platform that supports all types

of media applications. The organization of these components looks like this:

QNX Neutrino RTOS

Device publishers

Output

PPS

QDB
databases

io-audio

screenmm-renderermm-sync

libmmplaylistlibmd

Playlist
informationmetadata

File and
media

Synchronization
control

Playback controlMedia file
queries

Device
information

retrieval

Devices C APIs

Media applications

OS services

Multimedia
components

Applications

Figure 1: Multimedia Architecture

Communication

As Figure 1: Multimedia Architecture (p. 9) shows, communication between media

applications, multimedia components, and OS services is done with C APIs, QDB

databases, and Persistent Publish/Subscribe (PPS) objects. The multimedia

synchronizer service, mm-sync, and the multimedia rendering component, mm-ren

Copyright © 2014, QNX Software Systems Limited 9

derer, expose C APIs to client applications for starting and monitoring media

operations.

The QDB databases store metadata describing the media content found on devices.

Querying these embedded databases to retrieve metadata is much faster than reading

it from files on physically separate devices. Also, this design means that the metadata

is kept in persistent storage, so applications can read the metadata of files stored on

devices no longer attached to the system.

The PPS objects store information describing mediastores (devices) currently attached

to the system. This information includes hardware connectivity details and the device's

filesystem type and mountpoint. Your applications can use POSIX system calls to read

the information in these objects, which is necessary for discovering and accessing

media content.

Applications

Your media applications can read device information from PPS objects and interact

with mm-sync, mm-renderer, and QDB at any time and in any order because these

services are independent of one another. For instance, an application could synchronize

some or all of a device's metadata with mm-sync, query the device's QDB database

for specific track information to make it visible to users, and then, in response to user

requests, begin playing certain tracks with mm-renderer. Or, it could skip the

synchronization and begin playing the first audio track found on a newly attached

device by invoking mm-renderer.

It's up to developers to implement the application front-end, whether it's an interactive

HMI component or a command interface, and the logic that invokes the multimedia

services to carry out media tasks. The platform ships with several sample utilities that

allow you to test various multimedia services from the command line, without having

to learn their APIs:

mmcli

Tests the APIs of multimedia components by forwarding commands to a

loaded library or service.

mmrplay

Plays or records media through mm-renderer, based on command-line

options.

mmsyncclient

Forwards media synchronization commands to mm-sync and reports

synchronization status.

The source code for mmrplay and mmsyncclient is included in the platform's source

code samples package, which is separate from the installers that set up the host system

10 Copyright © 2014, QNX Software Systems Limited

Multimedia Architecture

but is also available at the same download location. The package also includes the

source code of the multimedia plug-and-play utility, mm-pnp, which is a demo program

that provides a walkthrough of the API call sequences that detect when the user

attaches a mediastore and then access, extract, and play its content.

The Multimedia Test Utilities Guide explains the purpose of mmcli, mmrplay, and

mm-pnp, how to start these utilities with command lines, and how to configure and

use them. The Multimedia Synchronizer Developer's Guide provides usage instructions

for mmsyncclient.

Multimedia components

The multimedia components work together to perform three main tasks:

• Detecting devices and retrieving their information

• Synchronizing metadata to QDB databases

• Playing audio and video files

The other sections in this guide explain the order of interaction and the information

flow between the components to carry out each of these tasks.

The platform comes with these multimedia components:

Path(s)DescriptionName

/pps/qnx/device/*,

/pps/qnx/driver/*,

/pps/qnx/mount/*

Store attributes describing device connectivity, driver

processes, and mountpoints of device filesystems.

Device

information

objects in PPS

$QNX_TAR

GET/platform/usr/sbin/mm-sync,

Synchronizes metadata from tracks and playlists on

media devices into QDB databases. Metadata includes

creation and runtime information for files and playlists.

mm-sync

where the $QNX_TARGET environment

variable provides a partial path to the

installer image binaries (e.g.,

/qnx660/target/qnx6/), and

platform is a processor name (i.e., arm

le-v7 or x86)

$QNX_TAR

GET/platform/usr/sbin/qdb

Manages embedded databases that store metadata read

from media devices.

QDB

$QNX_TAR

GET/platform/usr/lib/libmd.so

Reads metadata fields from files on media devices. This

component library is used by mm-sync but can linked

into and called from an application.

libmd

$QNX_TAR

GET/platform/usr/lib/libmm

playlist.so

Retrieves playlist entries, which are track URLs

referenced in playlist files. This component library is

used by mm-sync but can linked into and called from

an application.

libmm

playlist

Copyright © 2014, QNX Software Systems Limited 11

Path(s)DescriptionName

$QNX_TAR

GET/platform/usr/sbin/mm-render

er

Plays audio and video tracks, and reports playback state.

You can play multiple items concurrently but

independently.

mm-renderer

$QNX_TAR

GET/platform/usr/lib/lib

screen.so

Renders video output to the display. This service is used

by mm-renderer but it can be used directly by

applications to manipulate the video output window.

screen

$QNX_TARGET/platform/sbin/io-

audio

Starts audio drivers to enable outputting of audio streams

through hardware. This service is used by mm-renderer

and shouldn't be used directly by media applications.

io-audio

OS services

The OS layer includes the device publishers. When users attach devices, device

publishers create PPS objects and write device information into them. The publishers

remove the objects that store information about specific devices when users remove

those devices. Your media applications can monitor the entries of the PPS directories

that store these objects and then read the object contents to discover new media

sources and to explore them for playable content.

The Device Publishers Developer's Guide explains the types of PPS objects that store

device information, the directories in which these objects are published, and the

included publisher services and the device types that they support.

12 Copyright © 2014, QNX Software Systems Limited

Multimedia Architecture

Device detection and information retrieval

The device publishers update device information in PPS objects when users attach or

detach devices. Your applications can read this information and use it to access media

content and decide what to synchronize and play.

The interaction between these components proceeds as shown here:

QNX Neutrino RTOS

Device publishers

Output

PPS

QDB
databases

io-audio

screenmm-renderermm-sync

libmmplaylistlibmd

Playlist
information

metadata

File and
media

Synchronization
control

Playback controlMedia file
queries

Device
information

retrieval

Devices C APIs

Media applications

OS services

Multimedia
components

Applications

1

2

3

4

Figure 2: Device Monitoring and Information Retrieval

1. Detecting device attachments

Device publishers don't physically detect when users attach or detach devices.

Other OS-layer processes—device drivers and protocol stacks—monitor I/O hardware

for physical state changes that indicate device attachments or detachments (e.g.,

SD card insertions or USB device connections). Because they interface with

hardware, the drivers and stacks contain up-to-date details on the physical

connectivity and filesystem mountpoints of attached devices. The publishers must

Copyright © 2014, QNX Software Systems Limited 13

Device detection and information retrieval

communicate with these system processes to learn of device attachments and

detachments.

2. Obtaining device information

Different publishers use different methods for obtaining the latest device

information. The usblauncher publisher queries the io-usb process for device

information (for details, see “The usblauncher Service” in the Device Publishers

Programmer's Guide). The mmcsdpub and cdpub publishers monitor specific /dev

paths and when they notice new or updated entries, they communicate with the

drivers to obtain device information (for details, see “Role of device drivers and

mcd”).

3. Publishing device information to PPS

After retrieving information about newly attached devices from other OS processes,

the publishers output this information in text format to PPS objects. Each object

stores information that describes a single device. Also, the publishers use different

object types for storing device connectivity, driver process, and filesystem

information. For more details, see “PPS object types”.

When publishers learn from a driver or protocol stack process that a device has

been detached, they delete the PPS objects related to that device.

4. Detecting devices in media applications

Before your applications can synchronize or play any media, they must learn which

devices (or mediastores) are attached to your system. Your applications must monitor

the device-related PPS objects to readily receive information about newly attached

devices. This information includes the mountpoints, which your applications can

use to explore the relevant filesystem locations to identify and access media tracks.

For example, when a USB device is inserted, its default mountpoint is /fs/usb0.

The publisher monitoring USB device attachments and removals (usblauncher)

writes this mountpoint information to a PPS object in /pps/qnx/mount/.

Other information fields can help you enforce media policies. For instance, suppose

that you want to filter playback based on the mediastore type. By examining the

media_type attribute, your application can choose to play tracks on some device

types (say, audio CDs) but to ignore tracks on other device types (say, DVDs).

For more details on detecting mediastores from an application, see the first two

steps of the process described in the “Synchronizing media content from

applications” section in the Multimedia Synchronizer Developer's Guide.

14 Copyright © 2014, QNX Software Systems Limited

Multimedia Architecture

Metadata synchronization and retrieval

Media applications invoke mm-sync to synchronize metadata on mediastores with

QDB databases. The mm-sync service uses dedicated libraries to extract track and

playlist metadata from mediastores and then stores this information in databases.

Applications can later query these databases to retrieve the metadata.

The interaction between these components proceeds as shown here:

QNX Neutrino RTOS

Device publishers

Output

PPS

QDB
databases

io-audio

screenmm-renderermm-sync

libmmplaylistlibmd

Playlist
informationmetadata

File and
media

Synchronization
control

Playback controlMedia file
queries

Device
information

retrieval

Devices C APIs

Media applications

OS services

Multimedia
components

Applications

1

2 4

3 5 6

Figure 3: Metadata Synchronization and Retrieval

1. Starting a synchronization

After learning which devices (mediastores) are attached to the system and exploring

their media contents, applications can invoke mm-sync to upload metadata from

tracks and playlists stored on those mediastores into QDB databases. Metadata

includes creation and playback information such as the album name, artist name,

track title, and track duration. The command to start a synchronization must contain

the mediastore path of the files to synchronize (e.g, /tunes/queen/) as well as

Copyright © 2014, QNX Software Systems Limited 15

Metadata synchronization and retrieval

the device entry for the QDB database (e.g, /dev/qdb/cd0_db) that will store

the metadata.

An application must create and load the appropriate QDB database before it starts

a synchronization. We recommend using the device's unique ID in the database

name; for information on how to do this, refer to the “Maintaining database

persistence” section in the Multimedia Synchronizer Developer's Guide.

2. Extracting file and media metadata

The mm-sync service uses the libmd library to read metadata fields (types) from

mediastore files. The files named in the metadata requests sent to libmd are

always located within the mediastore path given to mm-sync. For information on

libmd, see the Metadata Provider Library Reference.

3. Storing file and media metadata

The mm-sync service must store the extracted metadata in the database tables

and fields (columns) specified in the configuration. The mm-sync configuration

file defines the mapping of metadata fields to database fields for each of the audio,

video, and photo types of media. You can modify this mapping to change which

metadata fields get uploaded to QDB databases and which database tables and

fields the various metadata fields get stored in. For information on how to do this,

see the <Configuration>/<Database>/<Synchronization>/<ConfigurableMetadata>

element in the mm-sync configuration description.

4. Extracting playlist entries

Once the media metadata has been uploaded, mm-sync extracts the entries for

all playlists found within the path specified at the start of synchronization. Playlist

entries, which are track URLs referenced in playlist files, are retrieved by using

the libmmplaylist library. For information on libmmplaylist, see the

Multimedia Playlist Library Reference.

5. Storing playlist entries

The mm-sync service then uploads the playlist entries to the device's database.

This action fills in empty fields in the tables that store playlist information. In the

mm-sync configuration file, you can define filename pattern matches and even

an alternative configuration for libmmplaylist for greater control over what

playlist entries get synchronized. For information on how to do this, refer to the

<Configuration>/<Database>/<Synchronization>/<PLSS> element in the mm-sync

configuration description.

6. Retrieving synchronized metadata

Media applications can issue SQL queries to a database through the QDB API to

retrieve up-to-date track and playlist information. This information lets you show

details of the currently playing track and the tracks in the playlist window, support

browsing of mediastore files and directories, and display album artwork. To know

16 Copyright © 2014, QNX Software Systems Limited

Multimedia Architecture

when the synchronization of a mediastore has completed, meaning the tables in

the device's database are as accurate as possible, your applications must monitor

mm-sync events and wait for the MMSYNC_EVENT_MS_SYNCCOMPLETE event.

Copyright © 2014, QNX Software Systems Limited 17

Metadata synchronization and retrieval

Media playback

Media applications use mm-renderer to play audio and video tracks. The applications

attach mediastore files or playlists as the mm-renderer input and attach one or more

hardware devices as the outputs. During playback, mm-renderer manages the media

flow between the input and the outputs.

The interaction between these components proceeds as shown here:

QNX Neutrino RTOS

Device publishers

Output

PPS

QDB
databases

io-audio

screenmm-renderermm-sync

libmmplaylistlibmd

Playlist
information

metadata

File and
media

Synchronization
control

Playback controlMedia file
queries

Device
information

retrieval

Devices C APIs

Media applications

OS services

Multimedia
components

Applications

1,2

2

2

2

3

3

Figure 4: Media Playback

1. Configuring the rendering service

To play media content, an application must configure the mm-renderer service

by defining a context and then attaching an input and one or more outputs to that

context. For the input, the application must provide the URL of a track or playlist

stored on an accessible mediastore. For the output, it must provide a URL that

names an output device and lists the device configuration options. For an overview

18 Copyright © 2014, QNX Software Systems Limited

Multimedia Architecture

of the API calls required to set up playback, see the “Playing media” section in

the Multimedia Renderer Developer's Guide.

2. Controlling playback

When an application issues the command to start playback, mm-renderer initiates

the media flow between the input and the outputs. Note that the rendering service

doesn't parse the media files itself but instead uses lower-level mechanisms (e.g.,

HTTP streamers, file readers) to read and forward their contents, which it then

directs to other utilities that send the audio and video components to the appropriate

drivers. The main purpose of mm-renderer during playback is to process playback

commands. These commands allow applications to change the playback speed,

skip to a new track position, and stop playback.

3. Outputting audio and video

Plugins within mm-renderer communicate (through intermediate libraries, which

aren't shown) with the Screen Graphics Subsystem for outputting video and with

the io-audio utility for outputting audio. Screen is the windowing system that

mm-renderer uses to render video to the display. The io-audio utility is a

resource manager that dynamically loads and configures audio drivers; mm-ren

derer uses it to deliver the audio in media tracks to the appropriate output devices

(e.g., speakers).

Copyright © 2014, QNX Software Systems Limited 19

Media playback

Index

D

device monitoring and information retrieval process 13
devices 13

monitoring 13
retrieving information on 13

M

media 18
playing 18

media playback process 18
metadata 15

retrieving 15
synchronizing 15

metadata synchronization and retrieval process 15

multimedia 9, 10, 11, 12
application requirements 10
architecture 9
communication between components 9
components 11
OS services for detecting media devices 12
sample utilities 10

T

Technical support 8
Typographical conventions 6

U

USB 14
default mountpoint 14

Copyright © 2014, QNX Software Systems Limited 21

Multimedia Architecture Guide

22 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Multimedia Architecture
	Device detection and information retrieval
	Metadata synchronization and retrieval
	Media playback

	Index

