QNX® SDK for Apps and Media 1.0

HTMLS Developer's Guide

©2012-2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road

Ottawa, Ontario

K2K OB3

Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qgnx.com
Web: http://www.qgnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Tuesday, August 5, 2014

HTML5 Developer's Guide

Table of Contents

2 o To T 3T €T 0T 5
Typographical CONVENTIONSieiie et e e e e eees 6

=TT LT LT o] oo g AP 8
Chapter 1: SDK OVEIVIEWcuiieeiiieiiiuiiraiirassraisnssrnssrnssrnssrnsssnassnssssasssasssnssenssenssensssnsssnsssnnssnnnsnnssen 9
Chapter 2: Browser ENZINEccuiiieiiieiiieiiieiiriiresirsssis s s ssassrasssasssnsssnsssnsssnsssnsssnsssnnssnnssnnns 11
(O I U o] oo PP 14
HTMLDS @lEMENTS ottt e et e e aan s 15
HTML5S offline Web appliCationsu.iiiiiiii e 16

B 0L LY G Y BT o] oo g 17
Chapter 3: Web Sandbox Model ... s s s s s n s ra e e r s 19
Chapter 4: Developing HTIMLS APPS .euiieiieiiieiieiiiiriirin s srasrasra s s s s s sms s snn s s n s m s nasnanseansanns 21
The HTML5 development enVirONMENT ...o.uiiiiiii i e e e e 22
Creating @n HTIMLD @D D weuiiiiiiiiiiiiii et e e e e e e e e e e en e enns 24
Chapter 5: Creating Your Own Cordova Plugin ..o e e 25
The cordova.exeC() TUNCHION oiiuiiiii e e e e e e aanes 27
Example: Using the PPS INterfaceo.oiieiiiiiiii e 28
Chapter 6: Enhancing PerformancCecccciieiiieiiiiiiiiiii s e sra s snssns s snsssnsssesssnsssnnssnnssenssenns 33
Chapter 7: WebLauncher's JavaScript APISccoieiiiiiii st s e e e 35
WebLauncher application APIS ..iu.iii i 36
WebLauncher WebinNSPECIOr APIS ...cun it 37
WebLauncher WebVIEW APIS ... e e 38
Chapter 8: Debugging WeEbD APPS .i.civeiireiiieiireiiriiriirisras s srassrassrasssnsssnssrnssrnsssnsssnsssnnssenssenns 47
Enabling Web INSPECIOr ...iunii e e 48
LaunChing Web INSPECIOr ouuiie i e e e e e e e e e e e 49
Debugging and profiling using Web InSPectorcoiiiiiiiiiii e 50
Optimizing 1ayout and STyl ... 51
Inspect and modify element STYIES ..ocuniiin i 52

Inspect and modify the DOM ... e b2

Modify the box model for an elementcooiiiiiiiiii e 53

ANAIYZING PAZE FESOUICES vvueetneeteeteeteet ettt eeen e eanaeanaeanseaneenaeteetaeaneeaneeanaeanaeenaesnnesnreannes 54

Table of Contents

VIEW FeSOUICE CONTENT .iitiiiiit i e e e e e e e e e eanes b5
View resource network information ... 55
ANAIYZING NEIWOIK USBEE +.uiitiiiiiiiiii et e e e e e e e e e e e e e e e e e e et e et e et e et e e e e an e enaeeens b6
Apply a filter to display a specifiC reSource typevveeiiiiiiiiii e 57
Change which time measure is displayedccoceiiiiiiiiiiii e 57
Reorder the 1ist Of reSOUICES . .euiiiiii e 57
[T 10 Fe =T = Y] 1 o) 58
Set and use breakpoints ... b8
e T EY I Y ol] o) M= (=]) o o TN 59
Pause script execution on exCeplionso.iieiii i 59
Analyzing loading, script execution, and rendering timescccccoveviiiiiiiiii e 60
Record browser engine aCtiVity ...oou oo 61
Constrain the display to a specific time SPanccvveiiiiiiiii e 61
Filter which events are displayedcouoieiiiii e 61
Analyzing memory usage and processing demandscveeuieiiieiiieiiiieiie e 62
Profile the memory usage of your SCHpPES ..o.uvie i 62
Profile the performance of your CSS SEIECTOrSovvuiiviiiiiiii e 63

AUdITING YOUr WEDPAEE ...niiiiieiii ettt et e et e et e e e et e aaas 65

About This Guide

© 2014, QNX Software Systems Limited

This guide explains how to develop optimal user interfaces for applications created

with the QNX SDK for Apps and Media.

This table may help you find what you need in this guide:

To find out about: Go to:

The QNX SDK for HTML5 and where to
download it

SDK Overview (p. 9)

The WebKit-based browser engine

Browser Engine (p. 11)

HTML5 elements (audio, video, etc.) you
can use in your apps

HTML5 elements (p. 15)

Using “sandboxing” so that applications
can run in complete isolation from each
other

Web Sandbox Model (p. 19)

The process for creating an HTML5 app

Developing HTML5 Apps (p. 21)

The HTML5 development environment
and tools

The HTML5 development environment (p.
22)

Creating a basic application

Creating an HTML5 app (p. 24)

Creating plugins to extend your app's
functionality

Creating Your Own Cordova Plugin (p. 25)

Best practices for optimal performance

Enhancing Performance (p. 33)

Weblauncher APIs (webview.create,
webview.status, etc.)

WebLauncher's JavaScript APIs (p. 35)

Using Web Inspector to debug your apps

Debugging Web Apps (p. 50)

About This Guide

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

Reference Example

Code examples
Command options
Commands

Constants

Data types
Environment variables
File and pathnames
Function names
Keyboard chords
Keyboard input
Keyboard keys
Program output
Variable names
Parameters
User-interface components

Window title

if(stream == NULL)
-IR

make

NULL

unsigned short
PATH

/dev/null

exit()
Ctrl-Alt-Delete
Username

Enter

login:

stdin

parm1

Navigator

Options

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

= useful.

= Cautions tell you about commands or procedures that may have unwanted

o or undesirable side effects.

© 2014, QNX Software Systems Limited

Typographical conventions

© 2014, QNX Software Systems Limited

Warnings tell you about commands or procedures that could be dangerous
/ to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,
including those pointing to Windows files. We also generally follow POSIX/UNIX
filesystem conventions.

About This Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website
(www.gnx.com). You'll find a wide range of support options, including community
forums.

To obtain technical support for this product, visit the BlackBerry Support Forum.

8 © 2014, QNX Software Systems Limited

http://www.qnx.com
http://supportforums.blackberry.com/t5/General-Support-Forums/ct-p/GeneralSupportForums

Chapter 1
SDK Overview

Apache Cordova

© 2014, QNX Software Systems Limited

The QNX SDK for HTML5 provides a framework for developing and executing
web-compatible applications, specifically using such technologies as HTML5, CSS3,
JNext. Using Apache Cordova, you can create and package HTML5 applications for a
target device.

To install the latest HTML5 development environment, download the
html5sdk-dat est anp . zip archive from the QNX Download Center and follow the
instructions given in the accompanying installation note and in the README.

Apache Cordova is a framework for application development that allows you to use
common web technologies, primarily HTML5, JavaScript, and CSS, to create
applications for mobile devices. Using Cordova, you can:

e Package an HTML5 app to deploy it to the target hardware.
e Create JavaScript APIs to access native services on the platform.

e Use webserver emulation so that your app can run without actually running a
webserver on the target hardware.

e Provide security features to your application.

Since the user interface for your application doesn't have to be created using HTML5,
you can use other HMI technologies, such as Qt (a lighter-weight comprehensive
framework) and OpenGL (for 2D and 3D graphics on embedded systems).

A non-HTML5 environment may be appropriate if you prefer a different HMI tool, if
you have legacy assets in other tooling frameworks, or if a system is being built without
the need for extensibility.

http://www.qnx.com/download/
http://cordova.apache.org/

Chapter 2

Browser Engine

© 2014, QNX Software Systems Limited

The browser engine has rich support for features such as canvas, WebSocket, session
storage, offline apps, worker threads, Document Object Model (DOM) improvements,
audio and video tags, and WebGL.

Included with your SDK is a reference browser application implemented with HTML5,
CSS3, and JavaScript. The browser includes tool bars, status bars, URL address entry,
buttons, and so on. A browser without these components is called a “chromeless
browser”. If required, you can customize or replace this browser application. Because
the browser application is implemented in HTML5, the code is readily viewable via
Web Inspector in WebKit browsers, such as Google Chrome.

Based on WebKit, the browser engine provides support for HTML5 and related standards
and technologies (including CSS3) and for JavaScript and associated standards, such
as AJAX, JavaScript Object Notation (JSON), and XML. The QNX browser engine has
optimized WebKit in a number of ways:

e improved user interaction (complex touch event handling, smooth zooming/scrolling,
fat-finger touch target detection, etc.), performance, and battery life for mobile
devices

¢ enhanced user operations such as fast scrolling and zoom (e.g., zooming in on a
webpage) to reduce RAM utilization

e enhanced JavaScript execution to improve performance and reduce CPU utilization
and unnecessary battery drain

e reduced power consumption (e.g., by throttling background threads)

¢ added support for multimodal input (e.g., trackpad, keyboard, and virtual keyboard)

e improved overall speed (e.g., by selective image down-sampling)

The browser engine provides a set of core classes that you can use to display web
content in a window. By default, the browser engine implements the most basic
functionality of a browser, such as the ability to follow links and to download and
display content. You can use the engine's functionality at the most basic level to
display web content in your app or you can use APlIs to create your own full-featured,
customized, web-based app.

Downloading and browsing content from the web can be a fairly daunting task for a
browser, given the wide variety of content and encoding types used on the Internet.
The browser engine handles these different content types transparently by creating
and managing the objects necessary to render the incoming content. The engine
provides view classes used to display content. Each view class (called a WebView)
contains frames (called WebFrames); each frame implements its own scroll bar. You

11

http://www.webkit.org

Browser Engine

don't need to implement custom views or custom frames in order to display content
in your app.

By running multiple WebViews in a single engine instance, overall memory footprint
can be reduced. However, since all apps share the same engine, they're not isolated
from each other. Bad behavior in one app can impact all other apps that share the
same engine instance. This mode would typically be used for a set of apps that are
tested together and deployed as a bundle (e.g., core apps shipped from the
manufacturer). Or, a single app can be run in its own private engine instance. This
provides isolation at the expense of increased memory footprint.

Web browser app

The web browser app supports URL entry, tabs, back, forward, history, settings, and
bookmarks. By default, the browser supports 800x480 and 720p resolutions in
landscape mode. To support other resolutions, you can modify the browser application
source.

HTML5 apps
The HTML5 application framework provides the necessary additions to the browser
engine to allow it to support full-fledged apps. This environment allows developers to
create and deploy apps built from web technologies (HTML5, CSS3, and JavaScript)
with plugins that provide access to the underlying device hardware and native services,
just like native C/C++ apps.

Plugins

The browser engine includes plugins based on the Netscape Plugin APl (NPAPI)
through a dynamically linked library. The plugins provide access to PPS (Persistent
Publish/Subscribe), SQL, and Screen services. You can add additional plugins as
required.

The PPS plugin provides the HTML5 domain with access to the full PPS API.

The SQLite 3 plugin provides SQLite database access, including a complete API for
opening, querying, and modifying the database.

JavaScript plugins

JavaScript Cordova plugins use the browser engine plugins to provide HTML5 apps
with access to middleware-layer services, including radio, phone, media engine, ASR,
and navigation. For example, the audioplayer plugin uses the PPS plugin to provide
access to functions such as start, pause, and play. The reference media player
application depends on this plugin.

12 © 2014, QNX Software Systems Limited

Web Inspector tool

© 2014, QNX Software Systems Limited

Media player application

Media player

User code JavaScript object

JS

JSIBES

‘ HTML5 engine

PPS API

service | Media player
service

Included as part of WebKit, Web Inspector is a useful debugging and profiling
development tool for web content. You can use this tool to troubleshoot and optimize
your web content for your apps. The tool includes a variety of features and capabilities,

such as inspection, profiling, console integration, and more. For details, see “Debugging
Web Apps (p. 47)" in this guide.

13

Browser Engine

CSS3 support

14

The browser engine supports CSS3 properties. For a complete list of supported CSS3

properties for WebKit-based browsers, see the CSS3 Browser Support Reference at
the following W3Schools site:

http://www.w3schools.com/cssref/css3_browsersupport.asp

© 2014, QNX Software Systems Limited

http://www.w3schools.com/cssref/css3_browsersupport.asp

HTML5 elements

HTML5 elements

© 2014, QNX Software Systems Limited

The SDK lets you use HTML5 elements in your apps. For details about these elements,

see the following W3Schools references:

Element ‘ Description

HTML5 Audio

Represents a sound or audio stream.

HTML5 Canvas

Provides a container for JavaScript to draw graphics on a
webpage.

HTML5 Geolocation

Scripts use this object to programmatically determine the
location information associated with the hosting device.

HTML5 Web Storage
(I ocal St orage)

Provides functions to access a list of key/value pairs for
local storage objects (i.e., objects that persist after a
browser session has ended).

HTML5 Web Storage
(sessi onSt or age)

Lets you save a large amount of key/value pairs and text
for session storage objects (i.e., objects that are valid only
for the current browser session).

HTML5 Video

Represents a video or video stream.

HTML5 Web Workers

Allows JavaScript code to be executed in a background
thread.

15

http://www.w3schools.com/html/html5_audio.asp
http://www.w3schools.com/html/html5_canvas.asp
http://www.w3schools.com/html/html5_geolocation.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_video.asp
http://www.w3schools.com/html/html5_webworkers.asp

Browser Engine

HTMLD5 offline web applications

HTML5 includes several features that address the challenge of building web apps that
work offline. These features include SQL, offline app-caching APIs, online/offline
events, status, and the localStorage API.

For more information about creating web apps that work offline, see the W3C document
Offline Web Applications.

16 © 2014, QNX Software Systems Limited

http://dev.w3.org/html5/offline-webapps/

Browser API support

Browser API support

The browser engine supports various standard APls. For information about these APls,
see the following W3C resources:

API Support ‘ Description

Web SQL Database A set of APIs to manipulate client-side databases using
SQL.

WebSocket API An API that allows webpages to use the WebSocket protocol
to enable web apps to maintain bidirectional
communications with a remote host.

Web Workers An API that allows authors of web apps to spawn
background workers running scripts in parallel to their main
page. This process allows for thread-like operation with
message passing as the coordination mechanism.

Geolocation API An API that provides scripted access to geographical
Specification location information associated with the hosting device.

© 2014, QNX Software Systems Limited 17

http://www.w3.org/TR/webdatabase/
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/workers/
http://dev.w3.org/geo/api/spec-source.html
http://dev.w3.org/geo/api/spec-source.html

Chapter 3

Web Sandbox Model

© 2014, QNX Software Systems Limited

The BlackBerry 10 OS architecture is designed to be both simple and powerful. A
powerful benefit is the use of sandboxing, so that applications can run in complete
isolation from each other. The platform provides a multiprocess architecture that allows
system developers to partition the Ul into a set of core and sandboxed apps. With this
architecture, multiple WebViews (or windows) can either share a common engine
instance or run in their own engine instance. Each WebView (equivalent to a tab in a
desktop browser) can be implemented with a separate (and different) JavaScript
application framework (for example, jQuery Mobile or Sencha Touch).

HTMLS / Web engine & JavaScript
application frameworks

=
k Application)

[next ‘ [NPAPL |

L[sauapt | [ppsapl | [screenapi]

Applications running within the same instance of the HTML5 engine wouldn't be
isolated from each other. Incorrect behavior in one application could impact all other
applications. For example, a hung or stalled JavaScript thread in one application would
hang all other HTML5 applications. This is why the BlackBerry 10 OS architecture
runs each application in its own private HTML5 engine instance (its “sandbox”). This
design isolates applications so that any problems they encounter don't impact other
applications. The sandbox model does, however, increase the system's memory
footprint.

19

Chapter 4

Developing HTML5 Apps

© 2014, QNX Software Systems Limited

The browser engine is based on the WebKit (www.webkit.org) open-source web browser
engine, which we have optimized for embedded environments and have extended with
numerous capabilities to provide a full-featured web browser.

An HTML5 app created with the Apache Cordova framework can be targeted to run
on a variety of devices or ported to a different OS, such as iOS or Android. You can
take advantage of popular mobile web frameworks, such as Sencha Touch and jQuery

Mobile, to provide a wide range of useful APIs that can greatly simplify cross-browser
web development.

The process for creating an HTML5 app involves three main steps:

create files
(HTML,scripts, _
config.xml)

iy

Test and package Install the app on
your app > your target system

The HTML5 app environment lets you create and deploy applications built from web
technologies (HTML5, CSS3, and JavaScript) with plugins that can access the
underlying device hardware and native services, just like native C/C++ applications.
The HTMLb standard ensures compatibility between browsers, making the BlackBerry
10 OS environment compatible with mobile, desktop, and web environments—the
same HTML code can be used in all these environments.

21

http://www.webkit.org
http://cordova.apache.org/

Developing HTML5 Apps

The HTML5 development environment

Here are the key components for developing HTML5 apps for the
QNX SDK for Apps and Media:

HTML5 SDK

The HTML5 SDK contains the Apache Cordova framework, which you can
use to create plugins for your mobile apps. When you installed the

QNX SDK for Apps and Media 1.0, you should also have installed the HTML5
SDK (available from the QNX Download Center).

JavaScript

HTML5 applications can interact with underlying services via JavaScript
plugins. JavaScript classes provide interfaces to various feature components.
These consist of the PPS interfaces and the Ul core APIs for home screen
development. The NPAPI provides extensions to the HTML5 engine through
a dynamically linked library. PPS, SQL, and the Ul core APIs are
implemented through an NPAPI interface. These APls provide access to
native DLLs that give applications access to services such as the composition
manager and the launcher. If such services are required, you can add
additional plugins to extend your applications.

Persistent Publish/Subscribe (PPS) API

Node.js

jQuery

22

The PPS service provides a simple, filesystem-based API for client
applications. For details, see the Persistent Publish/Subscribe Developer's
Guide.

Node.js is a platform built on Chrome's JavaScript runtime for building fast,
scalable network applications. Node.js is required—you should have installed
it when you installed the HTML5 SDK.

jQuery is a popular open-source JavaScript framework for developing web
apps (available from www.jquery.com). jQuery includes a number of Ul
widgets and utilities for DOM manipulation. Its features include:

e QOpen-source framework

* jQuery Ul widgets

e Event handling

e (CSS3 animations and effects

e Asynchronous JavaScript And XML (AJAX) utilities

© 2014, QNX Software Systems Limited

http://cordova.apache.org/
http://www.qnx.com/download/
http://www.jquery.com

The HTML5 development environment

© 2014, QNX Software Systems Limited

For more information about jQuery, see Using jQuery Core at the jQuery site.

Web Graphics Library (WebGL)

This graphics library is integrated into the browser engine (p. 11), so you
don't need to download and install any binaries to use it. Based on OpenGL
ES 2.0, WebGL is a cross-platform JavaScript APl. As a DOM API, it runs
in the HTML5 canvas element to render interactive 3D graphics in
compatible browsers.

(r[v

For debugging your apps, you may want to install Google Chrome on your
development system. This WebKit-based browser works in conjunction with
the Web Inspector, a useful debugging and profiling development tool for web
content. For details, see “Debugging Web Apps (p. 47)" in this guide.

23

http://learn.jquery.com/using-jquery-core/

Developing HTML5 Apps

Creating an HTML5 app

24

An HTML5 application created with Apache Cordova is a standalone app, which means
you're not required to point to a remote server to load a webpage or another app because
your app lives on the device. The application is essentially an arrangement of web
assets that are packaged into a container that can be viewed by a browser (the browser
engine container).

To create a basic Cordova app template:

1. Navigate to the folder where you installed the HTML5 SDK.
2. Change to the cordova/blackberryl10/bin folder.

3. Run the Cordova create command to create a new Cordova project:
create project_path package nane app_ID

where:

e project_path points to an empty directory
e package_name is a reverse domain name, such as com.company .appname

e app_IDis unique for the target system

In addition, the package_name and app_ID can't be more than 50 alphanumeric
characters long.

For example: create hello com.example_hello HelloWorld

The create command generates the folder structure for your project at the specified
location (for the example above, the hel 1o directory). If you build this app without
modifications, you'll produce a small Cordova app that handles the deviceready
event and displays the Cordova logo on the screen.

You can add your own code and additional resources to create a more robust
application. All of your project resource files should be stored in the Zwww folder (or
in a subfolder within /Zwww).

For information on packaging, installing, and launching your HTML5 app, see
the Application and Window Management guide.

For instructions on creating a simple Cordova plugin that uses PPS, see

(1

“Creating Your Own Cordova Plugin (p. 25)" in this guide.

© 2014, QNX Software Systems Limited

Chapter 5

Creating Your Own Cordova Plugin

Structure of a plugin

© 2014, QNX Software Systems Limited

Although HTML5 offers a wide range of functionality, that functionality is limited to
what's provided by the SDK. An application is implemented as a webpage (named
index.html by default) that references whatever CSS, JavaScript, images, media
files, or other resources are necessary for it to run. The app executes as a WebView
within the native application framework. For the web app to interact with various device
features the way native apps do, it must also reference a cordova. js file, which
provides APl bindings. If you want to access other features not provided by the platform
SDK, you have to write a plugin. A plugin is a bridge between the WebView the app
is running in and the native layer of the platform. Plugins provide a mechanism to call
into native APIs that aren't provided with the SDK.

This chapter assumes that you know how to create Cordova plugins for other platforms.
For information on creating Cordova plugins, see the Apache Cordova Documentation.

Many of the services available with BlackBerry 10 OS can be accessed through a PPS
interface. In the sections that follow, we'll walk through the creation of a simple plugin
(com.qgnx.demo) that creates a PPS object and writes to it. You can use the same
principles to manipulate other PPS objects.

You can place the artifacts of the plugin in any directory structure, as long as you
specify the file locations in the plugin.xml file. Here's a typical structure (names
in bold represent directories):

e plugi n_nane

e plugin.xml

o WWW
e client_js

® src
* Dbl ackberryl10

e index.js
e plugin_name.js

e other JavaScript or native files, as required (*. js, *.cpp, *-hpp)

The JavaScript part of a plugin must contain, at a minimum, the following resources:

25

http://cordova.apache.org/docs/en/3.0.0/index.html

Creating Your Own Cordova Plugin

pl ugi n. xm

The plugin.xml file is an XML document in the plugins namespace,
http://apache.org/cordovas/ns/plugins/1.0. The plugin.xml
file contains a top-level plugin element that defines the plugin itself and
child elements that define the file structure of the plugin.

You must name this file plugin.xml.

client.js

Considered the client side, this file exports APIs that a Cordova application
can call. The APIs in client.js make calls to index.js. The APIs in
client. js also connect callback functions to the events that fire the
callbacks.

You must name this file client.js.

i ndex.js

Cordova loads index. js and makes it accessible through the cordova.exec()
bridge. The client. js file makes calls to the APIs in the index. js file,
which in turn makes calls to JNEXT to communicate with the native side.

If your plugin needs to include events, make sure to define these events in
index. js. Events are defined inside the _actionMap variable.

You must name this file index. js.

In our example, we need a file to deal with the PPS activities of the plugin. We'll call

this file demo. js to reflect the name of the plugin. You can name this file whatever

you want, but using the plugin name is standard practice.

(H'

Depending on what your plugin needs to do, you might need to create other
JavaScript files. In addition, if the native functionality you need isn't available
through an existing interface (such as PPS or another plugin), you'll need to
write the C/C++ code to provide JavaScript access to that functionality.

26

© 2014, QNX Software Systems Limited

The cordova.exec() function

The cordova.exec() function

You can structure your plugin's JavaScript according to your preference. However, you
must use the cordova.exec() function to communicate between the Cordova JavaScript
and the native environment. The cordova.exec() function is defined in the cordova. js
file and has the following signature:

exec (<successFunction>, <failFunction> , <service> , <action> , [< args >]);

The parameters are:

<successFunction>

Success function callback. Assuming your exec() call completes successfully,
this function is invoked (optionally with any parameters you pass back to
it).

<failFunction>

Error function callback. If the operation doesn't complete successfully, this
function is invoked (optionally with an error parameter).

<service>

The name of the service to call into on the native side. This is mapped to a
native class.

<action>

The name of the action to call into. This is picked up by the native class
receiving the cordova.exec() call, and essentially maps to a class's method.

< args >
Arguments to pass into the native environment.

The cordova.exec() function is the key to your plugin—it provides the link between
the JavaScript and the native APls. For more information about cordova.exec(), see
the Apache Cordova documentation.

© 2014, QNX Software Systems Limited 27

Creating Your Own Cordova Plugin

Example: Using the PPS interface

In the example, called com.qnx.demo, we build a plugin that provides methods and
events for creating, updating, and watching a simple PPS object. The example links
to the PPS utilities file, ppsUtils.Js, which is included as part of the webplat
form.js file in the SDK directory. The namespace for ppsUtils.js is gnx.web
platform.pps. The files in the demo follow the structure described in the “Structure
of a plugin” (p. 25) section.

Files in the example
This example includes the following files:

e plugin.xml in the com.gnx.demo directory. This file declares the namespace
of the plugin, and describes the file structure.

e demo.js and index. js in the com.gnx.demo/src/blacberryl0 directory.
The demo. js file initializes the extension and defines functions for handling events
and returning PPS data. The index. js file sets up the events that are triggered.

e client_jsinthe com.gnx.demo/www directory. This file defines the externally
visible methods that apps can use.

Let's look at some of these files in more detail.

deno. | s

The demo. js file provides the core functionality of the plugin. First, we link to the
gnx.webplatform.pps namespace and declare some variables we'll use later:

var _pps = gnx.webplatform.pps,
_readerPPS,
_writerPPS,
_triggerUpdate;

Now we'll create the demo PPS object. There's additional code that handles errors
and so on, but let's focus on the PPS object's creation:

_readerPPS = _pps.createObject(*'/pps/qgnxcar/demo’™, _pps.PPSMode.DELTA);
_readerPPS.onNewData = function(event) {
if (_triggerUpdate && event && event.data) {
_triggerUpdate(event.data);

_writerPPS = pps.createObject(*'/pps/qgnxcar/demo’™, _pps.PPSMode.DELTA);

The preceding code creates a new PPS object (/pps/gnxcar/demo) with two handles:
one for reading (_readerPPS) and one for writing (_writerPPS). These handles
give us access to the methods in gnx.webplatform.pps that we can use for

28 © 2014, QNX Software Systems Limited

Example: Using the PPS interface

i ndex.js

© 2014, QNX Software Systems Limited

manipulating the PPS data. The _triggerUpdate object is used in handling events.
Here, we use it in defining the action to take when new data is available in our PPS
object.

The demo. js file also defines the functions for handling the event trigger
(setTriggerUpdate()) and for getting (get()) and setting (set()) the PPS data. These
functions are exported so that they can be called from the index. js file:

/**
* Sets the trigger function to call when an event is fired
* @param trigger {Function} The trigger function to call
* when an event is fired
*/
setTriggerUpdate: function(trigger) {
_triggerUpdate = trigger;

/**
* Returns the demo object
* @returns {Object} The demo object
*/
get: function(settings) {
return _readerPPS.data.demo;
¥

/**
* Set a demo object field
* @param {String} key The data key
* @param {Mixed} value The data value
*/
set: function(key, value) {
var data = {};
data[key] = value;
_writerPPS.write(data);

In the index. js file, we define the functions that we'll make available to our clients
through the client. js file:

*
*

Starts triggering events

@param {Function} success Function to call if the operation is a success
@param {Function} fail Function to call if the operation fails

@param {Object} args The arguments supplied

@param {Object} env Environment variables

ok F X XN

*/
startkEvents: function(success, fail, args, env) {
_eventResult = new PluginResult(args, env)
try {
_demo.setTriggerUpdate(function (data) {
_eventResult.cal lbackOk(data, true);

_eventResult_noResult(true);

} catch (e) {

_eventResult.error(error in startkEvents: " + JSON.stringify(e), false);

}.

/**
* Stops triggering events
* @param {Function} success Function to call iIf the operation is a success
* @param {Function} fail Function to call if the operation fails
* @param {Object} args The arguments supplied
* @param {Object} env Environment variables

29

Creating Your Own Cordova Plugin

*/
stopEvents: function(success, fail, args, env) {
var result = new PluginResult(args, env);
try {
//disable the event trigger
_demo.setTriggerUpdate(null);
result.ok(undefined, false);

//cleanup
_eventResult._noResult(false);
delete _eventResult;

} catch (e) {

result.error(error in stopEvents: " + JSON.stringify(e), false);
}
3.
/**
* Returns system settings
* @param success {Function} Function to call iIf the operation is a success
* @param fail {Function} Function to call if the operation fails
* @param args {Object} The arguments supplied
* @param env {Object} Environment variables
*/

get: function(success, fail, args, env) {
var result = new PluginResult(args, env)
try {
var fixedArgs = _wwfix.parseArgs(args);
var data = _demo.get();
result.ok(data, false);
} catch (e) {
result.error(JSON.stringify(e), false);
3

}.

/**

Sets one or more system settings

@param success {Function} Function to call if the operation is a success
@param fail {Function} Function to call if the operation fails

@param args {Object} The arguments supplied

@param env {Object} Environment variables

ok X X

*/
set: function(success, fail, args, env) {
var result = new PluginResult(args, env)

try {
var fixedArgs = _wwfix.parseArgs(args);
_demo.set(fixedArgs.key, TixedArgs.value);
result.ok(undefined, false);

} catch (e) {
result.error(JSON.stringify(e), false);

}

}

In the preceding code, we define four functions:

e startEvents() and stopEvents(), which use the setTriggerUpdate() function we
defined in Index. js. This function is referenced as _demo.setTriggerUp
date().

e gel(), which uses the get() function we defined in index. js (referenced here as
_demo.get()).

e set(), which uses the set() function we defined in index. js (referenced here as
_demo.set()).

client.js

The client. js file defines the public-facing interface, or client side, of our plugin.
This is where we use the cordova.exec() function to call the PPS functions we've
defined in our server-side files.

30 © 2014, QNX Software Systems Limited

Example: Using the PPS interface

© 2014, QNX Software Systems Limited

First, we declare our variables. We'll use _ 1D in our calls to cordova.exec():

var _self = {3},
_ID = "com.gnx.demo",
_utils = cordova.require("cordova/Zutils™),
_watches = {};

We create a function to hande PPS update events. This function is also passed to
cordova.exec(), but isn't accessible to other applications:

/**
* Handles update events for this plugin
* @param data {Array} The updated data provided by the event
* @private
*/
function onUpdate(data) {
var keys = Object.keys(_watches);
for (var i1=0; i<keys.length; i++) {
setTimeout(_watches[keys[i]](data), 0);
}

}

Finally, we define our public-facing functions and export them. For each one, we call
cordova.exec() and pass it the name of the function to call from index. js:

/**

* Watch for PPS object changes

* @param {Function} callback The function to call when a change is detected.
@return {String} An ID for the added watch.
@example

*

//define a callback function

function myCal lback(myData) {
//just send data to log
console.log(*"Changed data: " , myData);

}

var watchld = car.demo.watchDemo(myCal lback) ;
*/

_self_watchDemo

var watchld

ok kX X % b b Ok

= function (callback) {
= _utils.createUUID();
_watches[watchld] = callback;
it (Object.keys(_watches).length === 1) {
window.cordova.exec(onUpdate, null, _ID, "startEvents®, null, false);
3

return watchld;

}

/**

Stop watching for PPS changes

@param {Number} watchld The watch ID as returned by car. deno. wat chDeno() -
@example

L

car.sensors.cancelWatch(watchld);
*/

_self_cancelWatch = function (watchld) {

it (_watches[watchld]) {
delete _watches[watchld];
if (Object.keys(_watches).length === 0) {

window.cordova.exec(null, null, _ID, "stopEvents®, null, false);

3

}
}

/**
* Get the value of the demo PPS object
* @returns {Object} The demo object contents.
*/

31

Creating Your Own Cordova Plugin

_self._get = function) {
var value = null,

success = function (data, response) {
value = data;

féil = function (data, response) {
throw data;

try {
window.cordova.exec(success, fail, _ID,

} catch (e) {

console.error(e);
}

return value;

get”, null);

}

/**
* Set a demo object field
* @param {String} key The data key
* @param {Mixed} value The data value
*/

_self._set = function (key, value) {
window.cordova.exec(null, null, _ID,
3

module.exports = _self;

set”, { key: key, value: value });

Applications that use our plugin will need to define a callback function for Cordova
to call when watchDemo() is successful.

32 © 2014, QNX Software Systems Limited

Chapter 6

Enhancing Performance

© 2014, QNX Software Systems Limited

The following best practices will help you develop more efficient apps.

1.

Avoid Canvas.

Canvas and SVG elements aren't optimal for use on mobile and embedded platforms,
because proper hardware acceleration for these elements hasn't yet been finalized.

. Avoid 2D transformations.

Use 3D instead. For example, instead of translateX(x) use trans
late3d(x,y,z). This will force hardware acceleration of the translation. You can
use similar methods for most other transformations. Avoid animating with JavaScript
libraries!

. Avoid opacity, rounded corners, and gradients.

These are a significant drain on performance when they're redrawn often. If used
sparingly and mostly on static objects, they shouldn't impede performance, but if
you mix these elements with animations, buttons, or anything that gets redrawn
often, performance will suffer. Consider using images instead of heavy CSS.

. Remove elements from the DOM when modifying them.

This technique is especially helpful when you're updating several DOM fields at
once. For example, if you're scrolling through a list of 100 contacts and you want
to refresh them, updating them one by one will cause the list to be redrawn 100
times. But if you remove the entire list, update the contacts in memory, and then
add the list again, this does only two redraws.

. Hide elements you don't need.

Adding display:none to elements that don't need to be displayed will prevent
them from being rendered.

. Avoid libraries intended for desktop use.

Some JavaScript libraries are designed for use on a desktop browser with a powerful
CPU. Try to limit the number of third-party JavaScript libraries included in your
app or try to seek out versions optimized for mobile use.

. Use image sprites.

These are useful for preloading active element states (e.g., buttons with a “pressed”
state).

33

Chapter 7
WebLauncher's JavaScript APIs

By using the Cordova framework and the Browser Chrome APIs, you can customize
your browser chrome. The following API| categories are available:

e application (p. 36)—functions and properties for the current application
e webi nspect or (p. 37)—functions related to the Web Inspector tool

e webvi ew (p. 38)—functions to manage your webviews

© 2014, QNX Software Systems Limited

35

WeblLauncher's JavaScript APls

36

WebLauncher appl i cat i on APIs

The application framework provides functionality to the browser engine to allow it to

support apps. This environment lets you create and deploy apps built from web
technologies (HTML5, CSS3, and JavaScript) with plugins that provide access to the
underlying device hardware and native services, just like native C/C++ apps.

The following WebLauncher application APIs are available for you to implement

your own browser chrome:

application.adduri
application.bindToNetworkDevice
application.coverSize
application.extendTerminate
application.getenv
application.isDevicelLocked
application.isForeground
application. lockRotation
application.minimizeWindow
application.newWal Ipaper
application.notifyRotateComplete
application.realpath
application.requestExit
application.rotate
application.setKeyboardTracking
application.setPooled
application.setSwipeStart
application.setenv
application.systemFontFamily
application.systemFontSize
application.systemRegion
application.unlockRotation
application.unsetenv
application.updateCover
applicationWindow.flushContext
applicationWindow.setSize

applicationWindow.setVisible

© 2014, QNX Software Systems Limited

WebLauncher webinspector APIs

WebLauncher webi nspect or APIs

Web Inspector is a useful debugging and profiling development tool for web content.
Use this tool to troubleshoot and optimize your web content for your apps. The tool
itself includes various features and capabilities, including inspection, profiling, console
integration, and more.

The following WebLauncher webinspector APls are available for you to implement
your own browser chrome:

¢ weblnspector._enabled

e weblnspector.enabledForWebView
e weblnspector.port

e weblnspector.setEnabled

e weblnspector._setEnabledForWebView

© 2014, QNX Software Systems Limited 37

WeblLauncher's JavaScript APls

38

WebLauncher webvi ew APls

Every HTML5 app has its own WebView. A WebView is a view that's rendered by the

web engine to display an app. The browser engine provides a set of core classes that

you can use to display web content in a window. By default, the browser engine

implements the most basic functionality of a browser, such as the ability to follow
links and to download and display content. You can use the engine's functionality at
the most basic level to display web content in your app or you can use APIs to create

your own full-featured, customized, web-based app.

The QNX SDK for Apps and Media provides a multiprocess architecture that allows

for multiple WebViews to share a common engine instance or run in their own engine
instance. Trusted apps are run "in process", sharing a web engine instance. Other apps
are run "out of process", protected from each other by process boundaries, each with

their own web engine instance. You can implement each WebView with a separate

JavaScript application framework, such as jQuery or Sencha Touch.

The following WebLauncher webview APIs are available for you to implement your

own browser chrome:

webview.addKnownSSLCertificate
webview.addKnownSSLCertificates
webview.addOriginAccessWhitelistEntry
webview.applicationSwipelnEvent
webview.applicationWindowGroup
webview.arguments
webview.assignFocus
webview.autofillTextField
webview.automationlLog
webview.backgroundColor
webview.bitmapZoom
webview.canGoBack
webview.canGoForward
webview.cancelVibration
webview.captureContents
webview.certificatelnfo
webview.cleanupSSLCertificateDetails
webview.clearAutofillData
webview.clearBackForwardList
webview.clearBrowsingData

webview.clearCache

© 2014, QNX Software Systems Limited

WebLauncher webview APls

© 2014,

QNX Software Systems Limited

webview.clearCookies
webview.clearCredentials
webview.clearDatabases
webview.clearFocus
webview.clearHistory
webview.clearLocalStorage
webview.clearWebFileSystem
webview.contentRectangle
webview.continueSSLHandshaking
webview.convertlDNtoReadableStringByLanguage
webview.create
webview.createFadeColorWindow
webview.currentContext
webview.defaultFontSize
webview.defaultTextEncoding
webview.delete

webview.destroy
webview.destroyFadeColorWindow
webview.destroyl fNotRejectedByUser
webview.devicePixelRatio
webview.dialogResponse
webview.downloadCancel
webview.downloadPause
webview.downloadRemove
webview.downloadResume
webview.downloadRetry
webview.downloadUpdate
webview.downloadUrl
webview.enableQnxJavaScriptObject
webview.encryptionlnfo
webview.eventNames
webview.executeJavaScript
webview.executeJavaScriptFunction
webview.extraHttpHeaders
webview.fadeColorWindowPlatformHandle
webview. favicon

webview. FileSystemAPISandboxed
webview. FindString

webview.focusNextField

39

WeblLauncher's JavaScript APls

40

webview. focusPreviousField

webview. forcedTextEncoding
webview.fullScreenVideoCapable
webview. ful IScreenVideoExited
webview.getCookies
webview.getSSLCertificateDetails
webview.goBack

webview.goForward
webview.handleContextMenuResponse
webview.handleWeblnspectorMessageToBackend
webview.historylLength
webview.historyPosition

webview. initialize

webview. isActive

webview. isAllIPropertyChangedEventsEnabled
webview. isAl IWebEventsEnabled

webview. isAlwaysShowKeyboardOnFocus
webview. isAnyPropertyChangedEventsEnabled
webview. isAnyWebEventsEnabled

webview. isAutoDeferNetworkingAndJavaScript
webview. isBlockPopups

webview. isDeferNetworkingAndJavaScript
webview. isEnableCookies

webview. isEnableCredentialAutofill
webview. isEnableCrossSiteXHR

webview. isEnableDNSPrefetch

webview. isEnableDefaultOverScrol1Background
webview. isEnableDialogRequestedEvents
webview. isEnableDiskCache

webview. isEnableDownloadableBinaryFonts
webview. isEnableFineCursorControl
webview. isEnableFormAutofill

webview. isEnableGeolocation

webview. isEnablelnputMethodSupport
webview. isEnablelnputNotifications
webview. isEnableJavaScript

webview. isEnableLocalAccessToAl ICookies
webview. isEnableMediaRTSP

webview. isEnableNetworkResourceRequestedEvents

© 2014, QNX Software Systems Limited

WebLauncher webview APls

e webview. isEnablePlugins

e webview. isEnableSoundOnAnchorElementTouchEvents
e webview.isEnableSpatialNavigation

e webview. isEnableTextSelectionControls
e webview. isEnableWeblnspector

e webview. isEnableWebSockets

e webview.isLoadlmages

e webview. isPluginFullScreen

e webview. isPrivateBrowsing

e webview. isPropertyChangedEventEnabled
e webview.isVideoFullScreen

e webview.isVisible

e webview. isWebEventEnabled

e webview. isZoomToFitWidthOnLoad

e webview. javaScriptinterruptTimeout

e webview. jsScreenWindowHandle

e webview.knownSSLCertificate

e webview.knownSSLCertificates

e webview. loadFile

e webview. loadProgress

e webview.loadString

e webview.loadStringWithBase

e webview. loadURL

e webview. location

e webview. lockProperties

e webview.log

e webview._.maximumScale

e webview.minimumFontSize

e webview.minimumScale

e webview._notificationClicked

e webview._notificationClosed

e webview._notificationError

e webview.notiFficationShown

e webview.notifyApplicationOrientationDone
e webview.notifyContextMenuCancelled

e webview.notifyDataReceived

e webview.notifyDone

e webview.notifyHeaderReceived

e webview.notifyOpen

© 2014, QNX Software Systems Limited 41

WeblLauncher's JavaScript APls

e webview.notifySystemLowMemory

e webview._notifyViewportChanged

e webview.openWindowResponse

e webview.originalLocation

e webview.overScrollColor

e webview.printToStderr

e webview._printToStdout

e webview.reload

e webview.removeAl IKnownSSLCertificates
e webview.removeGeolocationFilter

e webview.removeKnownSSLCertificate

e webview.removeOriginAccessWhitelistEntry
e webview.requestCurrentContextUpdate

e webview.requestSession

e webview.restoreSession

e webview.scale

e webview.scrollBy

e webview.scrollPosition

e webview.secureType

e webview.securitylnfo

e webview.sensitivity

e webview.setActive

e webview.setAllPropertyChangedEventsEnabled
e webview.setAllWebEventsEnabled

e webview.setAllowGeolocation

e webview.setAllowNotification

e webview.setAllowUserMedia

e webview.setAllowWeblnspection

e webview.setAlwaysShowKeyboardOnFocus
e webview.setApplicationActivationState
e webview.setApplicationOrientation

e webview.setAutoDeferNetworkingAndJavaScript
e webview.setBackgroundColor

e webview.setBitmapZooming

e webview.setBlockPopups

e webview.setCookies

e webview.setDefaultFontSize

e webview.setDefaultTextEncoding

e webview.setDeferNetworkingAndJavaScript

42 © 2014, QNX Software Systems Limited

WebLauncher webview APls

e webview.setDevicePixelRatio

e webview.setEnableCookies

e webview.setEnableCredentialAutofill

e webview.setEnableCrossSiteXHR

e webview.setEnableDNSPrefetch

e webview.setEnableDefaultOverScrol lBackground
e webview.setEnableDialogRequestedEvents

e webview.setEnableDiskCache

e webview.setEnableDownloadableBinaryFonts

e webview.setEnableFineCursorControl

e webview.setEnableFormAutofill

e webview.setEnableGeolocation

e webview.setEnablelnputMethodSupport

e webview.setEnablelnputNotifications

e webview.setEnableJavaScript

e webview.setEnableLocalAccessToAllCookies

e webview.setEnableMediaRTSP

e webview.setEnableNetworkResourceRequestedEvents
e webview.setEnablePlugins

e webview.setEnableSoundOnAnchorElementTouchEvents
e webview.setEnableSpatialNavigation

e webview.setEnableTextSelectionControls

¢ webview.setEnableWebSockets

e webview.setEnabledOutOfProcessWeblnspector
e webview.setExtraHttpHeaders

e webview.setExtraPluginDirectory

¢ webview.setFadeColorWindowRect

e webview.setFadeWindowColor

e webview.setFileSystemAPIlSandboxed

e webview.setForcedTextEncoding

e webview.setFullScreenVideoCapable

e webview.setGeometry

e webview.setHistoryPosition

e webview.setJSWebViewBindings

e webview.setJavaScriptlnterruptTimeout

e webview.setKeyboardVisibilitylLocked

e webview.setKeyboardVisible

e webview.setlLayerTilerPrefillRect

e webview.setLoadlmages

© 2014, QNX Software Systems Limited 43

WeblLauncher's JavaScript APls

44

webview.setMinimumFontSize
webview.setOverScrollColor
webview.setPatternMatchingEnabled
webview.setPopupWebView
webview.setPrivateBrowsing
webview.setPropertyChangedEventEnabled
webview.setScreenPowerState
webview.setScrollPosition
webview.setScrolling
webview.setSensitivity
webview.setStandalone
webview.setTemporaryViewportSize
webview.setTextReflowMode
webview.setUserAgent
webview.setUserStyleSheetLocation
webview.setViewport
webview.setViewportHeight
webview.setViewportinitialScale
webview.setViewportMaximumScale
webview.setViewportMinimumScale
webview.setViewportTargetDensityDpi
webview.setViewportUserScalable
webview.setViewportWidth
webview.setVisible
webview.setWebEventEnabled
webview.setWeblnspectorEnabled
webview.setZOrder
webview.setZoomFactor
webview.setZoomToFitWidthOnLoad
webview.status

webview.stop

webview.submitForm
webview.syncProxyCredential
webview. textEncoding

webview. textHasAttribute

webview. textReflowMode
webview.title

webview.tooltip

webview.unlockProperties

© 2014, QNX Software Systems Limited

WebLauncher webview APls

© 2014, QNX Software Systems Limited

webview.updateDisabledPluginFiles
webview.updateGeolocationFilter
webview.updateNotificationPermission
webview.userAgent
webview.userStyleSheetLocation
webview.viewport
webview.viewportHeight
webview.viewportinitialScale
webview.viewportMaximumScale
webview.viewportMinimumScale
webview.viewportTargetDensityDpi
webview.viewportUserScalable
webview.viewportWidth
webview.weblnspectorPort
webview.windowUniqueld
webview.zOrder

webview.zoomFactor

45

Chapter 8

Debugging Web Apps

© 2014, QNX Software Systems Limited

Included as part of WebKit, Web Inspector is a useful debugging and profiling
development tool for web content. You can use this tool to troubleshoot and optimize
your web content for your apps. The tool includes a variety of features and capabilities,
such as inspection, profiling, console integration, and more.

By default, Web Inspector functionality is disabled. To use Web Inspector in conjunction
with the browser, you must first enable it in the browser options. For a Cordova

application, you enable Web Inspector by specifying a command-line flag at compile
time. For instructions on enabling, see “Enabling Web Inspector (p. 48)” in this guide.

To begin debugging your app, you can install the Google Chrome browser or another
WebKit browser for your platform. Once Web Inspector is enabled, you can access it
using a supported device in conjunction with the Chrome browser.

47

Debugging Web Apps

Enabling Web Inspector

Use Web Inspector to debug and profile your apps. The browser uses a client-server
architecture to make Web Inspector functionality available by acting as a webserver.
You inspect the content remotely on a browser; use any WebKit-based browser on the
same Wi-Fi network to navigate to the IP address and port number used by the browser
and to begin inspecting the code.

To enable Web Inspector for your app:
1. Navigate to your cordova apps directory.

2. Run the following command:
build debug

To launch your compiled app, you'll need to know the port number your app is
running on. You can use netstat -a to see all of the currently opened ports.
The listening port numbers start at 1337.

48 © 2014, QNX Software Systems Limited

Launching Web Inspector

Launching Web Inspector

© 2014, QNX Software Systems Limited

Before you begin to use Web Inspector, verify the following:

Your computer is connected to your target board via Ethernet.

Your computer has a WebKit-based desktop browser (e.g., Google Chrome or Apple
Safari).

You have launched your application on the target (e.g., by manually starting we
blauncher or by sending a command to the launcher's PPS object via a command
console).

After you've launched the app you want to inspect, you'll need to manually connect

Web Inspector.

To launch Web Inspector to begin inspecting web content:

1. On your host computer, open your WebKit-based browser.

In the address bar, type the IP address of the device and specify the port number
used by the application serving the content. Note that different instances of the
browser will be at different ports.

You'll be prompted with a list of page titles for content that Web Inspector has
loaded into memory, such as browser content or an HTML5 app.

. Click any of the page titles to begin using Web Inspector to debug and profile your

web content.
Web Inspector opens and displays the Elements panel.

In the Sources view, once you enable debugging to ensure you have the latest source
files in the list, you'll need to refresh the current page by using the shortcut key
CTRL+R.

In the Console view, you can browse objects, test extensions, and test APIs without

having to build and deploy your app.

49

Debugging Web Apps

Debugging and profiling using Web Inspector

Web Inspector allows you to inspect and debug your webpage source code, inspecting
web content displayed through the browser or in HTML5 applications. You can use
Web Inspector to manipulate the DOM, edit and debug JavaScript code, analyze
resource requests, and audit the performance of web content and web apps in near
real time.

Using the WebKit-based browser on your desktop, you can navigate to the IP address
and port number used by the server application and begin inspecting the code.

Web Inspector contains a number of panels that provides different functionality you
can use to help improve the appearance and performance of your webpage:

Panel ‘ Description

Elements (p. 51) Inspect the DOM of the current webpage and adjust settings
for attributes and CSS properties. Changes you make are
reflected in the browser.

Resources (p. 54) Display information about all the resources used by the
current webpage.

Network (p. 56) Display information about each HTTP request made as
resources are requested, received, and displayed in the
browser or in your HTML5 app.

Sources (p. 58) Debug JavaScript code. You can set breakpoints and step
through your code to locate and correct issues.

Timeline (p. 60) View how much time it takes for the browser to load and
render the webpage and its resources.

Profiles (p. 62) Examine how your JavaScript code utilizes memory. With
the Profiles panel, you can pinpoint programmatic
inefficiencies.

Audits (p. 65) Examine the network utilization and webpage performance.
The tool suggests ways to improve performance.

Console A command-line utility that lets you debug JavaScript or
HTML parsing errors.

50 © 2014, QNX Software Systems Limited

Optimizing layout and style

Optimizing layout and style

© 2014, QNX Software Systems Limited

As you try to achieve an optimal layout for small screens such as those on BlackBerry
smartphones, the Elements panel can be a very useful tool. The Elements panel allows
you to view the DOM and trace style values for an element to see where values are
applied, how they have been inherited, and where style values have been superseded.
You can adjust style settings to tweak the appearance of the webpage components to
achieve the desired result. The changes you make to the webpage are applied in near
real time in the BlackBerry Browser, so you can see how your changes affect the
appearance of the content. Once you achieve the results you want, you can propagate
the updated values into the source file.

The Elements panel

You can click the Elements icon on the toolbar to display the Elements panel.

| Elements | Resources Network Sources Timeline Profiles Audits Console
» Computed Style Show inherited
v <html> ¥ Styles + I L
» <head>..</head> element.style {
¥ <body>

¥ <div id="actionBar">)
S <d?v ?d:"navContr‘oli)..(/L:il\f) e R TR
p <div id="addressBar">.</div>

<div id="stopReload" class= body { £ss.cs8il
"reloadstate"></div> background-color: Muoen;
<div id="tabs"></div> , margin:k @px;
</div> J
b <div id="progressBar" class="hide">.</div> body { user agent stylesheet
¥<div id="tabContainer"> display: block;
<div id="addNew">New Tab</div> margimis 8px;
»<ul id="tabList">. }
‘bfii‘” » Metrics
/
(j;{:mi)}') » Properties

» DOM Breakpoints

P Event Listeners Y~

>X Qi JN60H %

The Elements panel is divided into two sections. On the left is the document pane,
which displays the DOM tree of the HTML source document. Each element is displayed
as a separate node. You can expand the nodes of the DOM tree to view the children
of a container element. The document pane of the Elements panel is a good tool to
use to view the source of a page. Since the panel displays the page as a tree, the
document is easy to view and to navigate, even when the original webpage is minified
or poorly formatted and difficult to read. Within the document pane, you can edit
aspects of the DOM, such as attribute values or text.

On the right is a set of collapsible panes that display various pieces of information
related to the element currently selected in the document pane. Some of these panes,
such as Computed Style and Event Listeners, are informative; you use them simply
to track information about the element. Other panes are editable and let you change

51

Debugging Web Apps

the styles or properties associated with the selected element. You can edit content in
the following panes:

Styles: The Styles pane is divided into sections that show each matched CSS rule
and the associated style declarations. It also displays style values that have been
inherited. Inherited values that have been overwritten by other style declarations
are shown with strikethough text.

Metrics: The Metrics pane provides a visual representation of the box model, which
you can edit to optimize the layout of a container element on the screen. The box
model refers to the amount of space a container element occupies in a rendered
webpage. You can apply styles such as margins, borders, and padding to an element
to adjust the size of the content block and improve the page layout.

Properties: The Properties pane allows you to view the page as it is seen by
JavaScript code—as a collection of DOM objects with associated property values.
Although some of the property values are editable, in most cases it's easier to edit
style values in the Styles pane.

Inspect and modify element styles

. Click the Elements icon on the toolbar to display the Elements panel.

. In the document pane, locate and select the element with the style you want to

modify.

. In the data sidebar, expand the Styles pane to display the style declarations applied

to the selected element.

. Perform any of the following actions:

e To change the value for a style declaration, double-click the value in the Styles
pane to make the value editable, then type the new value. You can use the Tab
key to cycle through the declarations within a selector to modify more than one
value.

e To disable a style declaration, deselect the adjacent check box.

e Toadd a new style declaration for a selector, double-click the white space below
the last style declaration, then type the new declaration.

¢ To modify the selector, double-click the selector, then type the new selector
value.

. When you're done, propagate your changes to the source document.

Inspect and modify the DOM

1.
2.
3.

52

Click the Elements icon on the toolbar to display the Elements panel.
In the document pane, navigate to the node that you want to view or change.

Perform any of the following actions:

© 2014, QNX Software Systems Limited

Optimizing layout and style

¢ To change the value of an attribute, double-click the value in the document
pane to make the value editable, then type the new value. Use the Tab key to
cycle through each of the element's attributes to modify more than one value.

¢ Tochange an attribute name, double-click the attribute name and type the new
value.

4. When you're done, propagate the changes to the source document.

Modify the box model for an element

1. Click the Elements icon on the toolbar to display the Elements panel.

2. Inthe Elements panel, expand the Metrics pane to display the box model associated
with the selected element.

3. Click any of the top, bottom, left, or right values, then type the new value. The
changed value is propagated to the associated style declaration in the Styles pane.

4. When you're done, propagate the changes to the source document.

© 2014, QNX Software Systems Limited

53

Debugging Web Apps

Analyzing page resources

54

The Resources panel allows you to view the complete set of resources that are loaded

by a webpage. You can view and interact with resources such as CSS and JavaScript,

check image content and information, and view which font sets are used on the page.

You can also view and interact with any client-side resources created by your page,
including cookies, databases, storage objects, and application cache.

The Resources panel

You can click the Resources icon on the toolbar to display the Resources panel.

Elements i»Resnumes—' Network Sources Timeline Profiles Audits Console

¥ (") Frames 1 cordova.define('cordova/plugin_list', function(require, exports, md
¥ (23 (index htmi) 5 modu}e.exports = [
Ll 4) "file": "plugins/com.gnx.browser/www/client,js",
¥ Scripts 5 "id": "com.gnx.browser.client",
browser.js 6 "clobbers": [
| client js 7 "qnx. browser"
o
= cordova js 10|]
tab js 11 1)
P Styleshests
index.html
» £ Web SQL

» | | IndexedDB

> £ Local Storage

> || Session Storage
> _s’d' Cookies

» £ Application Cache

>

= Q i

The Resources panel shows a complete list of the resources that the WebKit engine
must request and load to render the webpage, as well as any client-side resources

created and used by the webpage. You can also use the Resources panel to view the

content of any resource file. Resources are organized in the panel as follows:

Frames: Contains the resources for each frame displayed in the content, including
images, fonts, scripts, style sheets, and other content resources (e.g., embedded
video or Flash files). Subframes within the main window are displayed as subfolders
beneath the main Frames folder.

Databases: Contains all the database tables that are associated with your content
or app.

Local Storage: Contains all Local Storage objects, that is, storage objects that
persist after a browser session has ended.

Session Storage: Contains all Session Storage objects, that is, storage objects that
are valid only for the current browser session.

© 2014, QNX Software Systems Limited

Analyzing page resources

View resource content

e Cookies: Contains all the cookies associated with the webpage or app.

¢ Application Cache: Contains the resources included in the manifest of an offline

web application.

1. Click the Resources icon on the toolbar to display the Resources panel.

2. In the list in the left pane of the Resources panel, double-click a category to show

the resources and subgroups. Continue to drill down until you locate the resource
you want to view.

3. Double-click the resource in the left pane. The right pane shows the contents of

that resource. For example, selecting an image resource displays the image itself,
along with the file size and URL of the image file. Selecting a script or style sheet
shows the content of that script or style sheet.

View resource network information

© 2014, QNX Software Systems Limited

You can quickly see additional information about a specific resource by viewing the
resource in the Network panel, which displays information such as file size and transfer

rate information.

1. In the list in the left pane of the Resources panel, double-click a category to show
the resources and subgroups. Continue to drill down until you locate the resource
you're interested in.

2. Right-click the resource and click Reveal in Network Panel. Web Inspector opens
the Network panel and briefly highlights the selected resource.

55

Debugging Web Apps

Analyzing network usage

56

The Network panel allows you to determine the network efficiency of your content.
The panel displays information about each HTTP request made as the browser engine
requests and downloads resources.

The Network panel

Click the Network icon in the toolbar to display the Network panel. Initially, the panel
shows no information; you must reload the content on the device or simulator to allow
Web Inspector to track the HTTP requests. When loading is complete, the Network
panel displays a table.

Elements Resources | Network | Sources Timeline Profiles Audits Console

Name Sta... - Size | Time .
Path Met... Text Type | Initiator e Timeline Lemn o amn a2 min
showOverlay POST 200 text/... native c.. 152B 1.25s
localhost/com gnx OK Script 49B 1.24s
updateUrl POST 200 text/ native c... 201B 21ms
localhost/com gnx OK Script 98B 20ms

2 requests | 353 B transferred

Z2|Q =0 Q [All |Documents Stylesheets Images Scripts XHR Fonts WebSockets Ot\‘ﬁ

By default, the table lists each of the requested resources in their requested order,
and then charts the network activity as a waterfall timeline, with resources color-coded

by type.

The waterfall timeline plots resources by the total time required to load the resource,
from the initial request to the completion of the download. The pale segment of the
resource bar in the chart represents the total latency, that is, the time the browser
engine must wait from the moment it initially makes the request to the moment it
receives the first packet of data for the resource. Two vertical lines on the chart show
key page-load milestones:

e The blue line indicates the time when parsing of the content is complete and the
DOMContent event fires.

e The red line indicates the time when all the resources have been loaded and the
load event fires.

© 2014, QNX Software Systems Limited

Analyzing network usage

You can customize how the content is displayed in the Network panel by filtering
based on type or sorting by any of the table headings. You can also reformat the chart
to highlight different time measures.

Apply a filter to display a specific resource type

By default, the Networks panel displays all resource requests in the table. The status

bar at the bottom of the panel contains buttons that allow you to filter the resources

displayed based on the resource type.

1.
2.

Click the Network icon on the toolbar to display the Network panel.

If you haven't already done so, on the device or simulator, reload the page to allow
Web Inspector to track and record network activity.

. In the status bar at the bottom of the Network panel, choose the type of resource

you want to display.

Change which time measure is displayed

By default, when you measure the network activity, Web Inspector charts the network

activity in a waterfall timeline. You can reformat the chart to highlight different time

measures.

1.
2.

Click the Network icon on the toolbar to display the Network panel.

If you haven't already done so, on the device or simulator, reload the page to allow
Web Inspector to track and record network activity.

. In the drop-down list above the chart, select one of the following:

¢ Timeline: Displays the network activity in a waterfall timeline.

e Start time: Highlights the time when each resource was requested.

¢ Response time: Highlights the time when the resource is initially received.
e End time: Highlights the time when the resource is completely loaded.

¢ Duration: Displays the total length of time it takes to load the resource.

e Latency: Displays the amount of delay between the start time value and the
response time value.

Reorder the list of resources

1.
2.

3.

© 2014, QNX Software Systems Limited

Click the Networks icon on the toolbar to display the Networks panel.

If you haven't already done so, on the device or simulator, reload the page to allow
Web Inspector to track and record network activity.

Click a column heading to reorder the list based on the column data.

57

Debugging Web Apps

58

Debugging scripts

Set and use breakpoints

The Sources panel allows you to debug the JavaScript code used by your webpage. By
allowing you to set breakpoints and to step through your code, the Web Inspector can
help to locate and correct problems within your code. When you determine that the

script is functioning as intended, you can copy the changes back into the source file.

To use the Sources panel, you must first enable debugging. When you first view the
Sources panel, Web Inspector prompts you to enable debugging for just the current
session or for all sessions.

The Sources panel

You can click the Sources icon in the toolbar to display the Sources panel. If you
haven't already enabled debugging, Web Inspector prompts you to do so.

Elements Resources Network | Sources | Timeline Profiles Audits Console

@ browser.js cordova.js client.js ol n r/o

161 updateUI(); “| » Watch Expressions + C
162 b oelse { ¥ Call Stack

163 console.log("Unknown Event:",

164 ¥ Scope Variables

55 }
165 }

166

¥ Breakpoints
+| browser js:20

6 1

Wl{z :’,/Method to add a new tab to the brow tabList = document.getElementById("tabList"),
169 function addTab(){ o) browser js:170
qnx.browser.addTab (addTabsuccess, gnx.browser.addTab(addTabSuccess,failure,{});
171 } #| browser 5176

172 //Method called when we want to remov gnx.browser.removeTab(removeTabSuccess, failu..
173 //Handles cordova calls and UL cleanu |[g clientjs115

174 function removetab(e) { init : function (chromeurl, uiHeight, overlay..
175 var id = parseInt(e.srcElement.pa .
qnx.browser.removeTab(removeTabSu RbOIEEakpolnts

177 e.srcElement.removeEventListener(| & XHR Breakpoints +
178 e.srcklement.parenttlement.remove | p Event Listener Breakpoints

179 tabList.removechild(e.srcElement. » Workers

180 delete _tabCollection[id]; -

181 v

> Q & @ {} Line 170, Column 1 F)

The Sources panel is divided into two sections. On the left is the document pane,
which allows you to view and debug JavaScript. On the right is a set of collapsible
panes that display information related to the displayed script.

A toolbar at the top of the Sources panel allows you to choose the script file you want
to inspect and to cycle between open scripts. It also provides a set of controls that
allow you to step through the script displayed in the document pane.

1. Click the Sources icon on the toolbar to display the Sources panel.

2. In the line gutter of the document pane, click the line where you want to set a
breakpoint. A breakpoint marker appears in the line gutter and the new breakpoint
is added to the Breakpoints pane, identified by the script filename and line number.
The execution of the script pauses at the specified breakpoint.

© 2014, QNX Software Systems Limited

Debugging scripts

3. Perform any of the following actions:

e To continue the execution of the script beyond the current breakpoint, click the
Continue button in the Sources panel toolbar.

e To display the line of code associated with the breakpoint in the documents
pane, click the breakpoint entry in the Breakpoints pane. The document pane
displays and highlights the associated line.

e To disable a single breakpoint without removing it, in the Breakpoints pane,
uncheck the breakpoint. The execution of the script no longer pauses at the
disabled breakpoint.

e To deactivate or activate all the breakpoints listed in the Breakpoints pane
without removing them, toggle the breakpoint activation switch at the right side
of the Scripts panel toolbar.

e Toremove a breakpoint, locate and click the breakpoint marker in the line gutter
of the document pane. The marker no longer appears in the line gutter and the
breakpoint is removed from the Breakpoints pane.

Pause script execution

You can pause the script at any time to get a snapshot of the call stack and variable
values.

1. Click the Sources icon on the toolbar to display the Sources panel.
2. In the Sources panel toolbar, click the Pause button.

When the script pauses, the last line of JavaScript to be executed is highlighted. The
call stack and the current in-scope variable values appear in the appropriate panes at
the right of the panel.

Pause script execution on exceptions

You can configure Web Inspector to pause the execution of scripts whenever exceptions
are thrown. A tri-state toggle allows you to specify whether to pause for all exceptions,
for only uncaught exceptions, or for no exceptions.

1. Click the Sources icon on the toolbar to display the Sources panel.
2. Use the Exceptions button in the status bar at the bottom to choose one of the
following behaviors:

e To pause on all exceptions, click the Exceptions button until the icon turns
blue.

¢ To pause only on uncaught exceptions, click the Exceptions button until the
icon turns red.

e To not pause on any exceptions, click the Exceptions button until the icon turns
gray.

© 2014, QNX Software Systems Limited 59

Debugging Web Apps

Analyzing loading, script execution, and rendering times

You can use the Timeline panel to analyze the time it takes to complete the different
activities that the browser engine must perform to completely load and render your
webpage.

The Timeline panel

Initially, the panel displays no information, so you must click the Record button in
the status bar to allow Web Inspector to record the browser engine activity.

As it records browser engine activity, Web Inspector adds data to the Timeline panel.
Elements Resources Network Sources '—‘ﬁmeine—' Profiles Audits Console

_— 27s 254s 3.81s 5.08s 6.355 7623 8.89s

(| I

Myl Frames
~~ IMemo
ac o I I Im 1 i L I | | [|

RECORDS 0 227ms 455ms 682 ms 909 ms 1145

Event (focus) »
B Recalculate Stvle (browser |5 234
Layout - Details

Duration 0 (at 1.08 5)

-— =

U puanc Laycrs
M Layout

@ Recalculate Style
B Paint (768 = 100)

N

@ Composite Layers
H Layout []

B Recalculate Style [}
|

B Composite Layers

| Q| e |0 ¥|= Al ¥ | ® i oading ¥ scripting ® Rendering ¥ Painting | 12 of 159 records shown #

Note that all browser engine activity pauses when the device is locked or the browser
or HTML5 application are minimized. In order for Web Inspector to record any activity,
the browser or HTML5 application must be the active application and the device or
simulator screen mustn't be locked.

The Timeline panel is divided into two panes:

¢ |nthe top pane, the Timeline panel allows you select which timeline view you want
to display. You can choose three views:

e Events: Shows the time it takes for the browser engine to complete each of the
events required to completely load the content.
¢ Frames: Shows the browser engine activity for each screen refresh.

e Memory: Shows memory consumption over time.

¢ |n the lower pane, the Timeline panel shows a waterfall timeline for the timespan
that was selected in the top pane. The data in the timeline is determined by the
mode you select in the top pane of the timeline's panel.

60 © 2014, QNX Software Systems Limited

Analyzing loading, script execution, and rendering times

Record browser engine activity

1. Click the Timeline icon on the toolbar to display the Timeline panel.
2. In the status bar at the bottom of the Timeline panel, click the record button to
begin recording browser engine activity. While Web Inspector is recording, the

record button turns red.

Constrain the display to a specific time span

You can constrain the time span shown in the timeline. In the top pane of the Timeline
panel, the portion of time displayed in the lower pane is represented by a white
background. Two gray slider handles at the top left and right edges of this white
background allow you to increase or decrease the selected timespan displayed in the
timeline.

Elements Resources Network Sources l—ﬁmelne1 Profiles. Audits Console

—_— 127s 254s 3.81s 5.08s 6.35s 762s 8.80s
' Events
-~ Events

Myl Frames

|l Memory om0 I |

RECORDS 0 227ms 455 ms 682 ms 909 ms
Event (focus) »
M Recalculate Stvle (browser j5°234) [}
Layout - Details u
Duration 0 (at 1.08s) L]
= ou. pusie Layers [}
® Layout
@ Recalculate Style
| Paint (768 = 100)

mm E =

@ Composite Layers
[]

[}
[]

® Layout
@ Recalculate Style
@ Composite Layers

>xQ @ ® | | [__—_ All h A @Luading "’Scripting wRendering @Painting 12 of 159 records shown #

1. Click the Timeline icon on the toolbar to display the Timeline panel.

2. If necessary, record the browser engine activity to generate timeline data.

3. In the top pane of the Timeline panel, click and drag a gray slider handle to increase
or decrease the time span.

Filter which events are displayed

© 2014, QNX Software Systems Limited

By default, the Timeline panel shows all events in the table. The status bar at the bottom
of the panel contains check boxes that allow you to show and hide events based on

type.

1. If necessary, record the browser engine activity to generate timeline data.
2. In the status bar at the bottom of the Timeline panel, deselect the event types you
want to remove from the timeline.

61

Debugging Web Apps

Analyzing memory usage and processing demands

The Profiles panel allows you to analyze the memory usage and processing demands
of your content. You can use the Profiles panel to create a performance profile for your
JavaScript and CSS files.

e For JavaScript files, Web Inspector examines and reports on the CPU usage for
each function. You can view the CPU usage for a particular function and for the
number of times that function was called.

e For CSS files, Web Inspector examines the processing demands for each selector.
Web Inspector records the amount of time it took to search for matches for a
particular selector and for the total number of matches for that selector.

To use the Profiles panel, you must first enable profiling. When you first view the
Profiles panel, Web Inspector prompts you to enable profiling for just the current
session or for all sessions.

The Profiles panel

If you haven't already enabled profiling, Web Inspector prompts you to do so.

Elements Resources Network Sources Timeline Faligﬁlgs* Audits Console

Profiles Select profiling type

®) Collect JavaScript CPU Profile

CPU profiles show where the execution time is spent in your page's
JavaScript functions.

Collect CSS Selector Profile

CSS selector profiles show how long the selector matching has taken in
total and how many times a certain selector has matched DOM elements
(the results are approximate due to matching algorithm optimizations.)

Start

E(ia|«s | 0| i

Profile the memory usage of your scripts
To profile memory usage:

1. Click the Profiles icon on the toolbar to display the Profiles panel.
2. On the Profiles panel, select Collect JavaScript CPU Profile.

3. To start profiling your memory usage, click Start. The button turns red as the Web
Inspector is recording the memory usage.

62 © 2014, QNX Software Systems Limited

Analyzing memory usage and processing demands

4. To stop recording, click Stop. When you stop recording, the new profile is added
under the CPU Profiles section in the left pane and the profile's contents are
displayed in the right pane:

Elements Resources Network Sources Timeline ﬁ@ﬁgﬂ Audits Console

f@ Profiles Total Average Calls Function
99 64% 100.00% 99 64% 1 (program)
CPU PROFILES 0.13% 0.13% 0.13% 1 » send
0.07% 0.08% 0.00% 20 P tabUpdates browser js: 116
. Profile 1 0.06% 0.16% 0.00% 40 » (program) index html.1
- 0.01% 0.20% 0.00% 15 » updateUrl browser |5:263
CSS SELECTOR PROFILES 0.01% 0.01% 0.01% 1 ¥ blur
1 0.01% 0.11% 0.00% 21 P callbackFromNative cordova js.288
| HEL U 0.01% 0.17% 001% 1 | Mexec cordova s 1101
T 0.01% 0.10% 0.00% 20 » onlUpdate client j5:39
0.01% 0.01% 0.01% 1 > RemoteFunctionCall cordova js 1068
0.01% 0.01% 0.00% 2 P canForward tab |s:63
0.01% 0.01% 0.00% 2 P setTitle tabjs:89
001% 0.14% 0.01% 1 P makeSyncCall cordova js 1086
0.01% 0.01% 0.00% 2 » updateUl browser j5:207
0.01% 0.01% 0.01% 1 » composelUri cordova j5:1071
0.01% 0.01% 0.00% 20 P setTimeout
0.01% 0.01% 0.01% 1 P urlSuccess browser |5:73
0.01% 0.18% 0.01% 1 » updateUrl client j5:397
0% 0% 0% 1 P (XMLHttpRequestConstructor object)
1

=

noc B innetEan e hraniear e ZEE)

Clans/an o Gaa) Heavy(Bbttom Up)v' % & X -]

The results indicate the amount of time the browser engine spent executing each
function during the recording process, along with the number of times each function
was called. An excessive amount of time spent in any one function can indicate a
problem with the code.

5. To sort the data, perform any of the following actions:

To sort by values in any column, double-click the column heading.

To display calls based on greatest impact on all exceptions or where they
occurred in the call stack, in the status bar at the bottom of the panel, toggle
between Heavy (Bottom Up) and Tree (Top Down).

To specify whether values are presented as a time value or as a percentage of
the total CPU usage required to process all the functions, toggle the percent
button on or off.

To view a single function, select the call in the table and then click the focus
button.

To exclude a single function from the data, select the function in the table and
then click the exclude button.

To reload the original profile after focusing on or excluding a function, click the
reload button.

Profile the performance of your CSS selectors

© 2014, QNX Software Systems Limited

1. On

the Profiles panel, select Collect CSS Selector Profile.

63

Debugging Web Apps

2. To start profiling your memory usage, click Start. The button turns red as Web
Inspector records the memory usage.

3. To stop recording, click Stop. When you stop recording, the new profile is added
under the CSS Selector Profiles section in the left pane and the profile's contents
are displayed in the right pane:

Elements Resources Network Sources Timeline m Audits Console

4’*;»‘\ - Selector Source ﬂ Matc...
C input[type="button"]:disabled, input[type="submit"]-disabled, input[type 143% |0
CPU PROFILES input, input[type="password"], inputftype="search"], isindex 9.5% 84
- inputfocus, textarea-focus, isindex-focus, keygenfocus, select-focus 9.5% 80
: '_ | Profile 1 htmlfocus, bodyfocus, input[readonly]:-focus 9.5% 0
B input[type="date"], input[type="datetime"], input[type="datetime-local], .. 4.8% 0
CSS SELECTOR PROFILES input, textarea, keygen, select, button, isindex 4.8% 84
o #addressBar input css.css:50 | 4.8% 84
input, textarea, keygen, select, button, isindex, meter, progress 4.8% 84
input-webkit-autofill 4.8% 0
input[type="color"][list] 4.8% 0
inputftype="button"]:focus, input[type="checkbox"]:focus, inputftype="fi... 4.8% 0
input[type="week"] 4.8% 0
#back c55.05522 | 48% 2
focus 4.8% 80
input[type="range"] 4.8% 0
input[type="hidden"], inputftype="image"], input[type="file"] 4.8% 0
input[type="datetime"] 0.0% 0
inputftype="checkbox"] 0.0% 0
hide css.css99 | 0.0% 2
B B R B N N e nNoNoL n h
X Q v @ 0 % e

The profile results indicate the amount of time the browser engine spent matching
each selector in the associated style sheets, along with the total number of times
the browser engine found a match for the selector.

4. To specify whether the value of the Total column is presented as a time value or
as a percentage of the total time required to process the CSS, toggle the percent
button on or off.

64 © 2014, QNX Software Systems Limited

Auditing your webpage

Auditing your webpage

© 2014, QNX Software Systems Limited

Web Inspector can audit your webpage for inefficiencies and, based on a set of best
practices for web design, suggest changes you can make that can help improve network
utilization and performance. The Audits panel provides a list of perceived inefficiencies
in your webpage design. For example, Web Inspector can analyze your resources and
determine where you might consider combining script files or style sheets. The Audits
panel can also inform you where you've needlessly downloaded styles that aren't used,
specify resources where you haven't set cache-control directives, and suggest other
optimizations.

The Audits panel can be especially helpful when you design pages for mobile browsers.
On mobile browsers, network latency can extend download times; constrained
processing power tends to increase rendering time and to slow webpage performance.
As a result, eliminating inefficiencies in your webpage design can have an significant
positive impact.

The Audits panel

Elements Resources Network Sources Timeline Profiles | Audits | Console

Select audits to run

RESULTS
¢! Select All

¥ Network Utilization

¥/ Web Page Performance

® Audit Present State

Reload Page and Audit on Lead

Run
¥ a o L
The Audits panel lets you choose to:

e audit network utilization or page performance (or both)
e run the audit against the static page

e reload the page and run the audit as it loads.

Once you've run an audit, Web Inspector adds the report to the list at the left of the
panel and shows the results in the main pane. The results suggest improvements you
can make to your webpage to increase efficiencies.

65

Debugging Web Apps

Elements Resources

(@ Audits

RESULTS

local://findex.html (1)

(a0

66

Network

Sources Timeline Profiles ' Audits | Console
¥ Network Utilization
@ P> Leverage browser caching (5)
¥ Web Page Performance

@ Y Optimize the order of styles and scripts (1)
The following external CSS files were included after an external JavaScript file in the
document head. To ensure CSS files are downloaded in parallel, always include external
CSS before external JavaScript.
1 inline script block was found in the head between an external CSS file and another
resource. To allow parallel downloading, move the inline script before the external CSS
file, or after the next resource.

©) ¥ Remove unused CSS rules (1)
1 rules (3%) of CSS not used by the current page.
P css.css: 3% is not used by the current page

© 2014, QNX Software Systems Limited

HTML5 Developer's Guide

Index

A

apps 24, 25, 33
creating 24
creating plugins for 25
enhancing performance of 33
setup 24

B

box model (in Web Inspector) 53
browser engine 12

c

client.js 26
Cordova 12, 25
creating plugins 25
plugin structure 25
required files for plugins 25
cordova.js 27
CSS selectors 63
profiling with Web Inspector 63

D

DOM 11, 52
modifying 52

G

Google Chrome 23

H

HTML5 12, 23
framework 12
jQuery 23

|
index.js 26

J

JavaScript 12, 26
client.js 26

© 2014, QNX Software Systems Limited

JavaScript (continued)

index.js 26
plugin.xml 26
jQuery 23
N
NPAPI 12
P
performance, enhancing 33
plugin 25
JavaScript part 25
plugin.xml 26
plugins 25, 26
client.js 26
creating 25
file structure 25
index.js 26
plugin.xml 26
required files 25
PPS 12, 28
ppsUtils.js 28
utilities file 28
T

Technical support 8
Typographical conventions 6

w
Web Graphics Library 23

Web Inspector 48, 49, 50, 51, 52, 53, 54, 63, 65

auding webpages with 65
Audits panel 65
Elements panel 51
enabling 48
launching 49
modifying element styles with 52
modifying the box model with 53
modifying the DOM with 52
optimizing screen layout with 51
panels 50
profiling CSS selectors with 63
Resources panel 54

WebGL 23

67

Index

68

© 2014, QNX Software Systems Limited

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	SDK Overview
	Browser Engine
	CSS3 support
	HTML5 elements
	HTML5 offline web applications
	Browser API support

	Web Sandbox Model
	Developing HTML5 Apps
	The HTML5 development environment
	Creating an HTML5 app

	Creating Your Own Cordova Plugin
	The cordova.exec() function
	Example: Using the PPS interface

	Enhancing Performance
	WebLauncher's JavaScript APIs
	WebLauncher application APIs
	WebLauncher webinspector APIs
	WebLauncher webview APIs

	Debugging Web Apps
	Enabling Web Inspector
	Launching Web Inspector
	Debugging and profiling using Web Inspector
	Optimizing layout and style
	Inspect and modify element styles
	Inspect and modify the DOM
	Modify the box model for an element

	Analyzing page resources
	View resource content
	View resource network information

	Analyzing network usage
	Apply a filter to display a specific resource type
	Change which time measure is displayed
	Reorder the list of resources

	Debugging scripts
	Set and use breakpoints
	Pause script execution
	Pause script execution on exceptions

	Analyzing loading, script execution, and rendering times
	Record browser engine activity
	Constrain the display to a specific time span
	Filter which events are displayed

	Analyzing memory usage and processing demands
	Profile the memory usage of your scripts
	Profile the performance of your CSS selectors

	Auditing your webpage

	Index

