
QNX CAR™ Platform for Infotainment 2.1

QNX CAR™ Platform for Infotainment 2.1

Boot Optimization Guide

©2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All rights
reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Tuesday, February 25, 2014

Table of Contents

Preface: About This Guide ...v

Typographical conventions ...vi

Technical support ...viii

Chapter 1: Overview of Boot Optimization ...9

Chapter 2: System Startup Sequence ...11

Chapter 3: Configuring the Target for Boot Optimization ...15

Chapter 4: Optimizing Boot Times ...17

Optimize the bootloader ..19

Reduce the size of the startup program ...20

Remove unnecessary debug printing ...21

Reduce the size of the IFS ...22

Generate the IPL to skip the image scan ...24

Enable fast reading in the SD card ...25

Use compression strategies ..26

Make careful use of the default build script ...27

Consider the placement of waitfor statments ...28

Reorder the startup program ..31

Optimize the HMI ...32

Create modular applications ..33

Statically link libraries ...34

Chapter 5: Measuring Boot Times ..35

The boot_metrics.log file ...38

Measuring the time to copy from flash to RAM ..41

Boot Optimization Guide

Table of Contents

Preface
About This Guide

The Boot Optimization Guide gives an overview of how the QNX CAR platform meets

the boot time requirements of automotive systems. The guide describes the sequence

of events from the initial power on to a fully functional system, including the

optimization actions you can take at different points in this sequence.

See:To find out about:

Overview of Boot Optimization (p. 9)An introduction to boot time optimization

System Startup Sequence (p. 11)An overview of the system's boot sequence

Configuring the Target for Boot

Optimization (p. 15)

Preparing your target for boot optimization

Optimizing Boot Times (p. 17)Boot optimization in QNX CAR and best

practices for optimizing boot times

Measuring Boot Times (p. 35)Measuring times in the boot sequence

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

vi Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited vii

Boot Optimization Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

viii Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Overview of Boot Optimization

Like other embedded systems, the QNX CAR Platform for Infotainment boots in several

stages, each involving a number of interdependent tasks.

These tasks all take time. To ensure that software and hardware components are

initialized and ready when needed, the system architect or designer must think

deliberately through each of these stages. The QNX CAR platform provides a number

of mechanisms to help meet your particular bootup requirements. This document will

walk through the entire bootup sequence, offering techniques you can use at each

stage to optimize the bootup sequence for the particular requirements of your system.

The boot process consists of several stages:

1. The operating system must load from nonvolatile storage.

2. The operating system must initialize itself, as well as any device drivers and

peripherals.

3. The HMI (also called the Navigator) must load, initialize, and start running.

4. The application software must load, initialize, and start running.

These stages are discussed in detail in the sections that follow.

Copyright © 2014, QNX Software Systems Limited 9

Chapter 2
System Startup Sequence

The QNX CAR platform boots in several stages, as illustrated in the following diagram:

Power onPower on
Time

PLL IPL Startup Kernel Build Script SLM and Boot Manager HMI

1 2 3 App1

App2

App3, etc.

The boot stages are as follows:

• PLL (phase locked loop)—PLL refers to how long it takes for the first instruction

to begin executing after power is applied to the processor. Most CPUs have a PLL

that divides the main crystal frequency into all the timers used by the chip. The

time that the PLL takes to settle to the desired frequencies often represents the

largest portion of the chip's startup time. The PLL stage is independent of any OS

and varies from CPU to CPU; in some cases, it takes as long as 32 milliseconds.

Consult your CPU user manual for the exact timing.

• IPL (initial program loader)—QNX provides a standard, bare-bones IPL that performs

the fewest steps necessary to configure the memory controller, initialize the chip

selects and/or PCI controller, and configure other required CPU settings. Once

these steps are complete, the IPL copies the startup program from the image

filesystem (IFS) into RAM and jumps to it to continue execution.

The IFS contains the OS image, which consists of the startup program, the kernel,

the build scripts, and any other drivers, applications, and binaries that the system

requires. Because you can control what the IFS contains, the time for the copying

stage varies, but it typically constitutes the longest part of the kernel boot process.

In extreme cases where the system contains a very large image and has no filesystem

other than the IFS, this stage can take a long time (10 seconds or more).

That said, you can exercise a great deal of control over the length of this phase,

albeit indirectly, by reducing the size of the IFS. To add, remove, or configure files

stored in the IFS, you can edit the build script or use the system builder tool in

the IDE. You can also compress the image to make the IFS smaller (with the

additional overhead of decompression, which you can speed up by enabling the

cache in the IPL).

Typically, the bootloader executes for at least 6 milliseconds before it starts to load

the OS image. The actual amount of time depends on the CPU architecture, on

what the board requires for minimal configuration, and on what the chosen

bootloader does before it passes control to the startup program.

Copyright © 2014, QNX Software Systems Limited 11

Some boards come with another bootloader, such as U-boot. These bootloaders

aren't as fast as the QNX IPL, since the IPL has been specifically tuned for QNX

systems. We recommend that you replace your bootloader with the IPL.

For more information on the IPL and how to modify it for your purposes, see “Writing

an IPL Program” in the Building Embedded Systems guide.

• Startup program—The first program in a bootable OS image is a startup program

whose purpose is to initialize the hardware, initialize the system page, initialize

callouts, and then load and transfer control to the kernel (procnto or

procnto-smp). If the OS image isn't in its final destination in RAM, the startup

program copies it there and decompresses it, if required.

During bootup, the kernel initializes the memory management unit (MMU); creates

structures to handle paging, processes and exceptions; and enables interrupts.

Once this phase is complete, the kernel is fully operational and can begin to load

and run user processes from the build scripts.

• Build scripts—Each board has a different set of build scripts to support different

configurations. The build scripts let you specify which drivers and applications to

start, and in what order.

You can use the build scripts to launch services or utilities that need to be running

very early (for example, audio chime and backup camera) or that need extra time

to load (for example, PPS or disk drivers). Wherever possible, these processes

should be started in the background to optimize parallelsim and maintain the

highest possible utilization of the CPU until the HMI is fully operational.

It's also important to limit what goes into the build script because the build script

is included in the IFS, and everything that's added to it increases the IFS size and

the time it takes to load. Furthermore, the System Launch and Monitor (SLM) is

more efficient at launching services, with the added benefit that it allows you to

monitor and restart services as required.

In the QNX CAR platform, the build scripts start the following:

• screen and camera services

• audio service and the early chime utility

• disk drivers (and then mount the disks)

• PPS service

• debugging utilities, such as slogger and dumper

• BSP drivers, like the serial driver, realtime clock, and other hardware utilities

• SLM and the system debug console

• SLM—SLM is a service that starts any processes that are necessary for the HMI

(io-pkt, for example), and then starts the Boot Manager and the HMI itself. At

this point, SLM waits for further instructions from the Boot Manager. SLM is

controlled by a set of configuration files (slm-config-all.xml,

12 Copyright © 2014, QNX Software Systems Limited

System Startup Sequence

slm-config-modules.xml, and slm-config-platform.xml) that tell it

what modules to start and whether there are dependencies within or between those

modules. The dependencies of the HMI are defined in the car2-init module of

the file slm-config-all.xml. For more information, see the entry for SLM in

the System Services Reference.

• Boot Manager—The Boot Manager drives SLM by sending it commands to start up

sets of components (modules) that in general comprise the dependencies for each

core application (tab) of the HMI, but could also allow you to launch other sets of

functionality at a particular point in the boot sequence (for example, Bluetooth

services). Each tab in the HMI is defined in the file slm-config-modules.xml

as the list of dependencies it requires.

The Boot Manager publishes PPS objects to

/pps/services/bootmgr/modules_ready/ to signal to the HMI that a

particular tab's dependencies are ready and that tab can be launched. If the

/pps/services/bootmgr/last_tab object is present (representing the tab

that was active when the system was last shut down), the Boot Manager launches

that tab first. Otherwise, it launches tabs in the order they are listed in

slm-config-modules.xml. You can change the order in which tabs are launched

as priority dictates by changing the order they are listed in

slm-config-modules.xml

Copyright © 2014, QNX Software Systems Limited 13

Chapter 3
Configuring the Target for Boot Optimization

Before you can perform any of the boot optimization procedures described in the

sections that follow, you first need to have a target system running an SD-only image.

Follow the instructions for “Installing a boot-optimized image” in the installation note

included with your evaluation image.

Copyright © 2014, QNX Software Systems Limited 15

Chapter 4
Optimizing Boot Times

Each system has its own set of boot time requirements to meet. Depending on your

goals, there are a number of ways you can optimize the startup of the system. By

implementing some simple techniques at various points in the boot sequence you can

make the OS and applications load, initialize, and launch more quickly. For the QNX

CAR platform, you can optimize startup times in three distinct areas:

See these sections in this guide for details:To optimize:

The loading and launching of OS itself
• Optimize the bootloader (p. 19)

• Reduce the size of the startup program (p. 20)

• Remove unnecessary debug printing (p. 21)

• Reduce the size of the IFS (p. 22)

• Generate the IPL to skip the image scan (p. 24)

• Enable fast reading in the SD card (p. 25)

• Use compression strategies (p. 26)

The platform application stack
• Make careful use of the default build script (p. 27)

• Consider the placement of waitfor statements (p. 28)

• Reorder the startup program (p. 31)

The HMI
• Optimize the HMI (p. 32)

• Create modular applications (p. 33)

• Statically link libraries (p. 34)

In the QNX CAR platform, boot time optimization has been done using many of the

techniques discussed in this chapter. These optimizations were focused on the following

goals:

• Early splash screen and camera—meeting this goal required loading the IFS and

getting to the build script as soon as possible, and then running the Screen Graphics

Subsystem and the graphical app as early as possible (see Optimize the bootloader

(p. 19), Reduce the size of the IFS (p. 22), and Reorder the startup program (p.

31)).

• Early audio—used the same techniques as early splash screen and camera, but

starting audio as early as possible.

• Early HMI display (within 10 seconds)—used and benefited from the same

techniques as above, but required additional work to reduce the HMI's dependencies

Copyright © 2014, QNX Software Systems Limited 17

down to what was strictly necessary. This led to the development of Boot Manager,

which allows the HMI to come up before all the apps are instantiated.

• Last audio playing within 10 seconds—required the invention of a new multimedia

service that saves its state at shutdown and restores it at power-up. This also

required careful management of this service's dependencies and placement in the

SLM configuration.

18 Copyright © 2014, QNX Software Systems Limited

Optimizing Boot Times

Optimize the bootloader

Once developers get the system to boot for the first time, bootloader development

often goes on the back burner. Here are a few techniques that sometimes get overlooked

(all these optimizations are present in the QNX CAR platform):

• Enable data and instruction cache as early as possible. This sounds obvious, but

some of the tight copy loops used in the bootloader benefit immensely from having

the instruction cache enabled.

• Minimize or eliminate the boot script timeout. Bootloaders like RedBoot and U-Boot,

which run a script, typically contain an automatic timeout that lets you abort the

loading of one OS load and then load another OS. Also, the bootloader might print

messages (for instance, help or welcome messages) to the serial port; you can

suppress these. To modify the timeout in U-Boot, use the bootdelay, bootcmd, and

preboot environment variables. For RedBoot, use fconfig to change the value

for Boot script timeout. This step applies only if you're using a bootloader other

than the IPL (which is not recommended for production systems).

• Don't scan for the OS image. If the system uses a default QNX IPL, you should

look at the code in main() within main.c and remove anything unnecessary. In

particular, look for code that calls image_scan() and replace it with the OS image's

hardcoded address. You can also turn off the scan option when you generate the

IPL (see Generate the IPL to skip the image scan (p. 24)).

If you pad the IPL to a fixed size, you will always know where the OS image

begins.

• Eliminate the bootup checksum. In most cases, the system has a single OS image.

Consequently, performing a checksum to ensure the image's validity has little value,

since you can't perform a recovery if the image has failed. Also, the checksum

takes time; removing it allows your important code to start running sooner.

Copyright © 2014, QNX Software Systems Limited 19

Optimize the bootloader

Reduce the size of the startup program

Startup is small (roughly 45K), so it's difficult to trim much fat from it. If you use the

QNX Instant Device Activation technology, your minidrivers will be linked to the startup

program and will consequently add to its load time. So make sure that your minidrivers

are as small as possible—don't clutter them up with lots of unused debug or kprintf()

calls.

For more information about minidrivers, see the Instant Device Activation guide.

20 Copyright © 2014, QNX Software Systems Limited

Optimizing Boot Times

Remove unnecessary debug printing

Callouts in either the IPL or the startup program handle any debug printing that

happens early in the system boot (before the serial driver is loaded). These callout

routines normally write directly to the registers of the first UART. But before the kernel

has initialized, no interrupts are available. So, if the UART FIFO is full, the callouts

can't insert a character until another character leaves the FIFO. With a standard UART,

a blazingly fast startup can slow to a crawl if you burden the boot process with too

many messages.

• Comment out unneeded kprintf() statements—In IPL or Startup, look for unneeded

kprintf() statements in main() and comment them out.

• Reduce -v options—In the build script, find the line that launches the kernel

(procnto) and reduce the -v options. For instance, if the line looks like this:

PATH=:/proc/boot:/bin:/usr/bin
LD_LIBRARY_PATH=:/proc/boot:/lib:/usr/lib:/lib/dll procnto –vvvv

you can replace -vvvv with -v or simply remove the option altogether.

• Remove display_msg calls—In the build script, remove any display_msg calls

that use the startup callouts. These include all display_msg statements that

occur before the following sequence:

waitfor /dev/ser1
reopen /dev/ser1

These statements redirect the serial output to the newly loaded serial driver (typically

right above the waitfor), which will be interrupt driven and won't need to wait.

• Avoid a slow baud rate—Don't use a console baud rate less than 115,200 unless

you absolutely must. Otherwise, you'll potentially spin longer in a loop in the kernel

printf(), waiting for the UART FIFO to have enough space to send characters out.

Chances are, you won't do this, for the simple reason that it's inconveniently slow.

But in systems with few UARTs, it's tempting to share a 9600-baud GPS device

with the default serial console. If you do this and still have some serial debug

output in the kernel or startup, you could end up severely throttling back the code

to keep pace with the slow baud rate.

Copyright © 2014, QNX Software Systems Limited 21

Remove unnecessary debug printing

Reduce the size of the IFS

The IPL copies the IFS from flash into RAM. The kernel and the applications can begin

running only after this copy operation is complete. So the smaller you make the IFS,

the sooner those components can run.

• Remove unused executables—Remove any unused executables from IFS, starting

with the larger ones. Before you cut to the bone and remove anything that could

help debug the target, you should measure your target's flash-to-RAM copy speed

(see Measuring the time to copy from flash to RAM (p. 41) for more information).

Remove executables from the image only if the benefits of doing so outweigh the

loss of useful tools.

Note that you don't have to manually strip executables of their debug information;

mkifs takes care of that automatically. Note that mkefs doesn't automatically

strip binaries—you should do this in your makefile.

• Use symbolic links—Shared libraries in POSIX systems, including the QNX OS,

typically have two representations in the filesystem: a regular filename (with a

version number) and a symbolic link (without a version number). For instance,

libc.so.2 and libc.so. The target system should contain both representations;

thus, code that requires a specific version of the shared library can link to that

version, and code that doesn't care can link to the generic version. Under Windows,

which doesn't support true symbolic links, the QNX development installation creates

duplicates of linked files, instead of symbolic links.

If you use both versioned and nonversioned representations of shared objects on

your target, take the time to make one a symbolic link to the other, either in the

IDE or in the build script. Otherwise, you risk ending up with two distinct copies

of the executable in the IFS. Since many shared libraries can be rather large

(libc.so, for instance, ranges from 600K to 700K), taking this step can reduce

the IFS significantly.

• Move selected files into an external filesystem—If any file doesn't need to start

early in the boot process, move it into a flash external filesystem. The smallest IFS

consists of the kernel, libc, a UART driver, a flash driver, and little else. After

the flash driver loads, it can automount the external filesystem partitions, and you

can start running the remainder of your drivers or applications files from there.

There is a tradeoff here, of course. The IFS is completely loaded from flash into

RAM as one big chunk. Once loaded into the IFS, any executables that you run out

of IFS will load from RAM into RAM. For external filesystems, the files are loaded

out of flash into RAM each time they're needed. So if you need to load an executable

multiple times during bootup, it may be better to leave it in IFS since you pay the

flash-copying penalty only the first time.

22 Copyright © 2014, QNX Software Systems Limited

Optimizing Boot Times

• Use the system optimizer to remove unreferenced libraries and functions—In many

cases, you can shrink the IFS significantly by using the system optimizer (aka

dietician) in the QNX Momentics system builder. The system optimizer finds any

nonreferenced libraries and removes them completely. It can also remove functions

from shared objects if those functions aren't referenced anywhere in the IFS. The

system optimizer creates special reduced versions of the shared objects that the

IDE builds for the target. The IDE places these smaller libraries in the Reductions

subfolder of your system builder project.

Some caveats:

• You can use this tool only from within the QNX Momentics IDE; there is no

command-line equivalent if you build your IFS outside of the IDE.

• The reduced versions of the shared objects will contain only the functions

required to run the files within your IFS. If you subsequently add a binary outside

of the IFS, that binary will fail to load if it relies on any of the removed functions.

• The system optimizer won't find code that uses dlsym() to dynamically load

function addresses. To work around this, you can: a) create a stub library that

references the required functions, thereby forcing them to be included, or b)

skip running the system optimizer on a shared object if you will be dynamically

loading the object with dlopen().

• You will generate new versions of the shared objects every time you run the

system optimizer. This may require more configuration management for your

project to keep track of the extra, reduced copies of the libraries.

• You won't be using the "QNX-blessed" versions of the libraries.

Despite these caveats, the system optimizer offers a very useful and relatively

effortless way to shrink the IFS. The savings will directly translate into shorter boot

times.

Copyright © 2014, QNX Software Systems Limited 23

Reduce the size of the IFS

Generate the IPL to skip the image scan

The IPL normally scans for a valid system image so that it can load that image into

RAM. In a production system, however, the image is a known size, so this step is

unecessary. To reduce the time it takes for the image to boot, you can configure the

IPL to skip the memory scan.

To build the IPL with the image scan disabled, follow the instructions to “Build a

Target Image” in the Building and Customizing Target Images guide, with the following

modifications:

1. Build the BSP with the following options:

make CCOPTS="-DSKIP_IMAGE_SCAN -DBTMODE=BTMODE_SD"

2. Run mkflashimage:

cd images/
sh mkflashimage

3. Rename and copy the generated IPL as follows, depending on your target

(install_location is the location where you installed QNX SDP 6.6):

OMAP5 5432uevm

Rename the file sd-ipl-omap5-uevm5432.bin to MLO and copy it to

install_location/deployment/qnx-car/boards/omap5uevm/sd-boot/.

i.MX6q SABRELite

Rename the file ipl-mx6q-sabrelite.bin to

ipl-mx6q-sabrelite.binqnx660 and copy it to

install_location/deployment/qnx-car/boards/imx61sabre/sd-boot/.

Jacinto 5 Eco

Rename the file nand-ipl-ti-j5eco_dra62x-evm811x.bin to MLO and

copy it to

install_location/deployment/qnx-car/boards/jacinto5eco/sd-boot/.

4. Generate a an image by running mksysimage.bat or mksysimage.sh.

5. Follow the instructions for copying the image to an SD card and booting the image.

24 Copyright © 2014, QNX Software Systems Limited

Optimizing Boot Times

Enable fast reading in the SD card

Reading from an SD card is much slower than reading from disk. Modify the SD card

driver to enable fast reading to reduce the time it takes to read the image from the

card.

Copyright © 2014, QNX Software Systems Limited 25

Enable fast reading in the SD card

Use compression strategies

You can either compress the entire IFS or compress individual files in the EFS. (If

you're using the QNX Instant Device Activation TDK, you cannot compress the IFS.)

Besides saving flash memory, compression can also speed up boot time. In systems

with very slow flash access, it often takes less time to decompress files out of flash

than to do a straight copy of the larger uncompressed file (enable the cache in the

IPL to reduce decompression time). If your system's flash timing is on the slow side,

try using compression; the decompression code might be able to run completely out

of the CPU instruction cache. Of course, this depends on what else the system is doing

during the boot; you'll need to try both approaches and measure which is quicker.

26 Copyright © 2014, QNX Software Systems Limited

Optimizing Boot Times

Make careful use of the default build script

The build scripts that QNX provides normally have many components commented out

for a minimal system. Uncomment these components as required, but first determine

what you actually need:

• slogger—The system logger, which allows QNX components to report errors, is

useful during development. However, your production systems may not have any

way to access the errors reported. If so, you don't need slogger (or sloginfo

for that matter) in the final build. You can also remove slogger if you use your

own logging subsystem.

• pipe—Supports the POSIX pipe facility (for instance, ls | more). You can also

use pipes programmatically, without resorting to scripting. Many embedded systems

don't use pipes, so you might be able to remove this.

• devc-pty and qconn—Also needed for debugging and development, these could

be removed for production systems.

Copyright © 2014, QNX Software Systems Limited 27

Make careful use of the default build script

Consider the placement of waitfor statments

The build script contains multiple calls to waitfor, which ensure that a resource

manager is loaded before any of the programs that might use it. This is a very good

practice, since the programs that follow may fail if they don't find the resource they

require. However, in the default build script, these waitfor statements are grouped

to make sense, rather than to ensure maximum performance. For example, consider

the following (simplified) example code:

...

I2C driver
display_msg starting I2C driver...

I2C0 interface
i2c-omap35xx-j5 -i 70 -p0x48028000 --u0
waitfor /dev/i2c0

I2C1 interface
i2c-omap35xx-j5 -i 71 -p0x4802A000 --u1
waitfor /dev/i2c1

I2C2 interface
i2c-omap35xx-j5 -i 30 -p0x4819C000 --u2
waitfor /dev/i2c2

I2C3 interface
i2c-omap35xx-j5 -i 31 -p0x4819E000 --u3
waitfor /dev/i2c3

USB OTG Host Controller driver
io-usb -vvv -d dm816x-mg ioport=0x47401400,irq=18
waitfor /dev/io-usb/io-usb 4
devb-umass cam pnp

AUDIO Driver - I2C must be running
display_msg Starting Audio driver...
MCASP2
io-audio -vv -d mcasp-j5_aic3106 mcasp=2
waitfor /dev/snd/pcmC0D0p

SPI driver
display_msg starting SPI driver...
SPI 0
spi-master -u0 -d dm816x base=0x48030100,irq=65,somi=0,edma=1,edmairq=529,edmachannel=17

PCIe server
display_msg Starting PCI server...
pci-dm814x
waitfor /dev/pci 4

 ...

This script does the reasonable thing of starting each driver, then waiting for it to

finish loading before continuing. Some of these drivers require hardware initialization.

If a driver is waiting on the hardware, then waitfor can prevent the next program

from loading prematurely.

The behavior of waitfor is very simple: it polls the device, and if the device isn't

found, it sleeps for 100 milliseconds and tries again. It terminates when either the

device is found or the timeout is reached, whichever happens first. As a result, each

waitfor might do nothing except poll and hold up the rest of the show. You want

the CPU 100% utilized during the boot—any idle time adds to the total boot duration.

Ideally, then, each waitfor would do a single device check that succeeds and then

28 Copyright © 2014, QNX Software Systems Limited

Optimizing Boot Times

continues. An ordering that breaks the logical grouping can minimize unwanted sleeps

by using other program loads to introduce any required delay.

For instance, let's say you need to start an IDE driver in your boot process. That driver

must wait for the hardware to initialize, an operation that always takes 100

milliseconds. That's what waitfor does: it waits until your driver has the hardware

initialized before proceeding. But why waste that 100 milliseconds? After starting the

IDE driver, start your USB driver (or any other software) that can effectively utilize

that time. If your USB driver takes 100 milliseconds to prepare the hardware, you've

gotten some extra time "for free." Then, when you actually need the IDE device, the

waitfor test will succeed immediately. And you've managed to shorten the total boot

time.

See the following code for an example of modifying the script in this way:

...

I2C driver
We won't wait for any of these, since nothing needs them yet
display_msg starting I2C driver...

I2C0 interface
i2c-omap35xx-j5 -i 70 -p0x48028000 --u0

I2C1 interface
i2c-omap35xx-j5 -i 71 -p0x4802A000 --u1

I2C2 interface
i2c-omap35xx-j5 -i 30 -p0x4819C000 --u2

I2C3 interface
i2c-omap35xx-j5 -i 31 -p0x4819E000 --u3

USB OTG Host Controller driver
display_msg Starting USB OTG Host driver...
io-usb -vvv -d dm816x-mg ioport=0x47401400,irq=18

Start the SPI driver before checking on USB, since SPI doesn't rely on io-usb

SPI driver
display_msg starting SPI driver...
SPI 0
spi-master -u0 -d dm816x base=0x48030100,irq=65,somi=0,edma=1,edmairq=529,edmachannel=17

Check on USB relocated from above
waitfor /dev/io-usb/io-usb 4
devb-umass cam pnp

PCIe server
display_msg Starting PCI server...
pci-dm814x
waitfor /dev/pci 4

I2C driver should be up by now, and we need it for audio
waitfor /dev/i2c0
waitfor /dev/i2c1
waitfor /dev/i2c2
waitfor /dev/i2c3

The audio driver requires I2C, so we've moved it later in the build file
(after SPI and PCIe), to allow more time for the I2C drivers to initialize

AUDIO Driver - I2C must be running
McASP2
io-audio -vv -d mcasp-j5_aic3106 mcasp=2
waitfor /dev/snd/pcmC0D0p

...

These examples illustrate the benefits of optimized waitfor placement. This

technique has a potential drawback, however: the driver might not be waiting on the

hardware, but rather using the processor to do real work. In that case, the reordering

Copyright © 2014, QNX Software Systems Limited 29

Consider the placement of waitfor statments

will cause all the drivers to load at once, which will make the task scheduler continually

switch between all the active threads. This can be less efficient than the first method.

To determine whether reordering will improve boot performance, use tracelogger

to capture a system profiler snapshot during boot. If the snapshot shows blocks of

time where the CPU is idle after a driver load and indicates that calls are being made

into the kernel every 100 milliseconds, then that driver is a reasonable target for this

technique.

30 Copyright © 2014, QNX Software Systems Limited

Optimizing Boot Times

Reorder the startup program

If you're used to working with a monolithic kernel like Linux or Windows, you might

be inclined to start all your drivers before you start any applications. But with a

microkernel OS, you have more flexibility and can reorder some of your startup program

to take advantage of any idle time. That includes starting applications before starting

drivers, wherever it makes sense. In addition, you can use SLM to manage utilitites

and services that can be started later or as needed.

A good example of this is the network driver. While the HMI needs the network stack

(io-pkt) to be up, it doesn't necessarily need the network device driver to be loaded

or network connectivity to be established, so the HMI is launched without waiting for

the network driver. Although some applicatiions will need this, only those apps, and

not the whole HMI, should have to wait.

Copyright © 2014, QNX Software Systems Limited 31

Reorder the startup program

Optimize the HMI

The HTML5 HMI is large and can potentially take a long time to launch. The HTML5

HMI layer includes the Browser Engine (also called the Web Engine or Web Launcher),

HTML5 application framework, the Navigator (also known as the Applications Window

Manager), and the HMI Notification Manager.

A couple of key techniques help to speed up the launch of the HMI:

• To optimize the brower engine, all large browser libraries are loaded in a secondary

IFS. Using the utility mount-ifs, the browser engine can read these large libraries

from the disk much faster than from a regular filesystem.

• The browser engine can run as a zygote and applications can be forks of the zygote

process, so can use the libraries that are already loaded in memory. The exception

to this is the Navigator, which needs root access, so doesn't run as a zygote and

gets its libraries from the IFS.

In addition, to speed the launch of applications, the HTML5 apps in the prebuilt

images are “minified”. Minification makes the source code smaller by removing

comments and white space, and possibly also shortening symbol names. The resulting

code loads faster in the HMI. We recommend that you minify your HTML5 and

JavaScript code for production, which you can do using any off-the-shelf minification

tool.

32 Copyright © 2014, QNX Software Systems Limited

Optimizing Boot Times

Create modular applications

If you design a system with a single main application, none of the application logic

can run until the entire application is loaded into memory. The larger the application,

the more of a problem this becomes. Consequently, it often makes sense to break your

software system into several logical modules that run as separate processes. Those

processes can communicate via any number of interprocess communication (IPC)

mechanisms. Having separate processes also gives you more flexibility in load order,

provided they're not fully dependent on one another. As a side benefit, you gain

protection from memory isolation between those processes.

Copyright © 2014, QNX Software Systems Limited 33

Create modular applications

Statically link libraries

Shared libraries take time to load. When an application is linked to a shared object,

the process loader will first check whether that shared object is already loaded. If it

isn't, the loader must load the object out of permanent storage first (IFS, EFS, or

elsewhere). The process of loading the various ELF sections from the file can take

time. Even if the shared object is already in memory, the application must have fixups

applied. The dynamic linker must look up the symbol names to get the appropriate

addresses.

For a large shared object, it can be significantly quicker to statically link the application

with the biggest libraries. That way, you pay for the linker lookup penalties at compile

time rather than at runtime. Of course, statically linking an executable will consume

more flash memory if multiple applications call from that library. Also, this practice

may introduce version incompatibilities between applications if the shared library

changes and you don't rebuild everything it's linked against. But for some systems,

the performance benefits will outweigh the drawbacks.

34 Copyright © 2014, QNX Software Systems Limited

Optimizing Boot Times

Chapter 5
Measuring Boot Times

Developers and system designers can employ many techniques to meet early boot

requirements. However, before applying any of the techniques described here, always

remember to get a stable baseline measurement of system boot speed. That way, when

you start making changes, you can ensure that you're making real progress towards

meeting your requirements.

To optimize any boot stage, you must measure its duration, modify the code, then

measure again to see how much timing has improved. Some basic techniques exist

for measuring time; their applicability depends on the starting point of the

measurement. There are three key points where you can measure times:

• Before the IPL is loaded the CPU can't execute instructions, so time measurements

at this point require hardware assistance. This point is labeled "1" in the diagram

in the section System startup sequence (p. 11).

• Software can run between the startup driver launching (label "2") and the kernel

being fully operational (label "3"), but not always with the same functions. For

example, startup code cannot use most RTOS services, including POSIX timers. It

supports only a limited subset of functions—such as memcpy(), strcpy(), printf(),

and kprintf()—to perform rudimentary operations.

• When optimizing times after the kernel is running (label "3"), you can access any

OS feature, run all programs, and connect to the IDE with its assortment of tools.

The table that follows describes some of the techniques that can be used to measure

times at these points in the bootup sequence:

Pros and ConsDescriptionAccuracyTechniqueStart Time

Can graphically display

when your process is

Uses the instrumented

kernel

MicrosecondsTraceEvent()After the kernel is

running

executing, as well as all(procnto-instr) and

other system activity. Thecollects data with

developer must set up the

instrumented kernel.

tracelogger or the QNX

Momentics system

profiler. Customer code

is sprinkled with calls to

the TraceEvent()

function.

Measurement is

unavailable until the

Command-line utility

gives approximate

MillisecondstimeAfter the kernel is

running

Copyright © 2014, QNX Software Systems Limited 35

Pros and ConsDescriptionAccuracyTechniqueStart Time

process in question

terminates.

execution time of a

process.

Measures absolute time.

Doesn’t necessarily reflect

System function that uses

a high-speed CPU

NanosecondsClockCycles()After the kernel is

running

time spent in thecounter to determine the

measured process, sincenumber of clock cycles

the kernel may havefrom power on to the

scheduled other threadspoint when ClockCycles()

is called. during time of

measurement.

Inaccurate timing; used

mainly to determine

sequence of events.

System logger function,

used with slogger.

Secondsslogf() /

sloginfo

After the kernel is

running

Not supported on all

architectures; works only

Not a function, but a

macro that reads the

NanosecondsClockCycles()

(macro)

After the startup driver

starts and before the

kernel is running if ClockCycles() is read

directly from a hardware

CPU’s hardware counter

directly. Gives the same

register, and not a derived

value.

result as the OS-level

function of the same

name, which is available

after kernel boot.

Distinguishing different

points is impossible.

The customer code

switches a GPIO pin on

NanosecondsGPIO and scopeAfter the IPL starts and

before the kernel is

running Requires a free GPIO in

the hardware design, as

and off at various points

in the code. A digital

well as a digital scope

and significant setup.

oscilloscope measures

these level changes or

pulses to determine the

time between events.

Same as above.Measures hardware lines

(like CPU reset) and

GPIO.

NanosecondsHardware lines

and scope

Before the IPL starts

For the TraceEvent() technique, you must use the instrumented kernel and load

tracelogger early in the boot script. For instance, to log the first ten seconds of

boot time, you would use this command:

tracelogger –n0 -s10

See the tracelogger documentation for details on how to analyze the resulting

.kev (kernel event trace) file.

36 Copyright © 2014, QNX Software Systems Limited

Measuring Boot Times

To measure the absolute time since reset at various points in your boot script, simply

print out the ClockCycles() value:

#include <stdlib.h>
#include <stdio.h>
#include <sys/neutrino.h>
#include <sys/syspage.h>
#include <inttypes.h>

int main(int argc, char *argv[])
{
 uint64_t timesinceboot_ms;

 timesinceboot_ms = (ClockCycles() /
 (SYSPAGE_ENTRY(qtime->cycles_per_sec/1000));

 printf("ClockCycles()=%llu ms\n", timesinceboot_ms);

 return EXIT_SUCCESS;
}

This technique lets you measure how long it takes your code to execute the IPL and

startup phases. Normally, you would use the ClockCycles() value to measure relative

time: you record the value of ClockCycles() at two points, then subtract the first value

from the second value to get the duration of an event. In this case, however, we’re

using ClockCycles() to measure the absolute time that has elapsed since the CPU

power was applied.

This approach comes with some caveats:

• The high-speed counter counts very quickly and can wrap, so it’s best to apply this

technique during the first several seconds after the CPU has been reset.

• Depending on how the BSP implements reset, a shutdown command to reset the

target may fail to clear the ClockCycles() value. If so, you might have to power-cycle

the device.

• This technique applies only to systems that have a high-speed counter. Systems

where the OS emulates ClockCycles() and where the CPU has no high-speed counter

won’t give an absolute time since reset.

Copyright © 2014, QNX Software Systems Limited 37

The boot_metrics.log file

You can use the boot_metrics.log file to monitor startup times for your system.

The boot_metrics.log file contains time measurements from board reset to a

particular system event (the time from board reset varies depending on your platform).

Although this log is purely for reference purposes, you can get important

information from it that can help you tune your system startup.

Variation in timers

Each measurement in the log starts with either (hw) or (sw):

• Times that start with (hw) are measured using a simple utility called timestamp

that makes a call to the ClockCycles() kernel function. This function provides the

timestamp utility with the number of clock cycles since the board was reset. Note

that these measurements aren't entirely accurate because they're taken close

to—but not simultaneously with—the event that's being measured. The timestamp

utility is just a process that's run in the background at a normal priority, as closely

as possible to the event being measured.

• Times that start with (sw) are doing some other measurement, like querying the

system for the date.

On some boards, the time reported by the timestamp utility correlates very closely

with the time elapsed since power was actually applied to the board (i.e., a board reset

was done either in software or by pressing the reset button). This is the most desirable

implementation. In some cases, however, the time reported by the timestamp utility

could represent the time since the IPL started, or even the time since the startup

driver started. This situation results in measurements that are much smaller than

would be observed using a stopwatch from power on. These measurements are obviously

less accurate, but can still be useful in comparing one software build to another.

The particular measurements you get depend on whether:

• the board provides a counter in the hardware that starts as close as possible to

power-on reset (PoR). If the board doesn't provide a hardware counter, you can use

the counter provided in the kernel, but it won't start counting until the kernel takes

control, which is well after PoR.

• the IPL/startup driver can (or actually does) initialize this hardware counter to zero.

• the startup driver performs a “cold” or “warm” reset on shutdown (software reset).

A cold reset generally initializes the hardware more thoroughly than a warm reset,

so a cold reset would be more likely to set the hardware counter to 0.

38 Copyright © 2014, QNX Software Systems Limited

Measuring Boot Times

Contents of boot_metrics.log

The boot_metrics.log is found in the /dev/shmem directory. Its contents look

like this:

(hw) CAR_BOOT_METRICS: (IFS SCRIPT START) at 0.484901 seconds
(hw) CAR_BOOT_METRICS: (LAUNCHING EARLY-SPLASH) at 0.629556 seconds
(hw) CAR_BOOT_METRICS: (REARVIEW CAMERA DONE) at 0.632296 seconds
(hw) CAR_BOOT_METRICS: (LAUNCHING EARLY-CHIME) at 0.661630 seconds
(hw) CAR_BOOT_METRICS: (STARTING PPS) at 0.759833 seconds
(hw) CAR_BOOT_METRICS: (LAUNCHING PPS) at 0.798557 seconds
(hw) CAR_BOOT_METRICS: (LAUNCHING MOUNT-IFS2) at 0.815651 seconds
(hw) CAR_BOOT_METRICS: (LAUNCHING SLM) at 0.852900 seconds
(hw) CAR_BOOT_METRICS: (EARLY-SPLASH WINDOW CREATED) at 0.961214 seconds
(hw) CAR_BOOT_METRICS: (DONE MOUNT-IFS2) at 1.161844 seconds
(hw) CAR_BOOT_METRICS: (STARTING SLOGGER2) at 1.354558 seconds
(hw) CAR_BOOT_METRICS: (DONE PPS (/pps is available)) at 1.364052 seconds
(hw) CAR_BOOT_METRICS: (HMI LAUNCHED) at 1.837985 seconds
(hw) CAR_BOOT_METRICS: (DONE WEB-ZYGOTE) at 2.514162 seconds
(hw) CAR_BOOT_METRICS: (DONE EARLY-CHIME) at 2.746928 seconds
(hw) CAR_BOOT_METRICS: (MMPLAYER LAUNCHED) at 3.742285 seconds
(hw) CAR_BOOT_METRICS: (SET DATE) at 13.623120 seconds
(sw) CAR_BOOT_METRICS: (SYSTEM SECONDS) at 1391095010
(sw) CAR_BOOT_METRICS: (SYSTEM DATE) at Thu Jan 30 10:16:50 EST 2014
(hw) CAR_BOOT_METRICS: (HMI LOADED) at 14.947910 seconds

The events that appear in the log file are as shown in the following table:

Corresponds to this system event:This log entry:

The IFS build script has started.IFS SCRIPT START

The early splash screen has been

launched.

LAUNCHING EARLY-SPLASH

The rearview camera is ready.REARVIEW CAMERA DONE

The early audio chime has been launched.LAUNCHING EARLY-CHIME

PPS has been launched.STARTING PPS

PPS has been launched.LAUNCHING PPS

The process to mount the secondary IFS

has been launched.

LAUNCHING MOUNT-IFS2

SLM has been launched.LAUNCHING SLM

The early splash screen window has been

created. This is close to but not

EARLY-SPLASH WINDOW CREATED

necessarily exactly the same time as when

you see the splash screen on the display.

The secondary IFS has been mountedDONE MOUNT-IFS2.

The slogger2 daemon has been

launched.

STARTING SLOGGER2

Copyright © 2014, QNX Software Systems Limited 39

The boot_metrics.log file

Corresponds to this system event:This log entry:

PPS is ready and the PPS filesystem has

been mounted.

DONE PPS (/pps is available)

The HMI is ready.HMI LAUNCHED

The browser engine zygote is ready.DONE WEB-ZYGOTE

The early audio chime has finished

playing.

DONE EARLY-CHIME

The mm-player service is ready (so early

audio is available).

MMPLAYER LAUNCHED

The system date has been set.SET DATE

The system time as reported by the

POSIX-standard date –t utility.

SYSTEM SECONDS

The current system date and time.SYSTEM DATE

The HMI is has loaded.HMI LOADED

You can write additional events to the log by running the timestamp utility (e.g.,

timestamp event_name). The event information will be written to

/dev/shmem/boot_metrics.log.

40 Copyright © 2014, QNX Software Systems Limited

Measuring Boot Times

Measuring the time to copy from flash to RAM

In the IPL and Startup stages, code is copied from flash into RAM and then executed.

How long this takes depends on the speed of the CPU and the speed of the flash chip.

To measure the duration of the copy operation, you can use the following code:

#include <stdlib.h>
#include <stdio.h>
#include <inttypes.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/neutrino.h>
#include <sys/syspage.h>

#define MEGABYTE (1024*1024)
#define BLOCK_SIZE 16384
#define LOOP_RUNS 10

char *ram_destination;
char *ram_block;
char *flash_block;
unsigned long flash_addr;
uint64_t cycles_per_sec;

double CopyTest(const char *msg, char *source, char *dest)
{
 uint64_t accum = 0, start, stop;
 double t;
 int i;

 for (i=0; i<LOOP_RUNS; i++)
 {
 start = ClockCycles();
 memcpy(dest, source, BLOCK_SIZE);
 stop = ClockCycles();
 accum += (stop - start);
 }
 accum /= LOOP_RUNS;

 t = accum*(MEGABYTE/BLOCK_SIZE); // t = cycles per MB
 t = t / cycles_per_sec; // t = seconds per 1MB

 printf("\nTo copy %s to RAM takes:\n",msg);
 printf(" %llu clock cycles for %u bytes\n", accum, BLOCK_SIZE);
 printf(" %f milliseconds per 1MB bytes\n", t*1000);
 printf(" %f microseconds per 1KB bytes\n", t*1000);
 return t;
}

int main(int argc, char *argv[])
{
 double flashtime, ramtime;

 if (argc<1) {
 printf("%s requires address of flash (any 16K block will do)\n", argv[0]);
 return EXIT_FAILURE;
 }

 flash_addr = strtoul(argv[1], 0, 16);
 printf("Using flash physical address at %lx\n", flash_addr);

 ram_block = malloc(BLOCK_SIZE);
 ram_destination = malloc(BLOCK_SIZE);
 flash_block = mmap(0, BLOCK_SIZE, PROT_READ,MAP_PHYS|MAP_SHARED, NOFD,flash_addr);
 if (flash_block == MAP_FAILED) {
 printf("Unable to map block at %lx\n", flash_addr);
 }
 cycles_per_sec = SYSPAGE_ENTRY(qtime)->cycles_per_sec;
 flashtime = CopyTest("flash", flash_block, ram_destination);
 ramtime = CopyTest("RAM", ram_block, ram_destination);
 printf("\nFlash is %f times slower than RAM\n", flashtime/ramtime);

Copyright © 2014, QNX Software Systems Limited 41

Measuring the time to copy from flash to RAM

 return EXIT_SUCCESS;
}

To get reasonably accurate results, you should run the preceding code either at a high

priority (using the on –p command) or when little else is running in the system.

A key factor that affects flash copy time is the bus interface to the flash. Fast CPUs

can lose their advantage to their slower competitors if the system has a slow bus

architecture or too many wait states.

42 Copyright © 2014, QNX Software Systems Limited

Measuring Boot Times

Index

A

applications 33, 34
creating modular 33
statically linking libraries 34

B

Boot Manager 13
configuration 13
PPS objects 13
purpose of 13

boot sequence, See system startup sequence
boot times 9, 15, 17, 35, 38

measuring 35, 38
techniques for 35

optimizing 9, 15, 17
configuring target for 15
in QNX CAR 17
techniques for 9, 17

boot_metrics.log 38
bootloader, See IPL
build scripts 12, 27, 28

default 27
enabling additional functionality 27
examples 28
limiting size of 12
loading drivers 28
optimizing 28
purpose of 12
reordering waitfor statements in 28

C

compression 26
configuring target for boot optimization 15
copying code 41

from flash to RAM 41
measuring times for 41

D

debug printing 19, 21
reducing 19, 21

E

external filesystem 22
versus IFS 22

H

HMI 12, 32
configuring dependencies with SLM 12
optimizing launch of 32

HTML5 32
minifying code 32

I

IFS 11, 22, 26
compressing 26
purpose of 11
reducing the size of 11, 22
removing unused executables 22

IPL 11, 19, 24, 26
enabling the cache 11, 26
instead of U-boot 11
optimizing 11, 19
purpose of 11
skip image scan 24

L

libraries 22, 23, 32, 34
HMI browser engine 32
in external filesystems 22
removing unreferenced 23
statically linking 34
using symbolic links 22

M

measuring 26, 35, 38, 41
boot time 35, 38
compression 26
target's flash-to-RAM copy speed 41
using ClockCycles() 35

minidrivers 20

P

phase locked loop (PLL) 11
power-on reset (PoR) 38
PPS objects 13

for Boot Manager 13

S

SD card 25
enable fast reading of 25

SLM 12
configuration 12
purpose of 12

stages in the boot sequence 11
startup program 12, 20, 31

optimizing 31
purpose of 12
reducing size of 20

Copyright © 2014, QNX Software Systems Limited 43

Boot Optimization Guide

system optimizer 23
caveats 23
removing unreferenced libraries 23

system startup sequence 9, 11
stages in 9, 11

T

Technical support viii

Typographical conventions vi

W

waitfor 28
placement in build scripts 28

44 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Overview of Boot Optimization
	System Startup Sequence
	Configuring the Target for Boot Optimization
	Optimizing Boot Times
	Optimize the bootloader
	Reduce the size of the startup program
	Remove unnecessary debug printing
	Reduce the size of the IFS
	Generate the IPL to skip the image scan
	Enable fast reading in the SD card
	Use compression strategies
	Make careful use of the default build script
	Consider the placement of waitfor statments
	Reorder the startup program
	Optimize the HMI
	Create modular applications
	Statically link libraries

	Measuring Boot Times
	The boot_metrics.log file
	Measuring the time to copy from flash to RAM

	Index

