
QNX® SDK for Apps and Media 1.0

QNX® SDK for Apps and Media 1.0

HTML5 Developer's Guide

©2012–2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Tuesday, August 5, 2014

Table of Contents

About This Guide ...5
Typographical conventions ...6

Technical support ...8

Chapter 1: SDK Overview ..9

Chapter 2: Browser Engine ..11

CSS3 support ...14

HTML5 elements ..15

HTML5 offline web applications ...16

Browser API support ...17

Chapter 3: Web Sandbox Model ...19

Chapter 4: Developing HTML5 Apps ..21

The HTML5 development environment ..22

Creating an HTML5 app ..24

Chapter 5: Creating Your Own Cordova Plugin ...25

The cordova.exec() function ...27

Example: Using the PPS interface ..28

Chapter 6: Enhancing Performance ..33

Chapter 7: WebLauncher's JavaScript APIs ...35

WebLauncher application APIs ...36

WebLauncher webinspector APIs ..37

WebLauncher webview APIs ...38

Chapter 8: Debugging Web Apps ...47

Enabling Web Inspector ...48

Launching Web Inspector ..49

Debugging and profiling using Web Inspector ..50

Optimizing layout and style ..51

Inspect and modify element styles ..52

Inspect and modify the DOM ..52

Modify the box model for an element ...53

Analyzing page resources ...54

HTML5 Developer's Guide

View resource content ..55

View resource network information ..55

Analyzing network usage ..56

Apply a filter to display a specific resource type ...57

Change which time measure is displayed ...57

Reorder the list of resources ...57

Debugging scripts ...58

Set and use breakpoints ...58

Pause script execution ...59

Pause script execution on exceptions ..59

Analyzing loading, script execution, and rendering times ..60

Record browser engine activity ..61

Constrain the display to a specific time span ..61

Filter which events are displayed ..61

Analyzing memory usage and processing demands ...62

Profile the memory usage of your scripts ..62

Profile the performance of your CSS selectors ..63

Auditing your webpage ..65

Table of Contents

About This Guide

This guide explains how to develop optimal user interfaces for applications created

with the QNX SDK for Apps and Media.

This table may help you find what you need in this guide:

Go to:To find out about:

SDK Overview (p. 9)The QNX SDK for HTML5 and where to

download it

Browser Engine (p. 11)The WebKit-based browser engine

HTML5 elements (p. 15)HTML5 elements (audio, video, etc.) you

can use in your apps

Web Sandbox Model (p. 19)Using “sandboxing” so that applications

can run in complete isolation from each

other

Developing HTML5 Apps (p. 21)The process for creating an HTML5 app

The HTML5 development environment (p.

22)

The HTML5 development environment

and tools

Creating an HTML5 app (p. 24)Creating a basic application

Creating Your Own Cordova Plugin (p. 25)Creating plugins to extend your app's

functionality

Enhancing Performance (p. 33)Best practices for optimal performance

WebLauncher's JavaScript APIs (p. 35)Weblauncher APIs (webview.create,

webview.status, etc.)

Debugging Web Apps (p. 50)Using Web Inspector to debug your apps

© 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

6 © 2014, QNX Software Systems Limited

About This Guide

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

© 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

To obtain technical support for this product, visit the BlackBerry Support Forum.

8 © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com
http://supportforums.blackberry.com/t5/General-Support-Forums/ct-p/GeneralSupportForums

Chapter 1
SDK Overview

The QNX SDK for HTML5 provides a framework for developing and executing

web-compatible applications, specifically using such technologies as HTML5, CSS3,

JNext. Using Apache Cordova, you can create and package HTML5 applications for a

target device.

To install the latest HTML5 development environment, download the

html5sdk-datestamp.zip archive from the QNX Download Center and follow the

instructions given in the accompanying installation note and in the README.

Apache Cordova

Apache Cordova is a framework for application development that allows you to use

common web technologies, primarily HTML5, JavaScript, and CSS, to create

applications for mobile devices. Using Cordova, you can:

• Package an HTML5 app to deploy it to the target hardware.

• Create JavaScript APIs to access native services on the platform.

• Use webserver emulation so that your app can run without actually running a

webserver on the target hardware.

• Provide security features to your application.

Since the user interface for your application doesn't have to be created using HTML5,

you can use other HMI technologies, such as Qt (a lighter-weight comprehensive

framework) and OpenGL (for 2D and 3D graphics on embedded systems).

A non-HTML5 environment may be appropriate if you prefer a different HMI tool, if

you have legacy assets in other tooling frameworks, or if a system is being built without

the need for extensibility.

© 2014, QNX Software Systems Limited 9

http://www.qnx.com/download/
http://cordova.apache.org/

Chapter 2
Browser Engine

The browser engine has rich support for features such as canvas, WebSocket, session

storage, offline apps, worker threads, Document Object Model (DOM) improvements,

audio and video tags, and WebGL.

Included with your SDK is a reference browser application implemented with HTML5,

CSS3, and JavaScript. The browser includes tool bars, status bars, URL address entry,

buttons, and so on. A browser without these components is called a “chromeless

browser”. If required, you can customize or replace this browser application. Because

the browser application is implemented in HTML5, the code is readily viewable via

Web Inspector in WebKit browsers, such as Google Chrome.

Based on WebKit, the browser engine provides support for HTML5 and related standards

and technologies (including CSS3) and for JavaScript and associated standards, such

as AJAX, JavaScript Object Notation (JSON), and XML. The QNX browser engine has

optimized WebKit in a number of ways:

• improved user interaction (complex touch event handling, smooth zooming/scrolling,

fat-finger touch target detection, etc.), performance, and battery life for mobile

devices

• enhanced user operations such as fast scrolling and zoom (e.g., zooming in on a

webpage) to reduce RAM utilization

• enhanced JavaScript execution to improve performance and reduce CPU utilization

and unnecessary battery drain

• reduced power consumption (e.g., by throttling background threads)

• added support for multimodal input (e.g., trackpad, keyboard, and virtual keyboard)

• improved overall speed (e.g., by selective image down-sampling)

The browser engine provides a set of core classes that you can use to display web

content in a window. By default, the browser engine implements the most basic

functionality of a browser, such as the ability to follow links and to download and

display content. You can use the engine's functionality at the most basic level to

display web content in your app or you can use APIs to create your own full-featured,

customized, web-based app.

Downloading and browsing content from the web can be a fairly daunting task for a

browser, given the wide variety of content and encoding types used on the Internet.

The browser engine handles these different content types transparently by creating

and managing the objects necessary to render the incoming content. The engine

provides view classes used to display content. Each view class (called a WebView)

contains frames (called WebFrames); each frame implements its own scroll bar. You

© 2014, QNX Software Systems Limited 11

http://www.webkit.org

don't need to implement custom views or custom frames in order to display content

in your app.

By running multiple WebViews in a single engine instance, overall memory footprint

can be reduced. However, since all apps share the same engine, they're not isolated

from each other. Bad behavior in one app can impact all other apps that share the

same engine instance. This mode would typically be used for a set of apps that are

tested together and deployed as a bundle (e.g., core apps shipped from the

manufacturer). Or, a single app can be run in its own private engine instance. This

provides isolation at the expense of increased memory footprint.

Web browser app

The web browser app supports URL entry, tabs, back, forward, history, settings, and

bookmarks. By default, the browser supports 800×480 and 720p resolutions in

landscape mode. To support other resolutions, you can modify the browser application

source.

HTML5 apps

The HTML5 application framework provides the necessary additions to the browser

engine to allow it to support full-fledged apps. This environment allows developers to

create and deploy apps built from web technologies (HTML5, CSS3, and JavaScript)

with plugins that provide access to the underlying device hardware and native services,

just like native C/C++ apps.

Plugins

The browser engine includes plugins based on the Netscape Plugin API (NPAPI)

through a dynamically linked library. The plugins provide access to PPS (Persistent

Publish/Subscribe), SQL, and Screen services. You can add additional plugins as

required.

The PPS plugin provides the HTML5 domain with access to the full PPS API.

The SQLite 3 plugin provides SQLite database access, including a complete API for

opening, querying, and modifying the database.

JavaScript plugins

JavaScript Cordova plugins use the browser engine plugins to provide HTML5 apps

with access to middleware-layer services, including radio, phone, media engine, ASR,

and navigation. For example, the audioplayer plugin uses the PPS plugin to provide

access to functions such as start, pause, and play. The reference media player

application depends on this plugin.

12 © 2014, QNX Software Systems Limited

Browser Engine

Web Inspector tool

Included as part of WebKit, Web Inspector is a useful debugging and profiling

development tool for web content. You can use this tool to troubleshoot and optimize

your web content for your apps. The tool includes a variety of features and capabilities,

such as inspection, profiling, console integration, and more. For details, see “Debugging

Web Apps (p. 47)” in this guide.

© 2014, QNX Software Systems Limited 13

CSS3 support

The browser engine supports CSS3 properties. For a complete list of supported CSS3

properties for WebKit-based browsers, see the CSS3 Browser Support Reference at

the following W3Schools site:

http://www.w3schools.com/cssref/css3_browsersupport.asp

14 © 2014, QNX Software Systems Limited

Browser Engine

http://www.w3schools.com/cssref/css3_browsersupport.asp

HTML5 elements

The SDK lets you use HTML5 elements in your apps. For details about these elements,

see the following W3Schools references:

DescriptionElement

Represents a sound or audio stream.HTML5 Audio

Provides a container for JavaScript to draw graphics on a

webpage.

HTML5 Canvas

Scripts use this object to programmatically determine the

location information associated with the hosting device.

HTML5 Geolocation

Provides functions to access a list of key/value pairs for

local storage objects (i.e., objects that persist after a

browser session has ended).

HTML5 Web Storage

(localStorage)

Lets you save a large amount of key/value pairs and text

for session storage objects (i.e., objects that are valid only

for the current browser session).

HTML5 Web Storage

(sessionStorage)

Represents a video or video stream.HTML5 Video

Allows JavaScript code to be executed in a background

thread.

HTML5 Web Workers

© 2014, QNX Software Systems Limited 15

HTML5 elements

http://www.w3schools.com/html/html5_audio.asp
http://www.w3schools.com/html/html5_canvas.asp
http://www.w3schools.com/html/html5_geolocation.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_video.asp
http://www.w3schools.com/html/html5_webworkers.asp

HTML5 offline web applications

HTML5 includes several features that address the challenge of building web apps that

work offline. These features include SQL, offline app-caching APIs, online/offline

events, status, and the localStorage API.

For more information about creating web apps that work offline, see the W3C document

Offline Web Applications.

16 © 2014, QNX Software Systems Limited

Browser Engine

http://dev.w3.org/html5/offline-webapps/

Browser API support

The browser engine supports various standard APIs. For information about these APIs,

see the following W3C resources:

DescriptionAPI Support

A set of APIs to manipulate client-side databases using

SQL.

Web SQL Database

An API that allows webpages to use the WebSocket protocol

to enable web apps to maintain bidirectional

communications with a remote host.

WebSocket API

An API that allows authors of web apps to spawn

background workers running scripts in parallel to their main

Web Workers

page. This process allows for thread-like operation with

message passing as the coordination mechanism.

An API that provides scripted access to geographical

location information associated with the hosting device.

Geolocation API

Specification

© 2014, QNX Software Systems Limited 17

Browser API support

http://www.w3.org/TR/webdatabase/
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/workers/
http://dev.w3.org/geo/api/spec-source.html
http://dev.w3.org/geo/api/spec-source.html

Chapter 3
Web Sandbox Model

The BlackBerry 10 OS architecture is designed to be both simple and powerful. A

powerful benefit is the use of sandboxing, so that applications can run in complete

isolation from each other. The platform provides a multiprocess architecture that allows

system developers to partition the UI into a set of core and sandboxed apps. With this

architecture, multiple WebViews (or windows) can either share a common engine

instance or run in their own engine instance. Each WebView (equivalent to a tab in a

desktop browser) can be implemented with a separate (and different) JavaScript

application framework (for example, jQuery Mobile or Sencha Touch).

Applications running within the same instance of the HTML5 engine wouldn't be

isolated from each other. Incorrect behavior in one application could impact all other

applications. For example, a hung or stalled JavaScript thread in one application would

hang all other HTML5 applications. This is why the BlackBerry 10 OS architecture

runs each application in its own private HTML5 engine instance (its “sandbox”). This

design isolates applications so that any problems they encounter don't impact other

applications. The sandbox model does, however, increase the system's memory

footprint.

© 2014, QNX Software Systems Limited 19

Chapter 4
Developing HTML5 Apps

The browser engine is based on the WebKit (www.webkit.org) open-source web browser

engine, which we have optimized for embedded environments and have extended with

numerous capabilities to provide a full-featured web browser.

An HTML5 app created with the Apache Cordova framework can be targeted to run

on a variety of devices or ported to a different OS, such as iOS or Android. You can

take advantage of popular mobile web frameworks, such as Sencha Touch and jQuery

Mobile, to provide a wide range of useful APIs that can greatly simplify cross-browser

web development.

The process for creating an HTML5 app involves three main steps:

create files
(HTML,scripts,
config.xml)

Test and package
your app

Install the app on
your target system

The HTML5 app environment lets you create and deploy applications built from web

technologies (HTML5, CSS3, and JavaScript) with plugins that can access the

underlying device hardware and native services, just like native C/C++ applications.

The HTML5 standard ensures compatibility between browsers, making the BlackBerry

10 OS environment compatible with mobile, desktop, and web environments—the

same HTML code can be used in all these environments.

© 2014, QNX Software Systems Limited 21

http://www.webkit.org
http://cordova.apache.org/

The HTML5 development environment

Here are the key components for developing HTML5 apps for the

QNX SDK for Apps and Media:

HTML5 SDK

The HTML5 SDK contains the Apache Cordova framework, which you can

use to create plugins for your mobile apps. When you installed the

QNX SDK for Apps and Media 1.0, you should also have installed the HTML5

SDK (available from the QNX Download Center).

JavaScript

HTML5 applications can interact with underlying services via JavaScript

plugins. JavaScript classes provide interfaces to various feature components.

These consist of the PPS interfaces and the UI core APIs for home screen

development. The NPAPI provides extensions to the HTML5 engine through

a dynamically linked library. PPS, SQL, and the UI core APIs are

implemented through an NPAPI interface. These APIs provide access to

native DLLs that give applications access to services such as the composition

manager and the launcher. If such services are required, you can add

additional plugins to extend your applications.

Persistent Publish/Subscribe (PPS) API

The PPS service provides a simple, filesystem-based API for client

applications. For details, see the Persistent Publish/Subscribe Developer's

Guide.

Node.js

Node.js is a platform built on Chrome's JavaScript runtime for building fast,

scalable network applications. Node.js is required—you should have installed

it when you installed the HTML5 SDK.

jQuery

jQuery is a popular open-source JavaScript framework for developing web

apps (available from www.jquery.com). jQuery includes a number of UI

widgets and utilities for DOM manipulation. Its features include:

• Open-source framework

• jQuery UI widgets

• Event handling

• CSS3 animations and effects

• Asynchronous JavaScript And XML (AJAX) utilities

22 © 2014, QNX Software Systems Limited

Developing HTML5 Apps

http://cordova.apache.org/
http://www.qnx.com/download/
http://www.jquery.com

For more information about jQuery, see Using jQuery Core at the jQuery site.

Web Graphics Library (WebGL)

This graphics library is integrated into the browser engine (p. 11), so you

don't need to download and install any binaries to use it. Based on OpenGL

ES 2.0, WebGL is a cross-platform JavaScript API. As a DOM API, it runs

in the HTML5 canvas element to render interactive 3D graphics in

compatible browsers.

For debugging your apps, you may want to install Google Chrome on your

development system. This WebKit-based browser works in conjunction with

the Web Inspector, a useful debugging and profiling development tool for web

content. For details, see “Debugging Web Apps (p. 47)” in this guide.

© 2014, QNX Software Systems Limited 23

The HTML5 development environment

http://learn.jquery.com/using-jquery-core/

Creating an HTML5 app

An HTML5 application created with Apache Cordova is a standalone app, which means

you're not required to point to a remote server to load a webpage or another app because

your app lives on the device. The application is essentially an arrangement of web

assets that are packaged into a container that can be viewed by a browser (the browser

engine container).

To create a basic Cordova app template:

1. Navigate to the folder where you installed the HTML5 SDK.

2. Change to the cordova/blackberry10/bin folder.

3. Run the Cordova create command to create a new Cordova project:

create project_path package_name app_ID

where:

• project_path points to an empty directory

• package_name is a reverse domain name, such as com.company.appname

• app_ID is unique for the target system

In addition, the package_name and app_ID can't be more than 50 alphanumeric

characters long.

For example: create hello com.example.hello HelloWorld

The create command generates the folder structure for your project at the specified

location (for the example above, the hello directory). If you build this app without

modifications, you'll produce a small Cordova app that handles the deviceready

event and displays the Cordova logo on the screen.

You can add your own code and additional resources to create a more robust

application. All of your project resource files should be stored in the /www folder (or

in a subfolder within /www).

For information on packaging, installing, and launching your HTML5 app, see

the Application and Window Management guide.

For instructions on creating a simple Cordova plugin that uses PPS, see

“Creating Your Own Cordova Plugin (p. 25)” in this guide.

24 © 2014, QNX Software Systems Limited

Developing HTML5 Apps

Chapter 5
Creating Your Own Cordova Plugin

Although HTML5 offers a wide range of functionality, that functionality is limited to

what's provided by the SDK. An application is implemented as a webpage (named

index.html by default) that references whatever CSS, JavaScript, images, media

files, or other resources are necessary for it to run. The app executes as a WebView

within the native application framework. For the web app to interact with various device

features the way native apps do, it must also reference a cordova.js file, which

provides API bindings. If you want to access other features not provided by the platform

SDK, you have to write a plugin. A plugin is a bridge between the WebView the app

is running in and the native layer of the platform. Plugins provide a mechanism to call

into native APIs that aren't provided with the SDK.

This chapter assumes that you know how to create Cordova plugins for other platforms.

For information on creating Cordova plugins, see the Apache Cordova Documentation.

Many of the services available with BlackBerry 10 OS can be accessed through a PPS

interface. In the sections that follow, we'll walk through the creation of a simple plugin

(com.qnx.demo) that creates a PPS object and writes to it. You can use the same

principles to manipulate other PPS objects.

Structure of a plugin

You can place the artifacts of the plugin in any directory structure, as long as you

specify the file locations in the plugin.xml file. Here's a typical structure (names

in bold represent directories):

• plugin_name

• plugin.xml

• www

• client.js

• src

• blackberry10

• index.js

• plugin_name.js

• other JavaScript or native files, as required (*.js, *.cpp, *.hpp)

The JavaScript part of a plugin must contain, at a minimum, the following resources:

© 2014, QNX Software Systems Limited 25

http://cordova.apache.org/docs/en/3.0.0/index.html

plugin.xml

The plugin.xml file is an XML document in the plugins namespace,

http://apache.org/cordova/ns/plugins/1.0. The plugin.xml

file contains a top-level plugin element that defines the plugin itself and

child elements that define the file structure of the plugin.

You must name this file plugin.xml.

client.js

Considered the client side, this file exports APIs that a Cordova application

can call. The APIs in client.js make calls to index.js. The APIs in

client.js also connect callback functions to the events that fire the

callbacks.

You must name this file client.js.

index.js

Cordova loads index.js and makes it accessible through the cordova.exec()

bridge. The client.js file makes calls to the APIs in the index.js file,

which in turn makes calls to JNEXT to communicate with the native side.

If your plugin needs to include events, make sure to define these events in

index.js. Events are defined inside the _actionMap variable.

You must name this file index.js.

In our example, we need a file to deal with the PPS activities of the plugin. We'll call

this file demo.js to reflect the name of the plugin. You can name this file whatever

you want, but using the plugin name is standard practice.

Depending on what your plugin needs to do, you might need to create other

JavaScript files. In addition, if the native functionality you need isn't available

through an existing interface (such as PPS or another plugin), you'll need to

write the C/C++ code to provide JavaScript access to that functionality.

26 © 2014, QNX Software Systems Limited

Creating Your Own Cordova Plugin

The cordova.exec() function

You can structure your plugin's JavaScript according to your preference. However, you

must use the cordova.exec() function to communicate between the Cordova JavaScript

and the native environment. The cordova.exec() function is defined in the cordova.js

file and has the following signature:

exec (<successFunction>, <failFunction> , <service> , <action> , [< args >]);

The parameters are:

<successFunction>

Success function callback. Assuming your exec() call completes successfully,

this function is invoked (optionally with any parameters you pass back to

it).

<failFunction>

Error function callback. If the operation doesn't complete successfully, this

function is invoked (optionally with an error parameter).

<service>

The name of the service to call into on the native side. This is mapped to a

native class.

<action>

The name of the action to call into. This is picked up by the native class

receiving the cordova.exec() call, and essentially maps to a class's method.

< args >

Arguments to pass into the native environment.

The cordova.exec() function is the key to your plugin—it provides the link between

the JavaScript and the native APIs. For more information about cordova.exec(), see

the Apache Cordova documentation.

© 2014, QNX Software Systems Limited 27

The cordova.exec() function

Example: Using the PPS interface

In the example, called com.qnx.demo, we build a plugin that provides methods and

events for creating, updating, and watching a simple PPS object. The example links

to the PPS utilities file, ppsUtils.js, which is included as part of the webplat

form.js file in the SDK directory. The namespace for ppsUtils.js is qnx.web

platform.pps. The files in the demo follow the structure described in the “Structure

of a plugin” (p. 25) section.

Files in the example

This example includes the following files:

• plugin.xml in the com.qnx.demo directory. This file declares the namespace

of the plugin, and describes the file structure.

• demo.js and index.js in the com.qnx.demo/src/blacberry10 directory.

The demo.js file initializes the extension and defines functions for handling events

and returning PPS data. The index.js file sets up the events that are triggered.

• client.js in the com.qnx.demo/www directory. This file defines the externally

visible methods that apps can use.

Let's look at some of these files in more detail.

demo.js

The demo.js file provides the core functionality of the plugin. First, we link to the

qnx.webplatform.pps namespace and declare some variables we'll use later:

var _pps = qnx.webplatform.pps,
 _readerPPS,
 _writerPPS,
 _triggerUpdate;

Now we'll create the demo PPS object. There's additional code that handles errors

and so on, but let's focus on the PPS object's creation:

_readerPPS = _pps.createObject("/pps/qnxcar/demo", _pps.PPSMode.DELTA);
_readerPPS.onNewData = function(event) {
 if (_triggerUpdate && event && event.data) {
 _triggerUpdate(event.data);
...

_writerPPS = _pps.createObject("/pps/qnxcar/demo", _pps.PPSMode.DELTA);

...

The preceding code creates a new PPS object (/pps/qnxcar/demo) with two handles:

one for reading (_readerPPS) and one for writing (_writerPPS). These handles

give us access to the methods in qnx.webplatform.pps that we can use for

28 © 2014, QNX Software Systems Limited

Creating Your Own Cordova Plugin

manipulating the PPS data. The _triggerUpdate object is used in handling events.

Here, we use it in defining the action to take when new data is available in our PPS

object.

The demo.js file also defines the functions for handling the event trigger

(setTriggerUpdate()) and for getting (get()) and setting (set()) the PPS data. These

functions are exported so that they can be called from the index.js file:

/**
 * Sets the trigger function to call when an event is fired
 * @param trigger {Function} The trigger function to call
 * when an event is fired
 */
setTriggerUpdate: function(trigger) {
 _triggerUpdate = trigger;
},

/**
 * Returns the demo object
 * @returns {Object} The demo object
 */
get: function(settings) {
 return _readerPPS.data.demo;
},

/**
 * Set a demo object field
 * @param {String} key The data key
 * @param {Mixed} value The data value
 */
set: function(key, value) {
 var data = {};
 data[key] = value;
 _writerPPS.write(data);
}

index.js

In the index.js file, we define the functions that we'll make available to our clients

through the client.js file:

/**
* Starts triggering events
* @param {Function} success Function to call if the operation is a success
* @param {Function} fail Function to call if the operation fails
* @param {Object} args The arguments supplied
* @param {Object} env Environment variables
*/
startEvents: function(success, fail, args, env) {
 _eventResult = new PluginResult(args, env)
 try {
 _demo.setTriggerUpdate(function (data) {
 _eventResult.callbackOk(data, true);
 });
 _eventResult.noResult(true);
 } catch (e) {
 _eventResult.error("error in startEvents: " + JSON.stringify(e), false);
 }
},

/**
 * Stops triggering events
 * @param {Function} success Function to call if the operation is a success
 * @param {Function} fail Function to call if the operation fails
 * @param {Object} args The arguments supplied
 * @param {Object} env Environment variables

© 2014, QNX Software Systems Limited 29

Example: Using the PPS interface

 */
stopEvents: function(success, fail, args, env) {
 var result = new PluginResult(args, env);
 try {
 //disable the event trigger
 _demo.setTriggerUpdate(null);
 result.ok(undefined, false);

 //cleanup
 _eventResult.noResult(false);
 delete _eventResult;
 } catch (e) {
 result.error("error in stopEvents: " + JSON.stringify(e), false);
 }
},

/**
 * Returns system settings
 * @param success {Function} Function to call if the operation is a success
 * @param fail {Function} Function to call if the operation fails
 * @param args {Object} The arguments supplied
 * @param env {Object} Environment variables
 */
get: function(success, fail, args, env) {
 var result = new PluginResult(args, env)
 try {
 var fixedArgs = _wwfix.parseArgs(args);
 var data = _demo.get();
 result.ok(data, false);
 } catch (e) {
 result.error(JSON.stringify(e), false);
 }
},

/**
 * Sets one or more system settings
 * @param success {Function} Function to call if the operation is a success
 * @param fail {Function} Function to call if the operation fails
 * @param args {Object} The arguments supplied
 * @param env {Object} Environment variables
 */
set: function(success, fail, args, env) {
 var result = new PluginResult(args, env)
 try {
 var fixedArgs = _wwfix.parseArgs(args);
 _demo.set(fixedArgs.key, fixedArgs.value);
 result.ok(undefined, false);
 } catch (e) {
 result.error(JSON.stringify(e), false);
 }
}

In the preceding code, we define four functions:

• startEvents() and stopEvents(), which use the setTriggerUpdate() function we

defined in index.js. This function is referenced as _demo.setTriggerUp

date().

• get(), which uses the get() function we defined in index.js (referenced here as

_demo.get()).

• set(), which uses the set() function we defined in index.js (referenced here as

_demo.set()).

client.js

The client.js file defines the public-facing interface, or client side, of our plugin.

This is where we use the cordova.exec() function to call the PPS functions we've

defined in our server-side files.

30 © 2014, QNX Software Systems Limited

Creating Your Own Cordova Plugin

First, we declare our variables. We'll use _ID in our calls to cordova.exec():

var _self = {},
 _ID = "com.qnx.demo",
 _utils = cordova.require('cordova/utils'),
 _watches = {};

We create a function to hande PPS update events. This function is also passed to

cordova.exec(), but isn't accessible to other applications:

/**
 * Handles update events for this plugin
 * @param data {Array} The updated data provided by the event
 * @private
 */
function onUpdate(data) {
 var keys = Object.keys(_watches);
 for (var i=0; i<keys.length; i++) {
 setTimeout(_watches[keys[i]](data), 0);
 }
}

Finally, we define our public-facing functions and export them. For each one, we call

cordova.exec() and pass it the name of the function to call from index.js:

/**
 * Watch for PPS object changes
 * @param {Function} callback The function to call when a change is detected.
 * @return {String} An ID for the added watch.
 * @example
 *
 * //define a callback function
 * function myCallback(myData) {
 * //just send data to log
 * console.log("Changed data: " , myData);
 * }
 * }
 *
 * var watchId = car.demo.watchDemo(myCallback);
 */
_self.watchDemo = function (callback) {
 var watchId = _utils.createUUID();

 _watches[watchId] = callback;
 if (Object.keys(_watches).length === 1) {
 window.cordova.exec(onUpdate, null, _ID, 'startEvents', null, false);
 }

 return watchId;
}

/**
 * Stop watching for PPS changes
 * @param {Number} watchId The watch ID as returned by car.demo.watchDemo().
 * @example
 *
 * car.sensors.cancelWatch(watchId);
 */
_self.cancelWatch = function (watchId) {
 if (_watches[watchId]) {
 delete _watches[watchId];
 if (Object.keys(_watches).length === 0) {
 window.cordova.exec(null, null, _ID, 'stopEvents', null, false);
 }
 }
}

/**
 * Get the value of the demo PPS object
 * @returns {Object} The demo object contents.
 */

© 2014, QNX Software Systems Limited 31

Example: Using the PPS interface

_self.get = function () {
 var value = null,
 success = function (data, response) {
 value = data;
 },
 fail = function (data, response) {
 throw data;
 };

 try {
 window.cordova.exec(success, fail, _ID, 'get', null);
 } catch (e) {
 console.error(e);
 }
 return value;
}

/**
 * Set a demo object field
 * @param {String} key The data key
 * @param {Mixed} value The data value
 */
_self.set = function (key, value) {
 window.cordova.exec(null, null, _ID, 'set', { key: key, value: value });
}

module.exports = _self;

Applications that use our plugin will need to define a callback function for Cordova

to call when watchDemo() is successful.

32 © 2014, QNX Software Systems Limited

Creating Your Own Cordova Plugin

Chapter 6
Enhancing Performance

The following best practices will help you develop more efficient apps.

1. Avoid Canvas.

Canvas and SVG elements aren't optimal for use on mobile and embedded platforms,

because proper hardware acceleration for these elements hasn't yet been finalized.

2. Avoid 2D transformations.

Use 3D instead. For example, instead of translateX(x) use trans

late3d(x,y,z). This will force hardware acceleration of the translation. You can

use similar methods for most other transformations. Avoid animating with JavaScript

libraries!

3. Avoid opacity, rounded corners, and gradients.

These are a significant drain on performance when they're redrawn often. If used

sparingly and mostly on static objects, they shouldn't impede performance, but if

you mix these elements with animations, buttons, or anything that gets redrawn

often, performance will suffer. Consider using images instead of heavy CSS.

4. Remove elements from the DOM when modifying them.

This technique is especially helpful when you're updating several DOM fields at

once. For example, if you're scrolling through a list of 100 contacts and you want

to refresh them, updating them one by one will cause the list to be redrawn 100

times. But if you remove the entire list, update the contacts in memory, and then

add the list again, this does only two redraws.

5. Hide elements you don't need.

Adding display:none to elements that don't need to be displayed will prevent

them from being rendered.

6. Avoid libraries intended for desktop use.

Some JavaScript libraries are designed for use on a desktop browser with a powerful

CPU. Try to limit the number of third-party JavaScript libraries included in your

app or try to seek out versions optimized for mobile use.

7. Use image sprites.

These are useful for preloading active element states (e.g., buttons with a “pressed”

state).

© 2014, QNX Software Systems Limited 33

Chapter 7
WebLauncher's JavaScript APIs

By using the Cordova framework and the Browser Chrome APIs, you can customize

your browser chrome. The following API categories are available:

• application (p. 36)—functions and properties for the current application

• webinspector (p. 37)—functions related to the Web Inspector tool

• webview (p. 38)—functions to manage your webviews

© 2014, QNX Software Systems Limited 35

WebLauncher application APIs

The application framework provides functionality to the browser engine to allow it to

support apps. This environment lets you create and deploy apps built from web

technologies (HTML5, CSS3, and JavaScript) with plugins that provide access to the

underlying device hardware and native services, just like native C/C++ apps.

The following WebLauncher application APIs are available for you to implement

your own browser chrome:

• application.adduri

• application.bindToNetworkDevice

• application.coverSize

• application.extendTerminate

• application.getenv

• application.isDeviceLocked

• application.isForeground

• application.lockRotation

• application.minimizeWindow

• application.newWallpaper

• application.notifyRotateComplete

• application.realpath

• application.requestExit

• application.rotate

• application.setKeyboardTracking

• application.setPooled

• application.setSwipeStart

• application.setenv

• application.systemFontFamily

• application.systemFontSize

• application.systemRegion

• application.unlockRotation

• application.unsetenv

• application.updateCover

• applicationWindow.flushContext

• applicationWindow.setSize

• applicationWindow.setVisible

36 © 2014, QNX Software Systems Limited

WebLauncher's JavaScript APIs

WebLauncher webinspector APIs

Web Inspector is a useful debugging and profiling development tool for web content.

Use this tool to troubleshoot and optimize your web content for your apps. The tool

itself includes various features and capabilities, including inspection, profiling, console

integration, and more.

The following WebLauncher webinspector APIs are available for you to implement

your own browser chrome:

• webInspector.enabled

• webInspector.enabledForWebView

• webInspector.port

• webInspector.setEnabled

• webInspector.setEnabledForWebView

© 2014, QNX Software Systems Limited 37

WebLauncher webinspector APIs

WebLauncher webview APIs

Every HTML5 app has its own WebView. A WebView is a view that's rendered by the

web engine to display an app. The browser engine provides a set of core classes that

you can use to display web content in a window. By default, the browser engine

implements the most basic functionality of a browser, such as the ability to follow

links and to download and display content. You can use the engine's functionality at

the most basic level to display web content in your app or you can use APIs to create

your own full-featured, customized, web-based app.

The QNX SDK for Apps and Media provides a multiprocess architecture that allows

for multiple WebViews to share a common engine instance or run in their own engine

instance. Trusted apps are run "in process", sharing a web engine instance. Other apps

are run "out of process", protected from each other by process boundaries, each with

their own web engine instance. You can implement each WebView with a separate

JavaScript application framework, such as jQuery or Sencha Touch.

The following WebLauncher webview APIs are available for you to implement your

own browser chrome:

• webview.addKnownSSLCertificate

• webview.addKnownSSLCertificates

• webview.addOriginAccessWhitelistEntry

• webview.applicationSwipeInEvent

• webview.applicationWindowGroup

• webview.arguments

• webview.assignFocus

• webview.autofillTextField

• webview.automationLog

• webview.backgroundColor

• webview.bitmapZoom

• webview.canGoBack

• webview.canGoForward

• webview.cancelVibration

• webview.captureContents

• webview.certificateInfo

• webview.cleanupSSLCertificateDetails

• webview.clearAutofillData

• webview.clearBackForwardList

• webview.clearBrowsingData

• webview.clearCache

38 © 2014, QNX Software Systems Limited

WebLauncher's JavaScript APIs

• webview.clearCookies

• webview.clearCredentials

• webview.clearDatabases

• webview.clearFocus

• webview.clearHistory

• webview.clearLocalStorage

• webview.clearWebFileSystem

• webview.contentRectangle

• webview.continueSSLHandshaking

• webview.convertIDNtoReadableStringByLanguage

• webview.create

• webview.createFadeColorWindow

• webview.currentContext

• webview.defaultFontSize

• webview.defaultTextEncoding

• webview.delete

• webview.destroy

• webview.destroyFadeColorWindow

• webview.destroyIfNotRejectedByUser

• webview.devicePixelRatio

• webview.dialogResponse

• webview.downloadCancel

• webview.downloadPause

• webview.downloadRemove

• webview.downloadResume

• webview.downloadRetry

• webview.downloadUpdate

• webview.downloadUrl

• webview.enableQnxJavaScriptObject

• webview.encryptionInfo

• webview.eventNames

• webview.executeJavaScript

• webview.executeJavaScriptFunction

• webview.extraHttpHeaders

• webview.fadeColorWindowPlatformHandle

• webview.favicon

• webview.fileSystemAPISandboxed

• webview.findString

• webview.focusNextField

© 2014, QNX Software Systems Limited 39

WebLauncher webview APIs

• webview.focusPreviousField

• webview.forcedTextEncoding

• webview.fullScreenVideoCapable

• webview.fullScreenVideoExited

• webview.getCookies

• webview.getSSLCertificateDetails

• webview.goBack

• webview.goForward

• webview.handleContextMenuResponse

• webview.handleWebInspectorMessageToBackend

• webview.historyLength

• webview.historyPosition

• webview.initialize

• webview.isActive

• webview.isAllPropertyChangedEventsEnabled

• webview.isAllWebEventsEnabled

• webview.isAlwaysShowKeyboardOnFocus

• webview.isAnyPropertyChangedEventsEnabled

• webview.isAnyWebEventsEnabled

• webview.isAutoDeferNetworkingAndJavaScript

• webview.isBlockPopups

• webview.isDeferNetworkingAndJavaScript

• webview.isEnableCookies

• webview.isEnableCredentialAutofill

• webview.isEnableCrossSiteXHR

• webview.isEnableDNSPrefetch

• webview.isEnableDefaultOverScrollBackground

• webview.isEnableDialogRequestedEvents

• webview.isEnableDiskCache

• webview.isEnableDownloadableBinaryFonts

• webview.isEnableFineCursorControl

• webview.isEnableFormAutofill

• webview.isEnableGeolocation

• webview.isEnableInputMethodSupport

• webview.isEnableInputNotifications

• webview.isEnableJavaScript

• webview.isEnableLocalAccessToAllCookies

• webview.isEnableMediaRTSP

• webview.isEnableNetworkResourceRequestedEvents

40 © 2014, QNX Software Systems Limited

WebLauncher's JavaScript APIs

• webview.isEnablePlugins

• webview.isEnableSoundOnAnchorElementTouchEvents

• webview.isEnableSpatialNavigation

• webview.isEnableTextSelectionControls

• webview.isEnableWebInspector

• webview.isEnableWebSockets

• webview.isLoadImages

• webview.isPluginFullScreen

• webview.isPrivateBrowsing

• webview.isPropertyChangedEventEnabled

• webview.isVideoFullScreen

• webview.isVisible

• webview.isWebEventEnabled

• webview.isZoomToFitWidthOnLoad

• webview.javaScriptInterruptTimeout

• webview.jsScreenWindowHandle

• webview.knownSSLCertificate

• webview.knownSSLCertificates

• webview.loadFile

• webview.loadProgress

• webview.loadString

• webview.loadStringWithBase

• webview.loadURL

• webview.location

• webview.lockProperties

• webview.log

• webview.maximumScale

• webview.minimumFontSize

• webview.minimumScale

• webview.notificationClicked

• webview.notificationClosed

• webview.notificationError

• webview.notificationShown

• webview.notifyApplicationOrientationDone

• webview.notifyContextMenuCancelled

• webview.notifyDataReceived

• webview.notifyDone

• webview.notifyHeaderReceived

• webview.notifyOpen

© 2014, QNX Software Systems Limited 41

WebLauncher webview APIs

• webview.notifySystemLowMemory

• webview.notifyViewportChanged

• webview.openWindowResponse

• webview.originalLocation

• webview.overScrollColor

• webview.printToStderr

• webview.printToStdout

• webview.reload

• webview.removeAllKnownSSLCertificates

• webview.removeGeolocationFilter

• webview.removeKnownSSLCertificate

• webview.removeOriginAccessWhitelistEntry

• webview.requestCurrentContextUpdate

• webview.requestSession

• webview.restoreSession

• webview.scale

• webview.scrollBy

• webview.scrollPosition

• webview.secureType

• webview.securityInfo

• webview.sensitivity

• webview.setActive

• webview.setAllPropertyChangedEventsEnabled

• webview.setAllWebEventsEnabled

• webview.setAllowGeolocation

• webview.setAllowNotification

• webview.setAllowUserMedia

• webview.setAllowWebInspection

• webview.setAlwaysShowKeyboardOnFocus

• webview.setApplicationActivationState

• webview.setApplicationOrientation

• webview.setAutoDeferNetworkingAndJavaScript

• webview.setBackgroundColor

• webview.setBitmapZooming

• webview.setBlockPopups

• webview.setCookies

• webview.setDefaultFontSize

• webview.setDefaultTextEncoding

• webview.setDeferNetworkingAndJavaScript

42 © 2014, QNX Software Systems Limited

WebLauncher's JavaScript APIs

• webview.setDevicePixelRatio

• webview.setEnableCookies

• webview.setEnableCredentialAutofill

• webview.setEnableCrossSiteXHR

• webview.setEnableDNSPrefetch

• webview.setEnableDefaultOverScrollBackground

• webview.setEnableDialogRequestedEvents

• webview.setEnableDiskCache

• webview.setEnableDownloadableBinaryFonts

• webview.setEnableFineCursorControl

• webview.setEnableFormAutofill

• webview.setEnableGeolocation

• webview.setEnableInputMethodSupport

• webview.setEnableInputNotifications

• webview.setEnableJavaScript

• webview.setEnableLocalAccessToAllCookies

• webview.setEnableMediaRTSP

• webview.setEnableNetworkResourceRequestedEvents

• webview.setEnablePlugins

• webview.setEnableSoundOnAnchorElementTouchEvents

• webview.setEnableSpatialNavigation

• webview.setEnableTextSelectionControls

• webview.setEnableWebSockets

• webview.setEnabledOutOfProcessWebInspector

• webview.setExtraHttpHeaders

• webview.setExtraPluginDirectory

• webview.setFadeColorWindowRect

• webview.setFadeWindowColor

• webview.setFileSystemAPISandboxed

• webview.setForcedTextEncoding

• webview.setFullScreenVideoCapable

• webview.setGeometry

• webview.setHistoryPosition

• webview.setJSWebViewBindings

• webview.setJavaScriptInterruptTimeout

• webview.setKeyboardVisibilityLocked

• webview.setKeyboardVisible

• webview.setLayerTilerPrefillRect

• webview.setLoadImages

© 2014, QNX Software Systems Limited 43

WebLauncher webview APIs

• webview.setMinimumFontSize

• webview.setOverScrollColor

• webview.setPatternMatchingEnabled

• webview.setPopupWebView

• webview.setPrivateBrowsing

• webview.setPropertyChangedEventEnabled

• webview.setScreenPowerState

• webview.setScrollPosition

• webview.setScrolling

• webview.setSensitivity

• webview.setStandalone

• webview.setTemporaryViewportSize

• webview.setTextReflowMode

• webview.setUserAgent

• webview.setUserStyleSheetLocation

• webview.setViewport

• webview.setViewportHeight

• webview.setViewportInitialScale

• webview.setViewportMaximumScale

• webview.setViewportMinimumScale

• webview.setViewportTargetDensityDpi

• webview.setViewportUserScalable

• webview.setViewportWidth

• webview.setVisible

• webview.setWebEventEnabled

• webview.setWebInspectorEnabled

• webview.setZOrder

• webview.setZoomFactor

• webview.setZoomToFitWidthOnLoad

• webview.status

• webview.stop

• webview.submitForm

• webview.syncProxyCredential

• webview.textEncoding

• webview.textHasAttribute

• webview.textReflowMode

• webview.title

• webview.tooltip

• webview.unlockProperties

44 © 2014, QNX Software Systems Limited

WebLauncher's JavaScript APIs

• webview.updateDisabledPluginFiles

• webview.updateGeolocationFilter

• webview.updateNotificationPermission

• webview.userAgent

• webview.userStyleSheetLocation

• webview.viewport

• webview.viewportHeight

• webview.viewportInitialScale

• webview.viewportMaximumScale

• webview.viewportMinimumScale

• webview.viewportTargetDensityDpi

• webview.viewportUserScalable

• webview.viewportWidth

• webview.webInspectorPort

• webview.windowUniqueId

• webview.zOrder

• webview.zoomFactor

© 2014, QNX Software Systems Limited 45

WebLauncher webview APIs

Chapter 8
Debugging Web Apps

Included as part of WebKit, Web Inspector is a useful debugging and profiling

development tool for web content. You can use this tool to troubleshoot and optimize

your web content for your apps. The tool includes a variety of features and capabilities,

such as inspection, profiling, console integration, and more.

By default, Web Inspector functionality is disabled. To use Web Inspector in conjunction

with the browser, you must first enable it in the browser options. For a Cordova

application, you enable Web Inspector by specifying a command-line flag at compile

time. For instructions on enabling, see “Enabling Web Inspector (p. 48)” in this guide.

To begin debugging your app, you can install the Google Chrome browser or another

WebKit browser for your platform. Once Web Inspector is enabled, you can access it

using a supported device in conjunction with the Chrome browser.

© 2014, QNX Software Systems Limited 47

Enabling Web Inspector

Use Web Inspector to debug and profile your apps. The browser uses a client-server

architecture to make Web Inspector functionality available by acting as a webserver.

You inspect the content remotely on a browser; use any WebKit-based browser on the

same Wi-Fi network to navigate to the IP address and port number used by the browser

and to begin inspecting the code.

To enable Web Inspector for your app:

1. Navigate to your cordova apps directory.

2. Run the following command:

build debug

To launch your compiled app, you'll need to know the port number your app is

running on. You can use netstat -a to see all of the currently opened ports.

The listening port numbers start at 1337.

48 © 2014, QNX Software Systems Limited

Debugging Web Apps

Launching Web Inspector

Before you begin to use Web Inspector, verify the following:

• Your computer is connected to your target board via Ethernet.

• Your computer has a WebKit-based desktop browser (e.g., Google Chrome or Apple

Safari).

• You have launched your application on the target (e.g., by manually starting we

blauncher or by sending a command to the launcher's PPS object via a command

console).

After you've launched the app you want to inspect, you'll need to manually connect

Web Inspector.

To launch Web Inspector to begin inspecting web content:

1. On your host computer, open your WebKit-based browser.

2. In the address bar, type the IP address of the device and specify the port number

used by the application serving the content. Note that different instances of the

browser will be at different ports.

You'll be prompted with a list of page titles for content that Web Inspector has

loaded into memory, such as browser content or an HTML5 app.

3. Click any of the page titles to begin using Web Inspector to debug and profile your

web content.

Web Inspector opens and displays the Elements panel.

In the Sources view, once you enable debugging to ensure you have the latest source

files in the list, you'll need to refresh the current page by using the shortcut key

CTRL+R.

In the Console view, you can browse objects, test extensions, and test APIs without

having to build and deploy your app.

© 2014, QNX Software Systems Limited 49

Launching Web Inspector

Debugging and profiling using Web Inspector

Web Inspector allows you to inspect and debug your webpage source code, inspecting

web content displayed through the browser or in HTML5 applications. You can use

Web Inspector to manipulate the DOM, edit and debug JavaScript code, analyze

resource requests, and audit the performance of web content and web apps in near

real time.

Using the WebKit-based browser on your desktop, you can navigate to the IP address

and port number used by the server application and begin inspecting the code.

Web Inspector contains a number of panels that provides different functionality you

can use to help improve the appearance and performance of your webpage:

DescriptionPanel

Inspect the DOM of the current webpage and adjust settings

for attributes and CSS properties. Changes you make are

reflected in the browser.

Elements (p. 51)

Display information about all the resources used by the

current webpage.
Resources (p. 54)

Display information about each HTTP request made as

resources are requested, received, and displayed in the

browser or in your HTML5 app.

Network (p. 56)

Debug JavaScript code. You can set breakpoints and step

through your code to locate and correct issues.
Sources (p. 58)

View how much time it takes for the browser to load and

render the webpage and its resources.
Timeline (p. 60)

Examine how your JavaScript code utilizes memory. With

the Profiles panel, you can pinpoint programmatic

inefficiencies.

Profiles (p. 62)

Examine the network utilization and webpage performance.

The tool suggests ways to improve performance.
Audits (p. 65)

A command-line utility that lets you debug JavaScript or

HTML parsing errors.

Console

50 © 2014, QNX Software Systems Limited

Debugging Web Apps

Optimizing layout and style

As you try to achieve an optimal layout for small screens such as those on BlackBerry

smartphones, the Elements panel can be a very useful tool. The Elements panel allows

you to view the DOM and trace style values for an element to see where values are

applied, how they have been inherited, and where style values have been superseded.

You can adjust style settings to tweak the appearance of the webpage components to

achieve the desired result. The changes you make to the webpage are applied in near

real time in the BlackBerry Browser, so you can see how your changes affect the

appearance of the content. Once you achieve the results you want, you can propagate

the updated values into the source file.

The Elements panel

You can click the Elements icon on the toolbar to display the Elements panel.

The Elements panel is divided into two sections. On the left is the document pane,

which displays the DOM tree of the HTML source document. Each element is displayed

as a separate node. You can expand the nodes of the DOM tree to view the children

of a container element. The document pane of the Elements panel is a good tool to

use to view the source of a page. Since the panel displays the page as a tree, the

document is easy to view and to navigate, even when the original webpage is minified

or poorly formatted and difficult to read. Within the document pane, you can edit

aspects of the DOM, such as attribute values or text.

On the right is a set of collapsible panes that display various pieces of information

related to the element currently selected in the document pane. Some of these panes,

such as Computed Style and Event Listeners, are informative; you use them simply

to track information about the element. Other panes are editable and let you change

© 2014, QNX Software Systems Limited 51

Optimizing layout and style

the styles or properties associated with the selected element. You can edit content in

the following panes:

• Styles: The Styles pane is divided into sections that show each matched CSS rule

and the associated style declarations. It also displays style values that have been

inherited. Inherited values that have been overwritten by other style declarations

are shown with strikethough text.

• Metrics: The Metrics pane provides a visual representation of the box model, which

you can edit to optimize the layout of a container element on the screen. The box

model refers to the amount of space a container element occupies in a rendered

webpage. You can apply styles such as margins, borders, and padding to an element

to adjust the size of the content block and improve the page layout.

• Properties: The Properties pane allows you to view the page as it is seen by

JavaScript code—as a collection of DOM objects with associated property values.

Although some of the property values are editable, in most cases it's easier to edit

style values in the Styles pane.

Inspect and modify element styles

1. Click the Elements icon on the toolbar to display the Elements panel.

2. In the document pane, locate and select the element with the style you want to

modify.

3. In the data sidebar, expand the Styles pane to display the style declarations applied

to the selected element.

4. Perform any of the following actions:

• To change the value for a style declaration, double-click the value in the Styles

pane to make the value editable, then type the new value. You can use the Tab

key to cycle through the declarations within a selector to modify more than one

value.

• To disable a style declaration, deselect the adjacent check box.

• To add a new style declaration for a selector, double-click the white space below

the last style declaration, then type the new declaration.

• To modify the selector, double-click the selector, then type the new selector

value.

5. When you're done, propagate your changes to the source document.

Inspect and modify the DOM

1. Click the Elements icon on the toolbar to display the Elements panel.

2. In the document pane, navigate to the node that you want to view or change.

3. Perform any of the following actions:

52 © 2014, QNX Software Systems Limited

Debugging Web Apps

• To change the value of an attribute, double-click the value in the document

pane to make the value editable, then type the new value. Use the Tab key to

cycle through each of the element's attributes to modify more than one value.

• To change an attribute name, double-click the attribute name and type the new

value.

4. When you're done, propagate the changes to the source document.

Modify the box model for an element

1. Click the Elements icon on the toolbar to display the Elements panel.

2. In the Elements panel, expand the Metrics pane to display the box model associated

with the selected element.

3. Click any of the top, bottom, left, or right values, then type the new value. The

changed value is propagated to the associated style declaration in the Styles pane.

4. When you're done, propagate the changes to the source document.

© 2014, QNX Software Systems Limited 53

Optimizing layout and style

Analyzing page resources

The Resources panel allows you to view the complete set of resources that are loaded

by a webpage. You can view and interact with resources such as CSS and JavaScript,

check image content and information, and view which font sets are used on the page.

You can also view and interact with any client-side resources created by your page,

including cookies, databases, storage objects, and application cache.

The Resources panel

You can click the Resources icon on the toolbar to display the Resources panel.

The Resources panel shows a complete list of the resources that the WebKit engine

must request and load to render the webpage, as well as any client-side resources

created and used by the webpage. You can also use the Resources panel to view the

content of any resource file. Resources are organized in the panel as follows:

• Frames: Contains the resources for each frame displayed in the content, including

images, fonts, scripts, style sheets, and other content resources (e.g., embedded

video or Flash files). Subframes within the main window are displayed as subfolders

beneath the main Frames folder.

• Databases: Contains all the database tables that are associated with your content

or app.

• Local Storage: Contains all Local Storage objects, that is, storage objects that

persist after a browser session has ended.

• Session Storage: Contains all Session Storage objects, that is, storage objects that

are valid only for the current browser session.

54 © 2014, QNX Software Systems Limited

Debugging Web Apps

• Cookies: Contains all the cookies associated with the webpage or app.

• Application Cache: Contains the resources included in the manifest of an offline

web application.

View resource content

1. Click the Resources icon on the toolbar to display the Resources panel.

2. In the list in the left pane of the Resources panel, double-click a category to show

the resources and subgroups. Continue to drill down until you locate the resource

you want to view.

3. Double-click the resource in the left pane. The right pane shows the contents of

that resource. For example, selecting an image resource displays the image itself,

along with the file size and URL of the image file. Selecting a script or style sheet

shows the content of that script or style sheet.

View resource network information

You can quickly see additional information about a specific resource by viewing the

resource in the Network panel, which displays information such as file size and transfer

rate information.

1. In the list in the left pane of the Resources panel, double-click a category to show

the resources and subgroups. Continue to drill down until you locate the resource

you're interested in.

2. Right-click the resource and click Reveal in Network Panel. Web Inspector opens

the Network panel and briefly highlights the selected resource.

© 2014, QNX Software Systems Limited 55

Analyzing page resources

Analyzing network usage

The Network panel allows you to determine the network efficiency of your content.

The panel displays information about each HTTP request made as the browser engine

requests and downloads resources.

The Network panel

Click the Network icon in the toolbar to display the Network panel. Initially, the panel

shows no information; you must reload the content on the device or simulator to allow

Web Inspector to track the HTTP requests. When loading is complete, the Network

panel displays a table.

By default, the table lists each of the requested resources in their requested order,

and then charts the network activity as a waterfall timeline, with resources color-coded

by type.

The waterfall timeline plots resources by the total time required to load the resource,

from the initial request to the completion of the download. The pale segment of the

resource bar in the chart represents the total latency, that is, the time the browser

engine must wait from the moment it initially makes the request to the moment it

receives the first packet of data for the resource. Two vertical lines on the chart show

key page-load milestones:

• The blue line indicates the time when parsing of the content is complete and the

DOMContent event fires.

• The red line indicates the time when all the resources have been loaded and the

load event fires.

56 © 2014, QNX Software Systems Limited

Debugging Web Apps

You can customize how the content is displayed in the Network panel by filtering

based on type or sorting by any of the table headings. You can also reformat the chart

to highlight different time measures.

Apply a filter to display a specific resource type

By default, the Networks panel displays all resource requests in the table. The status

bar at the bottom of the panel contains buttons that allow you to filter the resources

displayed based on the resource type.

1. Click the Network icon on the toolbar to display the Network panel.

2. If you haven't already done so, on the device or simulator, reload the page to allow

Web Inspector to track and record network activity.

3. In the status bar at the bottom of the Network panel, choose the type of resource

you want to display.

Change which time measure is displayed

By default, when you measure the network activity, Web Inspector charts the network

activity in a waterfall timeline. You can reformat the chart to highlight different time

measures.

1. Click the Network icon on the toolbar to display the Network panel.

2. If you haven't already done so, on the device or simulator, reload the page to allow

Web Inspector to track and record network activity.

3. In the drop-down list above the chart, select one of the following:

• Timeline: Displays the network activity in a waterfall timeline.

• Start time: Highlights the time when each resource was requested.

• Response time: Highlights the time when the resource is initially received.

• End time: Highlights the time when the resource is completely loaded.

• Duration: Displays the total length of time it takes to load the resource.

• Latency: Displays the amount of delay between the start time value and the

response time value.

Reorder the list of resources

1. Click the Networks icon on the toolbar to display the Networks panel.

2. If you haven't already done so, on the device or simulator, reload the page to allow

Web Inspector to track and record network activity.

3. Click a column heading to reorder the list based on the column data.

© 2014, QNX Software Systems Limited 57

Analyzing network usage

Debugging scripts

The Sources panel allows you to debug the JavaScript code used by your webpage. By

allowing you to set breakpoints and to step through your code, the Web Inspector can

help to locate and correct problems within your code. When you determine that the

script is functioning as intended, you can copy the changes back into the source file.

To use the Sources panel, you must first enable debugging. When you first view the

Sources panel, Web Inspector prompts you to enable debugging for just the current

session or for all sessions.

The Sources panel

You can click the Sources icon in the toolbar to display the Sources panel. If you

haven't already enabled debugging, Web Inspector prompts you to do so.

The Sources panel is divided into two sections. On the left is the document pane,

which allows you to view and debug JavaScript. On the right is a set of collapsible

panes that display information related to the displayed script.

A toolbar at the top of the Sources panel allows you to choose the script file you want

to inspect and to cycle between open scripts. It also provides a set of controls that

allow you to step through the script displayed in the document pane.

Set and use breakpoints

1. Click the Sources icon on the toolbar to display the Sources panel.

2. In the line gutter of the document pane, click the line where you want to set a

breakpoint. A breakpoint marker appears in the line gutter and the new breakpoint

is added to the Breakpoints pane, identified by the script filename and line number.

The execution of the script pauses at the specified breakpoint.

58 © 2014, QNX Software Systems Limited

Debugging Web Apps

3. Perform any of the following actions:

• To continue the execution of the script beyond the current breakpoint, click the

Continue button in the Sources panel toolbar.

• To display the line of code associated with the breakpoint in the documents

pane, click the breakpoint entry in the Breakpoints pane. The document pane

displays and highlights the associated line.

• To disable a single breakpoint without removing it, in the Breakpoints pane,

uncheck the breakpoint. The execution of the script no longer pauses at the

disabled breakpoint.

• To deactivate or activate all the breakpoints listed in the Breakpoints pane

without removing them, toggle the breakpoint activation switch at the right side

of the Scripts panel toolbar.

• To remove a breakpoint, locate and click the breakpoint marker in the line gutter

of the document pane. The marker no longer appears in the line gutter and the

breakpoint is removed from the Breakpoints pane.

Pause script execution

You can pause the script at any time to get a snapshot of the call stack and variable

values.

1. Click the Sources icon on the toolbar to display the Sources panel.

2. In the Sources panel toolbar, click the Pause button.

When the script pauses, the last line of JavaScript to be executed is highlighted. The

call stack and the current in-scope variable values appear in the appropriate panes at

the right of the panel.

Pause script execution on exceptions

You can configure Web Inspector to pause the execution of scripts whenever exceptions

are thrown. A tri-state toggle allows you to specify whether to pause for all exceptions,

for only uncaught exceptions, or for no exceptions.

1. Click the Sources icon on the toolbar to display the Sources panel.

2. Use the Exceptions button in the status bar at the bottom to choose one of the

following behaviors:

• To pause on all exceptions, click the Exceptions button until the icon turns

blue.

• To pause only on uncaught exceptions, click the Exceptions button until the

icon turns red.

• To not pause on any exceptions, click the Exceptions button until the icon turns

gray.

© 2014, QNX Software Systems Limited 59

Debugging scripts

Analyzing loading, script execution, and rendering times

You can use the Timeline panel to analyze the time it takes to complete the different

activities that the browser engine must perform to completely load and render your

webpage.

The Timeline panel

Initially, the panel displays no information, so you must click the Record button in

the status bar to allow Web Inspector to record the browser engine activity.

As it records browser engine activity, Web Inspector adds data to the Timeline panel.

Note that all browser engine activity pauses when the device is locked or the browser

or HTML5 application are minimized. In order for Web Inspector to record any activity,

the browser or HTML5 application must be the active application and the device or

simulator screen mustn't be locked.

The Timeline panel is divided into two panes:

• In the top pane, the Timeline panel allows you select which timeline view you want

to display. You can choose three views:

• Events: Shows the time it takes for the browser engine to complete each of the

events required to completely load the content.

• Frames: Shows the browser engine activity for each screen refresh.

• Memory: Shows memory consumption over time.

• In the lower pane, the Timeline panel shows a waterfall timeline for the timespan

that was selected in the top pane. The data in the timeline is determined by the

mode you select in the top pane of the timeline's panel.

60 © 2014, QNX Software Systems Limited

Debugging Web Apps

Record browser engine activity

1. Click the Timeline icon on the toolbar to display the Timeline panel.

2. In the status bar at the bottom of the Timeline panel, click the record button to

begin recording browser engine activity. While Web Inspector is recording, the

record button turns red.

Constrain the display to a specific time span

You can constrain the time span shown in the timeline. In the top pane of the Timeline

panel, the portion of time displayed in the lower pane is represented by a white

background. Two gray slider handles at the top left and right edges of this white

background allow you to increase or decrease the selected timespan displayed in the

timeline.

1. Click the Timeline icon on the toolbar to display the Timeline panel.

2. If necessary, record the browser engine activity to generate timeline data.

3. In the top pane of the Timeline panel, click and drag a gray slider handle to increase

or decrease the time span.

Filter which events are displayed

By default, the Timeline panel shows all events in the table. The status bar at the bottom

of the panel contains check boxes that allow you to show and hide events based on

type.

1. If necessary, record the browser engine activity to generate timeline data.

2. In the status bar at the bottom of the Timeline panel, deselect the event types you

want to remove from the timeline.

© 2014, QNX Software Systems Limited 61

Analyzing loading, script execution, and rendering times

Analyzing memory usage and processing demands

The Profiles panel allows you to analyze the memory usage and processing demands

of your content. You can use the Profiles panel to create a performance profile for your

JavaScript and CSS files.

• For JavaScript files, Web Inspector examines and reports on the CPU usage for

each function. You can view the CPU usage for a particular function and for the

number of times that function was called.

• For CSS files, Web Inspector examines the processing demands for each selector.

Web Inspector records the amount of time it took to search for matches for a

particular selector and for the total number of matches for that selector.

To use the Profiles panel, you must first enable profiling. When you first view the

Profiles panel, Web Inspector prompts you to enable profiling for just the current

session or for all sessions.

The Profiles panel

If you haven't already enabled profiling, Web Inspector prompts you to do so.

Profile the memory usage of your scripts

To profile memory usage:

1. Click the Profiles icon on the toolbar to display the Profiles panel.

2. On the Profiles panel, select Collect JavaScript CPU Profile.

3. To start profiling your memory usage, click Start. The button turns red as the Web

Inspector is recording the memory usage.

62 © 2014, QNX Software Systems Limited

Debugging Web Apps

4. To stop recording, click Stop. When you stop recording, the new profile is added

under the CPU Profiles section in the left pane and the profile's contents are

displayed in the right pane:

The results indicate the amount of time the browser engine spent executing each

function during the recording process, along with the number of times each function

was called. An excessive amount of time spent in any one function can indicate a

problem with the code.

5. To sort the data, perform any of the following actions:

• To sort by values in any column, double-click the column heading.

• To display calls based on greatest impact on all exceptions or where they

occurred in the call stack, in the status bar at the bottom of the panel, toggle

between Heavy (Bottom Up) and Tree (Top Down).

• To specify whether values are presented as a time value or as a percentage of

the total CPU usage required to process all the functions, toggle the percent

button on or off.

• To view a single function, select the call in the table and then click the focus

button.

• To exclude a single function from the data, select the function in the table and

then click the exclude button.

• To reload the original profile after focusing on or excluding a function, click the

reload button.

Profile the performance of your CSS selectors

1. On the Profiles panel, select Collect CSS Selector Profile.

© 2014, QNX Software Systems Limited 63

Analyzing memory usage and processing demands

2. To start profiling your memory usage, click Start. The button turns red as Web

Inspector records the memory usage.

3. To stop recording, click Stop. When you stop recording, the new profile is added

under the CSS Selector Profiles section in the left pane and the profile's contents

are displayed in the right pane:

The profile results indicate the amount of time the browser engine spent matching

each selector in the associated style sheets, along with the total number of times

the browser engine found a match for the selector.

4. To specify whether the value of the Total column is presented as a time value or

as a percentage of the total time required to process the CSS, toggle the percent

button on or off.

64 © 2014, QNX Software Systems Limited

Debugging Web Apps

Auditing your webpage

Web Inspector can audit your webpage for inefficiencies and, based on a set of best

practices for web design, suggest changes you can make that can help improve network

utilization and performance. The Audits panel provides a list of perceived inefficiencies

in your webpage design. For example, Web Inspector can analyze your resources and

determine where you might consider combining script files or style sheets. The Audits

panel can also inform you where you've needlessly downloaded styles that aren't used,

specify resources where you haven't set cache-control directives, and suggest other

optimizations.

The Audits panel can be especially helpful when you design pages for mobile browsers.

On mobile browsers, network latency can extend download times; constrained

processing power tends to increase rendering time and to slow webpage performance.

As a result, eliminating inefficiencies in your webpage design can have an significant

positive impact.

The Audits panel

The Audits panel lets you choose to:

• audit network utilization or page performance (or both)

• run the audit against the static page

• reload the page and run the audit as it loads.

Once you've run an audit, Web Inspector adds the report to the list at the left of the

panel and shows the results in the main pane. The results suggest improvements you

can make to your webpage to increase efficiencies.

© 2014, QNX Software Systems Limited 65

Auditing your webpage

66 © 2014, QNX Software Systems Limited

Debugging Web Apps

Index

A

apps 24, 25, 33
creating 24
creating plugins for 25
enhancing performance of 33
setup 24

B

box model (in Web Inspector) 53
browser engine 12

C

client.js 26
Cordova 12, 25

creating plugins 25
plugin structure 25
required files for plugins 25

cordova.js 27
CSS selectors 63

profiling with Web Inspector 63

D

DOM 11, 52
modifying 52

G

Google Chrome 23

H

HTML5 12, 23
framework 12
jQuery 23

I

index.js 26

J

JavaScript 12, 26
client.js 26

JavaScript (continued)
index.js 26
plugin.xml 26

jQuery 23

N

NPAPI 12

P

performance, enhancing 33
plugin 25

JavaScript part 25
plugin.xml 26
plugins 25, 26

client.js 26
creating 25
file structure 25
index.js 26
plugin.xml 26
required files 25

PPS 12, 28
ppsUtils.js 28
utilities file 28

T

Technical support 8
Typographical conventions 6

W

Web Graphics Library 23
Web Inspector 48, 49, 50, 51, 52, 53, 54, 63, 65

auding webpages with 65
Audits panel 65
Elements panel 51
enabling 48
launching 49
modifying element styles with 52
modifying the box model with 53
modifying the DOM with 52
optimizing screen layout with 51
panels 50
profiling CSS selectors with 63
Resources panel 54

WebGL 23

© 2014, QNX Software Systems Limited 67

HTML5 Developer's Guide

68 © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	SDK Overview
	Browser Engine
	CSS3 support
	HTML5 elements
	HTML5 offline web applications
	Browser API support

	Web Sandbox Model
	Developing HTML5 Apps
	The HTML5 development environment
	Creating an HTML5 app

	Creating Your Own Cordova Plugin
	The cordova.exec() function
	Example: Using the PPS interface

	Enhancing Performance
	WebLauncher's JavaScript APIs
	WebLauncher application APIs
	WebLauncher webinspector APIs
	WebLauncher webview APIs

	Debugging Web Apps
	Enabling Web Inspector
	Launching Web Inspector
	Debugging and profiling using Web Inspector
	Optimizing layout and style
	Inspect and modify element styles
	Inspect and modify the DOM
	Modify the box model for an element

	Analyzing page resources
	View resource content
	View resource network information

	Analyzing network usage
	Apply a filter to display a specific resource type
	Change which time measure is displayed
	Reorder the list of resources

	Debugging scripts
	Set and use breakpoints
	Pause script execution
	Pause script execution on exceptions

	Analyzing loading, script execution, and rendering times
	Record browser engine activity
	Constrain the display to a specific time span
	Filter which events are displayed

	Analyzing memory usage and processing demands
	Profile the memory usage of your scripts
	Profile the performance of your CSS selectors

	Auditing your webpage

	Index

