
QNX CAR™ Platform for Infotainment 2.1

QNX CAR™ Platform for Infotainment 2.1

Multimedia Player Developer's Guide

©2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All rights
reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, Foundry27 are trademarks of
BlackBerry Limited that are registered and/or used in certain jurisdictions, and
used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, April 17, 2014

Table of Contents

About This Guide ..5
Typographical conventions ...6

Technical support ...8

Chapter 1: Multimedia Player Overview ..9

Architecture ...10

Layers of mm-player ..11

Players ..13

Media sources ..14

Media nodes ..15

Tracksessions ...16

Chapter 2: Media Player Plugins ..17

POSIX plugin ..18

AVRCP Plugin ...19

DLNA Plugin ..20

iPod Plugin ..21

synceddb Plugin ...23

Chapter 3: Running mm-player ..25

Restarting mm-player ..27

SLM specification of mm-player ...28

Configuration file ..30

Command line for mm-player ...34

Chapter 4: Multimedia Player API ..37

Media browsing and playback interface ...38

Constants in types.h ..38

Enumerations in types.h ...39

Data types in types.h ...47

Functions in mmplayerclient.h ..55

Event interface ...78

Enumerations in events.h and types.h ...78

Data types in events.h ..81

Functions in events.h ...86

Multimedia Player Developer's Guide

Table of Contents

About This Guide

The Multimedia Player Developer's Guide is aimed at CAR programmers who want to

write applications that use the mm-player service to browse mediastore content and

play tracks.

This table may help you find what you need in this guide:

Go to:To find out about:

Multimedia Player Overview (p. 9)The capabilities of the mm-player

service

Media Player Plugins (p. 17)The plugins used by mm-player to

interface with different devices

Running mm-player (p. 25)How to change the command options

given to mm-player by SLM during

bootup

Command line for mm-player (p. 34)The command line for starting mm-play

er manually

Multimedia Player API (p. 37)Connecting to mm-player and browsing

and playing media content through its API

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Multimedia Player Overview

The multimedia player service, mm-player, allows applications to browse and play

mediastore content. Through mm-player, applications can obtain a list of available

media sources, explore the filesytems and read media metadata from those sources,

and play tracks.

The mm-player service is a media browsing and playback engine that uses lower-level

system components to help it execute media commands sent by client applications.

The system components allow mm-player to navigate the filesystems of mediastores,

read metadata from media files, and manage media flows during playback.

The mm-player service can access many types of media sources:

• local drives

• USB storage devices

• iPods

• DLNA devices

• devices paired with Bluetooth

• files on MTP devices

Starting with this release, mm-player replaces mm-control. Unlike its

predecessor, mm-player can browse mediastore content (as well as play it).

Also, mm-player offers a simplified set of playback commands so your media

applications don't have to create and attach output zones or define track and

input parameters.

Copyright © 2014, QNX Software Systems Limited 9

Architecture

Media Player and other applications can send requests to mm-player to browse and

play media. The mm-player service uses plugins to explore filesystems, retrieve

media metadata, and manage playback on different device types.

Output

mm-renderer
Supporting

components

Playback controlBrowse/Playback control

C APIsmm-detect

Media Player Plugins

mm-player server

Devices

PPS

mmplayerclient

car.mediaplayer

HMI apps

Figure 1: Architecture of mm-player

Media Player and other HMI apps can use a WebWorks extension (car.mediaplayer)

to talk to mm-player. This extension translates JavaScript function calls into calls

to the C functions in the mm-player client library (mmplayerclient). You can

write other HTML5 applications that use this same extension to send media requests

to mm-player. Or, you can write applications in C that directly call the mm-player

API.

The client library forwards the function calls to the mm-player server, which

implements the media browsing and playback engine. To learn which media devices

are accessible for browsing and playback, the mm-player server reads the status

object published through PPS by the multimedia detector service, mm-detect. This

status object (/pps/services/mm-detect/status) lists the devices currently

attached to the system. The mm-player server subscribes to this object and receives

10 Copyright © 2014, QNX Software Systems Limited

Multimedia Player Overview

updates whenever its contents change, which happens when a device is added or

removed. This way, mm-player always has an up-to-date list of available media

sources.

When it receives a request to browse or play content on a particular media source,

mm-player selects the Media Player Plugin (MPP) designed for the media source's

device type (e.g., iPod, Bluetooth, DLNA). Plugins abstract the details of

communicating with media sources and make mm-player extensible for supporting

new device types (see “Media Player Plugins (p. 17)” for more information).

MPPs use lower-level components, such as device drivers and other OS services, to

browse the filesystems of media sources, retrieve track metadata, and process playback

commands. For playback, MPPs use both the supporting components and the mm-

renderer service to manage media streams between media sources and output

hardware (e.g., speakers).

To perform any playback operation, mm-player must have an active track sequence

(or tracksession), which tells it which media file to play next. MPPs manage their own

tracksessions.

In this release, mm-player doesn't support video playback (only audio). To

play videos, your applications must use the HTML5 video features.

Layers of mm-player

The mm-player service uses a layered design to separate the application logic for

the tasks of managing client connections, validating commands, maintaining media

source information, managing tracksessions, and interfacing with devices.

The mm-player service consists of three layers:

Client layer

This layer implements the client-side mm-player library (libmmplayer),

which:

• creates and returns connection handles to the client application

• detects basic parameter errors such as empty strings used for player

names or media source IDs

• forwards API commands and their parameters to the mm-player server

Server layer

This layer implements the mm-player server, which:

• opens and closes connections to players

• validates parameters before forwarding commands to the plugin layer

Copyright © 2014, QNX Software Systems Limited 11

Architecture

• publishes updates to player states through PPS

• manages tracksessions

• maintains a list of media sources

Plugin layer

This layer consists of many plugins, each of which:

• notifies the mm-player server of important events, including but not

limited to:

• a media source connection or disconnection

• a user-requested change in the playback position

• an error occurred when browsing or playing media

• creates and returns handles to "play sessions" and "browse sessions" to

the server layer, allowing that layer to direct commands to specific media

sources

• uses platform services to carry out playback commands (e.g., play,

stop, seek)

12 Copyright © 2014, QNX Software Systems Limited

Multimedia Player Overview

Players

Using mm-player, media applications can create and configure players to browse

media sources, retrieve track metadata, and control playback. All media operations in

mm-player must be applied to a particular player.

Each player operates independently of the others, so the browsing and playback

commands that you send it affect only its own tracksession and media playback. You

can assign to players whatever names you want to use to distinguish them, and you

can create as many players as you need. Using multiple players lets you direct media

output to different zones (i.e., groups of output devices). For instance, you can use

separate players for the front and rear speakers of a vehicle.

Before you can browse or play media content, you must create at least one player so

you have somewhere to direct your media commands. When it creates a player, the

mm-player service returns a player handle, which you must provide in subsequent

commands to indicate which player the command is applied to. When you're finished

using a player, you must tell mm-player to destroy it.

Copyright © 2014, QNX Software Systems Limited 13

Players

Media sources

Media sources are mm-player objects that represent devices that store media content

(mediastores). Applications can request a list of available media sources from mm-

player and then select a specific media source to browse or to play media files.

Each media source object contains a media source ID and name field (to distinguish

it from other media sources), as well as device information such as the unique ID

(UID), hardware type, and supported playback operations.

Clients must pass in a media source ID to mm-player when browsing the contents

of mediastores and when retrieving metadata from media files. Also, each tracksession

(i.e., track sequence) is associated with a media source, so clients must also provide

a media source ID when creating tracksessions.

14 Copyright © 2014, QNX Software Systems Limited

Multimedia Player Overview

Media nodes

Media nodes represent entries in the filesystems of media sources. Applications can

obtain, from mm-player, the list of media nodes found in a certain path on a media

source and then select a particular media node to browse more specific paths or to

define tracksessions.

Each media node may correspond to an audio, video, or photo file or a folder. The file

type is stored in the media node object, which also stores the media node ID and

name (to distinguish it from other media nodes), information on the media source that

stores the media node, and the number of children. For folders, when this last field

is greater than 0, this means they contain other media nodes, which could be subfolders

or media files. Applications must check each folder's number of children and retrieve

the media nodes in any subfolders to explore content at all directory levels.

Clients must pass in a media node ID to mm-player when browsing a media source's

contents, retrieving media metadata, and creating tracksessions (i.e., track sequences).

To start browsing the contents of a new media source whose directory structure is

unknown, clients must specify the root directory (/) as the media node ID.

Copyright © 2014, QNX Software Systems Limited 15

Media nodes

Tracksessions

Tracksessions represent playback sequences of tracks (media files). To perform any

playback operation, a player must have an active tracksession so it knows which track

is currently selected for playback and the relative order of the tracks.

A player must monitor the current track selection so it knows which media file the

user wants to play and so it can provide them with information about any media content

being played or scheduled to be played next. Knowing the playback order is necessary

to update the current track information when carrying out operations such as next or

previous.

Each tracksession object stores only a tracksession ID (to distinguish it from other

tracksessions) and the number of tracks in the playback sequence. In this release,

this object doesn't need to reference the individual tracks because players support

only one tracksession at a time. This design could change in future releases to support

multiple tracksessions per player.

With the current design, when a client creates a tracksession based on a media node

ID, the tracksession becomes the only active one for the player. Clients must then

pass this ID in when retrieving either the tracks in the tracksession or the metadata

of the current track, and when selecting a new track to play. The tracksession object

as well as the index (playback position), media node object, and metadata of the

current track are stored in the player's state information, which clients can obtain

through mm-player commands.

16 Copyright © 2014, QNX Software Systems Limited

Multimedia Player Overview

Chapter 2
Media Player Plugins

The mm-player service uses Media Player Plugins (MPPs) to support browsing and

playing media from different device types.

Each MPP interfaces with a specific type of media device. This modular design isolates

device functionality from the common browsing and playback functionality of mm-

player. The MPPs communicate with system components through C APIs to navigate

mediastore filesystems and read metadata is done through C APIs. The sections that

follow explain how these plugins and their supporting components fit into the overall

mm-player and CAR multimedia architecture.

Copyright © 2014, QNX Software Systems Limited 17

POSIX plugin

The mm-player service uses the POSIX plugin to browse and play media files stored

on devices with POSIX filesystems. Such devices include USB sticks, SD cards, or

CDs.

QNX Neutrino RTOS

Filesystem

Output

io-audiomm-renderer

Playback

mm-browse

Browsing

C APIs

POSIX plugin

mm-player

Devices

HMI (via car.mediaplayer)

Figure 2: POSIX Plugin Architecture

The POSIX plugin uses C APIs to communicate with the mm-browse library for browsing

media files and with the mm-renderer service for managing playback. When devices

with POSIX filesystems are attached to the CAR system, services in the QNX OS layer

mount the device filesystems. The plugin uses the mm-browse library to search these

mounted filesystems and read metadata from their files. To deliver the metadata to

the HMI, mm-player uses the car.mediaplayer WebWorks extension (for more

information, see the multimedia architecture overview in the QNX CAR Multimedia

Architecture Guide).

When the user starts playing a media file stored on a POSIX device, the POSIX plugin

passes the appropriate URL to mm-renderer as the input. The mm-renderer service

reads the input media off the device and then sends the media content to io-audio

for output.

18 Copyright © 2014, QNX Software Systems Limited

Media Player Plugins

AVRCP Plugin

The mm-player service uses the AVRCP (Audio/Video Remote Control Profile) plugin

to browse and play media files stored on devices accessed over a Bluetooth connection.

QNX Neutrino RTOS

Media
stream

io-bluetooth

Output
io-audiomm-renderer

Playback

Device
information

Browsing/
playback
commands

Radio

C APIs

Bluetooth
devices

AVRCP plugin

mm-player

HMI (via car.mediaplayer)

Figure 3: AVRCP Plugin Architecture

The AVRCP plugin communicates with the io-bluetooth service (through standard

file I/O calls) to browse media content on Bluetooth-connected devices. Media

information from Bluetooth devices arrives over a radio connection. A Bluetooth device

driver (not shown in Figure 3: AVRCP Plugin Architecture (p. 19)) passes this

information to io-bluetooth. The plugin can then retrieve all device

information—position data, connectivity state, and media file metadata—through io-

bluetooth. To send this information to the HMI, mm-player uses the car.medi

aplayer WebWorks extension (for more information, see the multimedia architecture

overview in the QNX CAR Multimedia Architecture Guide).

When the user starts playing a media file accessible through Bluetooth, the AVRCP

plugin sends playback commands to io-bluetooth and mm-renderer through

their C APIs. The io-bluetooth service initiates the media stream on the

Bluetooth-connected device and directs that stream to mm-renderer as input. The

mm-renderer service then sends the stream to io-audio for output.

Copyright © 2014, QNX Software Systems Limited 19

AVRCP Plugin

DLNA Plugin

The mm-player service uses the DLNA (Digital Living Network Alliance) plugin to

browse and play media files stored on devices compliant with the Universal Plug and

Play (UPnP) standard.

Output

io-audio

mm-renderer

Media
stream

DMR

DMC

dmcconnector

Browsing/playback

DMS

C API

DLNA plugin

mm-player

HMI (via car.mediaplayer)

Figure 4: DLNA Plugin Architecture

In this CAR release, the supported UPnP device type is a Digital Media Server (DMS)

accessed over the network. The DLNA plugin uses a C API to communicate with the

dmcconnector library for browsing and controlling playback of media files managed

by a DMS. The dmcconnector library handles communication between the Digital

Media Controller (DMC), the Digital Media Renderer (DMR), and the DMS. Through

its browsing operations, the library allows the plugin to retrieve metadata on media

files. To provide this metadata to the HMI, mm-player uses the car.mediaplayer

WebWorks extension (for more information, see the multimedia architecture overview

in the QNX CAR Multimedia Architecture Guide).

When the user starts playing a media file managed by an accessible DMS, the DLNA

plugin sends playback commands to dmcconnector. The active DMR processes the

media stream and passes it as input to mm-renderer, which then directs it to io-

audio for output.

20 Copyright © 2014, QNX Software Systems Limited

Media Player Plugins

iPod Plugin

The mm-player service uses the iPod plugin to play media files stored on iPods.

QNX Neutrino RTOS

Media stream

deva-ctrl-ipod.sa
Sample
rateiPod driver

Outputio-audiomm-renderer

Playback

ipodlib

Browsing/Playback

C APIs

iPod plugin

mm-player

HMI (via car.mediaplayer)

iPod

Figure 5: iPod Plugin Architecture

Note that this plugin doesn't support the mm-player browsing operations. This means

that in the HMI, you can see iPod media content only after it's been synchronized to

QDB databases. For information on synchronization, see the “synceddb Plugin (p.

23)” section.

The iPod plugin uses C APIs to communicate with the ipodlib library for internally

browsing and managing playback of iPod media content, and with the mm-renderer

service for managing playback.

When the user plays media files stored on iPods, the plugin directs playback commands

to both ipodlib and mm-renderer. The ipodlib library talks to the iPod driver,

which sends sample-rate updates to the active audio capture driver (e.g., deva-ctrl-

ipod.sa) to control the media stream. This driver receives the media stream from

the iPod device, processes the stream, and passes it as input to mm-renderer. The

mm-renderer service then directs the media stream to io-audio for output.

Copyright © 2014, QNX Software Systems Limited 21

iPod Plugin

To provide playback status updates to the HMI, mm-player uses the car.medi

aplayer WebWorks extension (for more information, see the multimedia architecture

overview in the QNX CAR Multimedia Architecture Guide).

22 Copyright © 2014, QNX Software Systems Limited

Media Player Plugins

synceddb Plugin

The mm-player service uses the synceddb plugin to browse media files that have

had their metadata synchronized to QDB databases.

QDB
databases

QDB API

mm-detect

PPS

synceddb plugin

mm-player

HMI (via car.mediaplayer)

Figure 6: synceddb Plugin Architecture

When the user attaches a device, the mm-detect service loads the QDB database

that stores the device's media metadata and then publishes the device's information

to a special PPS object (/pps/services/mm-detect/status). When the user removes the

device, mm-detect unloads its database and updates the same PPS object to indicate

that the device is no longer present. The synceddb plugin monitors this object and

updates its list of accessible devices when the object's contents change. This design

means that the plugin can browse the contents of only those mediastores currently

attached to the system.

The synceddb plugin allows mm-player to quickly provide the HMI with media

information about frequently used devices. For example, suppose the user attaches a

new iPod that contains a lot of media content. Because the iPod Plugin (p. 21) doesn't

support browsing, the user can't see information about the iPod's media files until

their metadata has been synchronized (at which point it can be retrieved from the

populated QDB database). If the same iPod is detached and then reattached, its

Copyright © 2014, QNX Software Systems Limited 23

synceddb Plugin

database will be reloaded and the synceddb plugin can immediately retrieve the

metadata and pass it to the HMI.

Because it reads information from QDB databases and not external devices, the

synceddb plugin doesn't need any supporting components to retrieve metadata. The

QDB API is implemented by a C library that the plugin links into its codebase, so the

plugin doesn't talk to another process but instead simply queries the databases and

stores the results. To send metadata to the HMI, mm-player uses the car.medi

aplayer WebWorks extension (for more information, see the multimedia architecture

overview in the QNX CAR Multimedia Architecture Guide).

24 Copyright © 2014, QNX Software Systems Limited

Media Player Plugins

Chapter 3
Running mm-player

Client applications don't have to start mm-player in the same way that they must

run other multimedia services at specific times to perform tasks. CAR systems use

the System Launch Monitor (SLM) service to start mm-player during bootup.

Applications should manually start mm-player only for recovery purposes.

Starting mm-player with command options during bootup

SLM automates process management by starting processes in an order that respects

their interprocess dependencies. The list of processes to launch and their properties,

including their command-line arguments and interprocess dependencies, is written

in a configuration file (/etc/slm-config-all.xml). For the full explanation of

how SLM works, see the “System Launch and Monitor (SLM) section” of the System

Services Reference.

Using SLM to start mm-player ensures that the in-car system can browse and play

media as soon as the system finishes booting up and also that mm-player runs with

the same command options and therefore behaves consistently from one bootup to

the next.

SLM is preconfigured to start mm-player with specific command options but you

can change these options to better suit the needs of your in-car system.

To change the command options passed by SLM to mm-player:

1. From a command console connected to your in-car system, navigate to and open

the SLM configuration file, whose full path is /etc/slm-config-all.xml.

2. In the configuration file, locate the component that specifies the properties for

mm-player.

This component is the <SLM:component> XML object with the name "mmplay

er".

3. Change the value of the <SLM:args> tag in the "mmplayer" component to hold

the new set of mm-player command-line options.

For the full list of available command-line options, see “Command line for

mm-player (p. 34)”.

4. Save the changes to the SLM configuration file and return to the console.

5. If you want the new configuration to take effect immediately, in the console, enter

reboot.

Copyright © 2014, QNX Software Systems Limited 25

The system reboots and the SLM utility relaunches all processes, including mm-

player, with their command options given in the configuration file. When the

system finishes reloading, mm-player is running with the new configuration.

If you don't reboot immediately after changing the configuration file, mm-player

continues to run with its previous configuration, until you shut down the system

and restart.

26 Copyright © 2014, QNX Software Systems Limited

Running mm-player

Restarting mm-player

An application can restart mm-player with an explicit command if the service has

stopped running and the application can't proceed without support for media browsing

and playback.

A client application should restart mm-player manually only if:

• the mm-player process has terminated unexpectedly

• the client is actively browsing or playing media

• the client has enough system configuration knowledge to set the appropriate

command-line options for mm-player

• it is undesirable to reboot the in-car system to restart mm-player because doing

so would be too disruptive to the user

To restart mm-player manually, an application must:

1. Confirm that mm-player isn't already running by checking the list of active

processes with the pidin or ps command.

2. Confirm that the nowplaying, mm-detect, and mm-renderer processes are

already running by checking the list of active processes.

The mm-player process depends on these three other services, so if any one is

not running, that service must be started; otherwise, mm-player won't work

properly.

3. Send the mm-player command line containing the desired options to the OS,

using the system() or spawn() system call.

The OS tries to run mm-player and reports the outcome to sloginfo.

For details on the system calls that send commands to the OS, see the C Library

Reference. For the full list of command-line options, see “Command line for

mm-player (p. 34)”.

If sloginfo shows no error, mm-player is now running.

Your system should run only one instance of mm-player, so applications

relying on the service must coordinate with each other to avoid starting mm-

player multiple times.

Copyright © 2014, QNX Software Systems Limited 27

Restarting mm-player

SLM specification of mm-player

The SLM configuration file stores the list of processes to be automatically launched

and their interprocess dependencies. In CAR systems, this list includes mm-player

and its prerequisite and dependant programs. You can change the configuration file

to run mm-player with different settings.

The following excerpt from the SLM configuration file shows some (but not all) of the

property settings for mm-player:

<SLM:component name="mmplayer">
 <SLM:command>mm-player</SLM:command>
 <SLM:args>-c /etc/mm-player.cfg</SLM:args>
 <SLM:depend>nowplaying</SLM:depend>
 <SLM:depend>mmtrkmgr</SLM:depend>
 <SLM:depend>mmdetect</SLM:depend>
 <SLM:depend>mmrenderer</SLM:depend>
</SLM:component>

Here, the name mmplayer assigned to the <SLM:component> XML object is an

internal label used within the configuration file. This label differs from the process

name of mm-player, which is provided in the <SLM:command> tag.

Command-line arguments

The <SLM:args> tag lists the command-line arguments. By default, only the path of

the mm-player configuration file is specified (with the -c option), but you can change

the value assigned to <SLM:args> to include other options. The new mm-player

settings will take effect after you reboot the car system, causing SLM to relaunch the

service. See “Running mm-player (p. 25)” for instructions on changing the command

settings for mm-player.

Workflow

The <SLM:depend> objects list which processes must be running before mm-player

can be started. These dependencies mean that SLM must ensure that the nowplay

ing, mm-detect, and mm-renderer processes are running before starting mm-

player.

The programs that are prerequisites to mm-player have their own prerequisites. For

instance, mm-renderer requires the Audio Manager service (represented in SLM by

the audioman object) to be running so that the audio components of the media that

gets played can be output over hardware. The Audio Manager and many other services

depend on PPS. The interprocess dependencies between mm-player and the services

that it uses make up a complex workflow of processes. The following illustration shows

part (but not all) of this workflow:

28 Copyright © 2014, QNX Software Systems Limited

Running mm-player

mm-player

mm-renderernowplaying

pps-setup

mm-detect

audioman usblauncher mm-sync

QDB

screen

Figure 7: Workflow of mm-player and related processes

Copyright © 2014, QNX Software Systems Limited 29

SLM specification of mm-player

Configuration file

The mm-player configuration file defines playback settings, such as the audio output

device and the progression mode for randomized playback. The file also defines settings

for individual Media Player Plugins (MPPs), such as whether they manage their own

tracksessions.

The QNX CAR Platform for Infotainment includes a default mm-player configuration

file (/etc/mm-player.cfg). You can modify this included file or create your own.

To use your own file, you must specify its path in the -c option on the mm-player

command line.

The configuration file must be in JSON format. Two top-level JSON objects can be

defined: a “player” object, which lists playback settings to assign to players, and

a “plugins” object, which lists properties of the various plugins (MPPs). In either

object, member fields must consist of key-value pairs, with both elements encoded

as strings.

The player object

The player object can contain the following fields:

audio_output

The URL naming the audio output device. For details on the required URL

format and its meaning, see “mmr_output_attach()” in the Multimedia

Renderer Developer's Guide.

video_output

The URL naming the video output device. For details on the required URL

format and its meaning, see “mmr_output_attach()”.

Although mm-player presently doesn't support video playback, this field

is required for certain plugins to work. In this release, you can use the URL

value given in the default file.

update_interval

The frequency (in milliseconds) of the track position updates sent by MPPs

to the mm-player server. The server publishes these position updates in

PPS.

The default frequency is 750 ms.

progression_mode

30 Copyright © 2014, QNX Software Systems Limited

Running mm-player

The method mm-player uses to fetch the next track during randomized

playback. Can be one of two values: “rosp” (random order sequential

progression) or “sorp” (sequential order random progression).

The default setting is “sorp”.

lastmode_audio

This nested object configures the "last mode" audio restoration feature, in

which the media player tries to resume playback following a system reboot

that interrupted the previous playback. The lastmode_audio object

contains these fields:

timeout

A time limit (in seconds) on how long the audio restoration feature

should attempt to resume playback.

The default limit is 5 seconds.

max_try

The maximum number of tracks that the media player should look

for when trying to resume playback. This setting supports the case

where the previous track is unavailable because, for example, the

user removed the media storing this track during the reboot. The

media player first tries to resume playing the previous track (i.e.,

the one playing when the system rebooted) and then tries to play

a fixed number of other tracks, based on the max_try setting.

The default setting is 5.

device_type

The hardware type of the media accessed by this player. Can be

one of HDD, USB, or IPOD.

The default setting is HDD.

recursion_depth

The number of directory levels to search to find tracks when building a

tracksession from a "base" media node. When this value is set to -1, there's

no depth limit on the directories searched. Otherwise, this value must be

greater than 0. When it's set to 1, only the immediate directory of the base

media node is searched.

The default depth is 4.

Copyright © 2014, QNX Software Systems Limited 31

Configuration file

To play media on POSIX devices, Bluetooth devices, or iPods, you must include the

audio_output, video_output, and update_interval fields. The progres

sion_mode field is optional.

The plugins object

The plugins object contains other objects that configure specific MPPs. Each of

these objects must have the same name as the library file that implements the

corresponding plugin. For example, the object for the POSIX plugin must be named

“mpp-default.so”. The plugin objects can contain the following fields:

mode

The playback mode, which determines which layer manages the

tracksessions. Can be one of two values: “player” (to indicate that mm-

player manages the tracksessions) or “device” (to indicate that the

plugin manages its own tracksessions). The default setting for all plugins is

“player”.

view_name

Name of the view used for accessing metadata on devices supported by this

plugin. The view affects how media information can be presented in the

HMI. For example, the view may determine which extended metadata fields

can be read from the device. The default configuration file uses the synced

and live views, but you can define others to suit your HMI's needs.

audio_ext

A JSON-formatted string listing all the audio file extensions that the plugin

recognizes. The plugin can browse and play only those audio files with

extensions contained in this list.

You must escape the double quotes enclosing the individual list values with

a backslash (\).

video_ext

A JSON-formatted string listing all the video file extensions that the plugin

recognizes. The plugin can browse and play only those video files with

extensions contained in this list.

You must escape the double quotes enclosing the individual list values with

a backslash (\).

cfgfilename

Applies only to the synceddb plugin

32 Copyright © 2014, QNX Software Systems Limited

Running mm-player

The name of the configuration file. This field is mandatory for the “mpp-

synced_default.so” object.

Default configuration file

The contents of the default configuration file look like this:

{
 "player":{
 "audio_output":"audio:default",
 "video_output":"screen:?dstx=320&dsty=85&zorder=100&dstw=460&dsth=259",
 "update_interval":"750",
 "progression_mode":"sorp",
 "lastmode_audio":{
 "timeout":"5",
 "max_try":"5",
 "device_type":["HDD","USB"]
 },
 "recursion_depth":"4"
 },
 "plugins":{
 "mpp-default.so":{
 "mode":"player",
 "view_name":"LIVE",
 "audio_ext":"[\"aac\",\"cda\",\"m4a\",\"m4b\",\"mp3\",\"wav\"]",
 "video_ext":"[\"m4v\",\"mp4\",\"mpeg4\",\"mov\",\"mpg\",\"mpeg\",\"3gp\",\"3g2\"]"
 },
 "mpp-synced_default.so":{
 "mode":"player",
 "view_name":"SYNCED",
 "cfgfilename":"anything"
 }
 }
}

Copyright © 2014, QNX Software Systems Limited 33

Configuration file

Command line for mm-player

Start the multimedia player service

Synopsis:

mm-player [-b] [-c config_file] [-p dir] [-P priority]
 [-s service] [-U u[:g,...]] [-v]

Options:

-b

Run the mm-player process in the foreground (and not in the background).

This option is handy for debugging, because it makes mm-player log

messages to standard error in addition to sloginfo.

By default, mm-player runs in the background.

-c config_file

Specify an overridden path for the configuration file.

By default, mm-player uses the file at /etc/mm-player.cfg, but you

can provide a path to any other valid configuration file.

-p dir

Specify a directory location for outputting the player state information (in

PPS objects).

The default location is /pps/services/mm-player/.

-P priority

Set the priority of the mm-player process. When your system is busy running

many applications, the priority level can have a considerable impact on the

user experience when browsing and playing media.

The valid range is 1 to 63; the default is 15.

-s service

Specify the name of the mm-player server that receives media commands

from the client library.

The server name must be in the form name.provider. The default name is

mm-player.sys.

34 Copyright © 2014, QNX Software Systems Limited

Running mm-player

-U u[:g,...]

Run mm-player with the given user ID (uid) and possibly one or many

group IDs (gids).

By default, mm-player inherits the caller's uid and gids, which means

it runs as root because the service is started during bootup by SLM.

-v

Increase output verbosity. Messages are written to sloginfo. The -v option

is cumulative, so you can add several v's to increase verbosity, up to seven

levels.

Output verbosity is handy when you're trying to understand the operation of

mm-player. However, when lots of -v arguments are used, the logging

becomes quite significant and can change timing noticeably. The verbosity

setting is good for systems under development but probably shouldn't be

used in production systems or during performance testing.

Description:

The mm-player command starts the multimedia player service, which processes

media browsing and playback commands sent through its C API. Client applications

can invoke mm-player to obtain a list of available media sources, explore the

filesytems and read media metadata from those media sources, and select tracks for

playback.

Through command options, you can change the configuration filepath (to use a

nondefault configuration) and the player state output directory (to output state

information to another PPS directory). You can also assign a user ID, multiple group

IDs, the priority level, and the debugging output level to the mm-player process.

Once started, mm-player can't adjust any of these settings. To reconfigure mm-

player, you must restart it with a different command line. The command line is

contained in the SLM configuration file, located at /etc/slm-config-all.xml.

Copyright © 2014, QNX Software Systems Limited 35

Command line for mm-player

Chapter 4
Multimedia Player API

The multimedia player API is the primary interface for accessing and controlling the

mm-player service. Through this API, you can browse media sources, define

tracksessions, and control playback. You can also receive API events to monitor changes

in playback activity and media source states.

The API consists of two sections:

• The media browsing and playback interface

• The event interface

Copyright © 2014, QNX Software Systems Limited 37

Media browsing and playback interface

The media browsing and playback interface defines the functions for connecting to

mm-player, retrieving file information and metadata from media sources and media

nodes, configuring tracksessions, and issuing playback commands. It also exposes

the data types used by those functions for storing properties of media sources and

media nodes.

The first function a client must call is mm_player_connect() (p. 57) to connect to mm-

player and obtain a handle, which is required in all subsequent API calls. The client

must then call mm_player_open() (p. 69) and pass in the name of a player to connect

with. The player is used to carry out the browsing and playback actions.

To discover media content, the client must call mm_player_get_media_sources() (p.

64) to obtain a list of accessible media sources.

Before attempting any browsing or playback operation, the client should verify

that the media source it's using supports that operation by examining the flag

field that specifies its capabilities. This field is found in the mmp_ms_t (p.

47) structure that describes the media source.

The mm_player_browse() (p. 55) function retrieves information on the media nodes

found on a media source. These media nodes may be folders or individual media files.

To play media files, the client must first define a tracksession by calling

mm_player_create_trksession() (p. 57) and then manage playback by issuing commands

such as mm_player_play() (p. 70), mm_player_stop() (p. 77), and mm_player_next()

(p. 68).

When it's finished browsing and playing media with mm-player, the client can

disconnect by calling mm_player_disconnect() (p. 59).

Constants in types.h

Constants defined in types.h to specify the maximum size of data exchanged between

the client library and the mm-player server.

Definitions in types.h

Preprocessor macro definitions for the types.h header file in the mmplayerclient

library.

Definitions:

#define MAX_MSGSIZE KILO(64)

38 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

Maximum allowable size (64 kB) for messages exchanged between the client library

and the server.

#define MAX_PPSMSGSIZE KILO(32)

Maximum allowable size (32 kB) for PPS data sent from the server to the client library.

#define MMP_NAME_LEN 31

Maximum length of a player's name.

Library:

mmplayerclient

Enumerations in types.h

Enumerations defined in types.h for listing the device types, file types, media source

statuses, and playback modes supported by mm-player.

ms_browse_capability_e

Media source browsing operations.

Synopsis:

#include <mmplayer/types.h>

typedef enum {
 MS_BROWSE_CAPABILITY_METADATA = (0x00010000),
 MS_BROWSE_CAPABILITY_SEARCH = (0x00020000),
 MS_BROWSE_CAPABILITY_BROWSE = (0x00040000),
 MS_BROWSE_CAPABILITY_EXTENDED_METADATA = (0x00080000)
} ms_browse_capability_e;

Data:

MS_BROWSE_CAPABILITY_METADATA

You can retrieve metadata from media nodes.

MS_BROWSE_CAPABILITY_SEARCH

You can retrieve media nodes with metadata properties matching a search

string.

MS_BROWSE_CAPABILITY_BROWSE

You can browse a media node within a media source.

MS_BROWSE_CAPABILITY_EXTENDED_METADATA

You can retrieve extended metadata (i.e., nonstandard properties) from media

nodes.

Copyright © 2014, QNX Software Systems Limited 39

Media browsing and playback interface

Library:

mmplayerclient

Description:

Media source browsing operations. These constants indicate which bits to examine in

the capabilities field of the mmp_ms_t (p. 47) structure when testing if a media source

supports a given browsing operation.

ms_node_type_e

Media node types.

Synopsis:

#include <mmplayer/types.h>

typedef enum {
 MS_NTYPE_UNKNOWN = 0,
 MS_NTYPE_FOLDER,
 MS_NTYPE_AUDIO,
 MS_NTYPE_VIDEO,
 MS_NTYPE_RESERVED1,
 MS_NTYPE_PHOTO,
 MS_NTYPE_NUMBER
} ms_node_type_e;

Data:

MS_NTYPE_UNKNOWN

Unknown file category

MS_NTYPE_FOLDER

Folder

MS_NTYPE_AUDIO

Audio file

MS_NTYPE_VIDEO

Video file

MS_NTYPE_RESERVED1

Reserved for future use

MS_NTYPE_PHOTO

Photo file

MS_NTYPE_NUMBER

40 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

End-of-list identifier

Library:

mmplayerclient

Description:

The ms_node_type_e enumerated type defines the possible file types of media

nodes.

ms_playback_capability_e

Media source playback operations.

Synopsis:

#include <mmplayer/types.h>

typedef enum {
 MS_PLAY_CAPABILITY_PLAY = (0x00000001),
 MS_PLAY_CAPABILITY_PAUSE = (0x00000002),
 MS_PLAY_CAPABILITY_NEXT = (0x00000004),
 MS_PLAY_CAPABILITY_PREVIOUS = (0x00000008),
 MS_PLAY_CAPABILITY_SEEK = (0x00000010),
 MS_PLAY_CAPABILITY_SET_PLAYBACK_RATE = (0x00000020),
 MS_PLAY_CAPABILITY_SHUFFLE = (0x00000040),
 MS_PLAY_CAPABILITY_REPEAT_ALL = (0x00000080),
 MS_PLAY_CAPABILITY_REPEAT_ONE = (0x00000100),
 MS_PLAY_CAPABILITY_REPEAT_NONE = (0x00000200),
 MS_PLAY_CAPABILITY_STOP = (0x00000400),
 MS_PLAY_CAPABILITY_JUMP = (0x00000800),
 MS_PLAY_CAPABILITY_GET_POSITION = (0x00001000),
 MS_PLAY_CAPABILITY_PLAYER_MODE = (0x10000000),
 MS_PLAY_CAPABILITY_DEVICE_MODE = (0x20000000)
} ms_playback_capability_e;

Data:

MS_PLAY_CAPABILITY_PLAY

Playback is supported.

MS_PLAY_CAPABILITY_PAUSE

Playback can be paused.

MS_PLAY_CAPABILITY_NEXT

You can skip to the next track.

MS_PLAY_CAPABILITY_PREVIOUS

You can skip to the previous track.

MS_PLAY_CAPABILITY_SEEK

Copyright © 2014, QNX Software Systems Limited 41

Media browsing and playback interface

You can seek to a specific playback position.

MS_PLAY_CAPABILITY_SET_PLAYBACK_RATE

Playback speed can be adjusted.

MS_PLAY_CAPABILITY_SHUFFLE

Playback can be shuffled (i.e., randomized)

MS_PLAY_CAPABILITY_REPEAT_ALL

You can repeat all tracks in the same order.

MS_PLAY_CAPABILITY_REPEAT_ONE

You can repeat one track continuously.

MS_PLAY_CAPABILITY_REPEAT_NONE

You can disable repeating.

MS_PLAY_CAPABILITY_STOP

Playback can be stopped.

MS_PLAY_CAPABILITY_JUMP

You can jump to a different track.

MS_PLAY_CAPABILITY_GET_POSITION

You can retrieve the current playback position.

MS_PLAY_CAPABILITY_PLAYER_MODE

The mm-player server can manage tracksessions.

MS_PLAY_CAPABILITY_DEVICE_MODE

The plugin accessing the media source can manage tracksessions.

Library:

mmplayerclient

Description:

Media source playback operations. These constants indicate which bits to examine in

the capabilities field of the mmp_ms_t (p. 47) structure when testing if a media source

supports a given playback operation.

42 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

ms_status_e

Media source statuses.

Synopsis:

#include <mmplayer/types.h>

typedef enum {
 MS_STATUS_NOT_READY,
 MS_STATUS_READY,
 MS_STATUS_1STPASS,
 MS_STATUS_2NDPASS,
 MS_STATUS_3RDPASS
} ms_status_e;

Data:

MS_STATUS_NOT_READY

The media source isn't ready because it's been disconnected or its status

can't be read

MS_STATUS_READY

The media source is ready, meaning it's connected and its status can be

read

MS_STATUS_1STPASS

The file information from the media source has been synchronized (currently

unused)

MS_STATUS_2NDPASS

The media metadata from the media source has been synchronized (currently

unused)

MS_STATUS_3RDPASS

The playlist entry information for the media source has been synchronized

(currently unused)

Library:

mmplayerclient

Description:

The ms_status_e enumerated type defines the possible media source statuses. The

status tells clients whether a media source is connected and if so, how much of its

media information has been synchronized with its database.

Copyright © 2014, QNX Software Systems Limited 43

Media browsing and playback interface

ms_type_e

Hardware types for media sources.

Synopsis:

#include <mmplayer/types.h>

typedef enum {
 MS_TYPE_HDD = 0x00000001,
 MS_TYPE_USB = 0x00000002,
 MS_TYPE_IPOD = 0x00000010,
 MS_TYPE_DLNA = 0x00000100,
 MS_TYPE_BLUETOOTH = 0x00001000,
 MS_TYPE_MTP = 0x00010000,
 MS_TYPE_UNKNOWN = 0x00100000
} ms_type_e;

Data:

MS_TYPE_HDD

Local drive

MS_TYPE_USB

USB storage device

MS_TYPE_IPOD

iPod

MS_TYPE_DLNA

DLNA device

MS_TYPE_BLUETOOTH

Bluetooth device

MS_TYPE_MTP

Device with MTP files (e.g., Android, Win7/8 phone)

MS_TYPE_UNKNOWN

Customized media source

Library:

mmplayerclient

44 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

Description:

The ms_type_e enumerated type defines the media source hardware types supported

by mm-player.

repeat_e

Repeat modes.

Synopsis:

#include <mmplayer/types.h>

typedef enum {
 REPEAT_OFF = 0,
 REPEAT_ALL,
 REPEAT_ONE
} repeat_e;

Data:

REPEAT_OFF

No tracks will be repeated (playback will stop when the end of the active

tracksession is reached)

REPEAT_ALL

All tracks will be repeated in the same order (playback will loop)

REPEAT_ONE

The current track will be continuously repeated

Library:

mmplayerclient

Description:

The repeat_e enumerated type defines the repeat modes supported by mm-player.

shuffle_e

Shuffle modes.

Synopsis:

#include <mmplayer/types.h>

typedef enum {
 SHUFFLE_OFF = 0,
 SHUFFLE_ON
} shuffle_e;

Copyright © 2014, QNX Software Systems Limited 45

Media browsing and playback interface

Data:

SHUFFLE_OFF

Shuffling is off; tracks will be played sequentially

SHUFFLE_ON

Shuffling is on; tracks will be played in a random order

Library:

mmplayerclient

Description:

The shuffle_e enumerated type defines the shuffle modes supported by mm-

player.

status_e

Player status.

Synopsis:

#include <mmplayer/types.h>

typedef enum {
 STATUS_DESTROYED = 0,
 STATUS_IDLE,
 STATUS_PLAYING,
 STATUS_PAUSED,
 STATUS_STOPPED
} status_e;

Data:

STATUS_DESTROYED

Reserved for future use

STATUS_IDLE

The player is created but no tracksession is defined so playback is currently

not possible

STATUS_PLAYING

A track is currently playing

STATUS_PAUSED

Playback is paused

STATUS_STOPPED

46 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

Playback is stopped, no track is selected, or an error has occurred

Library:

mmplayerclient

Description:

The status_e enumerated type defines the possible player statuses, which reflect

the current playback support and activity. The initial status after a player has been

created is STATUS_IDLE. Playback isn't possible until you call

mm_player_create_trksession() to define a tracksession for the player, at which point

its status changes to STATUS_STOPPED. The status returns to STATUS_IDLE when

you destroy the tracksession.

A status of STATUS_PAUSED means that playback will resume at the same position

if the client calls mm_player_play(). In contrast, the STATUS_STOPPED status means

that playback will restart at the beginning of the current track if the client calls that

last function.

The STATUS_DESTROYED status means that no state information could be read from

the player. This status could be returned in an event's information if the connection

to the player gets abruptly closed after the event is generated but before the API call

to retrieve that event.

Data types in types.h

Data types defined in types.h for storing information describing media sources,

media nodes, tracks, tracksessions, and playback state.

mmp_ms_t

A media source from the perspective of a client.

Synopsis:

#include <mmplayer/types.h>

typedef struct mmp_ms {
 int id;
 char *uid;
 char *name;
 char *view_name;
 ms_type_e type;
 ms_status_e status;
 uint64_t capabilities;
} mmp_ms_t;

Data:

int id

Copyright © 2014, QNX Software Systems Limited 47

Media browsing and playback interface

Unique ID of the media source

char *uid

Unique ID of the hardware device

char *name

Media source name

char *view_name

Name of the view configured for the device type of the media source

ms_type_e type

Hardware type

ms_status_e status

Media source status (i.e., ready or not ready)

uint64_t capabilities

A flag field indicating the supported browsing and playback operations

Library:

mmplayerclient

Description:

The mmp_ms_t structure stores media source information useful to a client. This

information allows clients to distinguish one media source from the others and to know

its current status and which operations it supports. The mm_player_get_media_sources()

function returns an array of these structures, with each array element storing the

information about a single media source.

Clients must pass in the media source ID (which can be read from the id field) to a

identify a particular media source when calling the API functions for browsing or

searching media, getting metadata, or creating tracksessions.

The view_name field indicates the view configured for the plugin used to access content

on the media source. You can see this plugin setting in the configuration file (p. 30).

The default configuration file uses two views: synced and live. These views

determine which extended metadata fields can be retrieved with

mm_player_get_extended_metadata() (p. 63). You can define additional views to suit

your HMI's needs. For instance, you can define multiple views to represent the metadata

on a device in different ways and then combine the device's hardware UID with specific

view_name values to distinguish the views.

48 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

The flag field in capabilities indicates which browsing and playback operations are

supported by the media source. To test if a particular operation is supported, you must

examine the bit that corresponds to the operation's enumeration code in either

ms_browse_capability_e (p. 39) or ms_playback_capability_e (p. 41).

For example, to test if the media source supports jumping to another track during

playback, you must examine the bit in capabilities that corresponds to the

MS_PLAY_CAPABILITY_JUMP code.

mmp_ms_node_t

A media node.

Synopsis:

#include <mmplayer/types.h>

typedef struct mmp_ms_node {
 char *id;
 char *name;
 ms_node_type_e type;
 int count;
 int ms_id;
 ms_type_e ms_type;
} mmp_ms_node_t;

Data:

char *id

Unique ID of the media node

char *name

Name of the media node

ms_node_type_e type

Media node type

int count

Number of children contained in this node (-1 means unknown)

int ms_id

ID of the media source on which the media node is located

ms_type_e ms_type

Device type of the media source

Copyright © 2014, QNX Software Systems Limited 49

Media browsing and playback interface

Library:

mmplayerclient

Description:

The mmp_ms_node_t structure stores information on media nodes. A media node is

a container of media objects stored on a media source. This container can be an

individual media file (i.e., a track) or a folder that stores other media nodes (as

indicated by type). The value in name can be a filename, folder name, or metadata

name, depending on the configuration of mm-player.

The mm_player_get_trksession_tracks(), mm_player_browse(), and mm_player_search()

functions each return an array of mmp_ms_node_t structures, with each array element

storing the information of a single media node. When calling the functions for browsing,

getting metadata, or creating tracksessions, clients must pass in the media node ID

(which can be read from the id field). To start browsing a media source whose folder

structure is unknown, clients can specify the path of the root folder (/) in the call to

mm_player_browse(). They can then read the IDs of the media nodes found in the root

folder and perform other browsing operations to explore these nodes.

mmp_ms_node_metadata_t

Metadata associated with a media node.

Synopsis:

#include <mmplayer/types.h>

typedef struct mmp_ms_node_metadata {
 char *title;
 int duration;
 char *artwork;
 char *artist;
 char *album;
 char *genre;
 char *year;
 int width;
 int height;
 int disc;
 int track;
 char *reserved;
} mmp_ms_node_metadata_t;

Data:

char *title

Media file title

int duration

Track duration (in milliseconds)

50 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

char *artwork

URL of filepath for artwork (NULL if there's no artwork)

char *artist

Artist name

char *album

Album name

char *genre

Genre

char *year

Year of creation

int width

Width (in pixels)

int height

Height (in pixels)

int disc

Disc number (-1 if not applicable)

int track

Track index (-1 if not applicable)

char *reserved

Reserved for future use

Library:

mmplayerclient

Description:

The mmp_ms_node_metadata_t structure stores media node metadata, which

consists of track creation and runtime details. Clients can display this information in

the HMI to improve the user experience.

This structure is filled in by the mm_player_get_metadata() function. The exact

metadata fields that get filled in depend on the media node's file type and the plugin

used to retrieve the metadata (which varies with the media source's hardware type).

Copyright © 2014, QNX Software Systems Limited 51

Media browsing and playback interface

For instance, the artwork field is supported by the AVRCP plugin but not the POSIX

plugin. Meanwhile, the duration, artist, and album fields can be populated for audio

tracks but not for videos or photos. However, the width and height fields can be

populated for videos and photos, but not for audio tracks.

mmp_state_t

Core mm-player state information.

Synopsis:

#include <mmplayer/types.h>

typedef struct mmp_state {
 shuffle_e shuffle_mode;
 repeat_e repeat_mode;
 status_e status;
 float rate;
} mmp_state_t;

Data:

shuffle_e shuffle_mode

Shuffle mode

repeat_e repeat_mode

Repeat mode

status_e status

Player status

float rate

Playback rate (i.e., the speed of playback)

Library:

mmplayerclient

Description:

The mmp_state_t structure stores the current settings for playback order and speed

as well as the player's status, which reflects its current playback support and activity.

This structure is filled in by the mm_player_get_current_state() function. If you change

the repeat or shuffle mode or the playback speed, you can call this function and

examine the values returned in the mmp_state_t structure to confirm that your

change was applied.

52 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

mmp_track_info_t

Track information.

Synopsis:

#include <mmplayer/types.h>

typedef struct mmp_track_info {
 int index;
 uint64_t tsid;
 mmp_ms_node_t *media_node;
 mmp_ms_node_metadata_t *metadata;
} mmp_track_info_t;

Data:

int index

Position of the track within the tracksession

uint64_t tsid

ID of the associated tracksession

mmp_ms_node_t *media_node

Media node the track is contained in

mmp_ms_node_metadata_t *metadata

Track metadata

Library:

mmplayerclient

Description:

The mmp_track_info_t structure stores details on an individual track. This structure

is filled in by the mm_player_get_current_track_info() function.

The “current” track is the track either actively being played or selected to be played

next, based on the player's shuffle and repeat settings and the indexing of tracks at

the media source. The index field indicates the playback position within the

tracksession identified by tsid.

Copyright © 2014, QNX Software Systems Limited 53

Media browsing and playback interface

mmp_trksession_info_t

Basic tracksession information.

Synopsis:

#include <mmplayer/types.h>

typedef struct mmp_trksession {
 uint64_t tsid;
 int length;
} mmp_trksession_info_t;

Data:

uint64_t tsid

Tracksession ID

int length

Number of tracks within the tracksession

Library:

mmplayerclient

Description:

The mmp_trksession_info_t structure stores information on the player's active

tracksession. This structure is filled in by the mm_player_get_current_trksession_info()

function. In this release, each player can store only one tracksession at a time, so the

tracksession object doesn't reference individual tracks. Instead, each

mmp_track_info_t object (which stores information on a single track) stores the

track's index (i.e., offset) in the active tracksession. You can retrieve the tracksession's

tracks by passing in its ID (read from the tsid field) to the

mm_player_get_trksession_tracks() function.

54 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

Functions in mmplayerclient.h

Functions defined in mmplayerclient.h for connecting to mm-player and to

specific players, browsing media nodes, defining tracksessions, retrieving playback

state information, and issuing playback commands.

mm_player_browse()

Browse a media node within a media source.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_browse(mmplayer_hdl_t *hdl,
 const int media_source_id,
 const char *media_node_id,
 const int offset,
 int *limit,
 mmp_ms_node_t **media_nodes)

Arguments:

hdl

The mm-player connection handle

media_source_id

The ID of the media source to browse

media_node_id

The ID of the media node to browse

offset

The offset to start browsing from within the media node

limit

On input, the maximum number of items requested. On output, the number

of items actually found (if the function succeeded).

media_nodes

The media nodes found within the media node being browsed

Library:

mmplayerclient

Copyright © 2014, QNX Software Systems Limited 55

Media browsing and playback interface

Description:

Browse the contents of the folder media node identified by media_node_id and located

on the media source identified by media_source_id. To start browsing a new media

source with an unknown directory structure, pass in “/” for media_node_id to indicate

the root folder.

You can define offset to make mm-player browse media nodes starting from a certain

index in the set of items contained in the media node being browsed. You can also

define limit to restrict how many items can be returned.

The media nodes returned by this function can be folders (which can contain other

media nodes) or individual media files such as audio tracks, videos, or photos (i.e.,

leaf nodes). The library allocates memory for the media_nodes array but it's the caller's

responsibility to later deallocate that memory. Each array element stores information

on a single media node found during browsing.

Returns:

0 on success, -1 on failure

mm_player_close()

Close the connection to a player.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_close(mmplayer_hdl_t *hdl,
 const char *player_name)

Arguments:

hdl

The mm-player connection handle

player_name

The player to disconnect from

Library:

mmplayerclient

Description:

Close the connection to the player specified by player_name. If you want to use the

same player again, you must call mm_player_open() (p. 69) again.

56 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

Returns:

0 on success, -1 on failure

mm_player_connect()

Connect to mm-player.

Synopsis:

#include <mmplayer/mmplayerclient.h>

mmplayer_hdl_t* mm_player_connect(int flags)

Arguments:

flags

Reserved for future use

Library:

mmplayerclient

Description:

Connect to mm-player. You must call this function before any other API functions.

This function returns an mm-player handle, which is needed in all other function

calls.

Returns:

A valid handle on success, NULL on failure (errno is set)

mm_player_create_trksession()

Create a tracksession from a media node.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_create_trksession(mmplayer_hdl_t *hdl,
 const int media_source_id,
 const char *media_node_id,
 int *limit,
 const int index,
 uint64_t *tsid)

Arguments:

hdl

Copyright © 2014, QNX Software Systems Limited 57

Media browsing and playback interface

The mm-player connection handle

media_source_id

The ID of the media source the base media node is stored on

media_node_id

The ID of the base media node

limit

On input, the maximum number of items to place in the tracksession. On

output, the number of items actually placed in the tracksession (if the

function succeeded).

index

The index of the tracksession item to be set as the current track

tsid

Currently, this is set to 0 because it's reserved for future use

Library:

mmplayerclient

Description:

Create a tracksession filled with tracks found within a "base" media node, which is

identified by media_node_id. The media node must be located on the media source

identified by media_source_id.

The items put into the new tracksession depend on the type of the base node. If it's

a leaf node (i.e., an audio track, video, or photo), the tracksession contains only that

media file. If it's a folder node, the tracksession contains its children (which can be

media files or subfolders) up to the number of directory levels specified in the

recursion_depth setting (for details, see “Configuration file (p. 30)”). For instance,

suppose recursion_depth is 1; in this case, the tracksession contains the media

files from the base node folder but none of its subfolders or their media files. If this

setting is -1, there's no limit to the directory depths of the items included in the

tracksession.

You can define limit to restrict how many tracks get placed in the tracksession as well

as index to set the current track (i.e., the track to be played first). For example, suppose

you specify an index of 5. The track at position 5 in the children of the base node

then becomes the current track. Note that these two parameters apply only when the

base node is a folder.

58 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

Returns:

0 on success, -1 on failure

mm_player_destroy_trksession()

Delete a tracksession.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_destroy_trksession(mmplayer_hdl_t *hdl,
 const uint64_t tsid)

Arguments:

hdl

The mm-player connection handle

tsid

The tracksession ID

Library:

mmplayerclient

Description:

Delete the tracksession specified by tsid. In this release, each player can have only

one active tracksession, so after this call no tracksession will be available to the player

and hence, playback won't be possible until a new tracksession is defined.

Returns:

0 on success, -1 on failure

mm_player_disconnect()

Disconnect from mm-player.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_disconnect(mmplayer_hdl_t *hdl)

Arguments:

hdl

Copyright © 2014, QNX Software Systems Limited 59

Media browsing and playback interface

The mm-player connection handle

Library:

mmplayerclient

Description:

Disconnect from mm-player. This function must be the last one you call. The handle

in hdl is invalidated by this function and can't be used afterwards.

Returns:

0 on success, -1 if any resources could not be fully released

mm_player_get_current_state()

Get the player's state.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_get_current_state(mmplayer_hdl_t *hdl,
 mmp_state_t **state)

Arguments:

hdl

The mm-player connection handle

state

The player's current state

Library:

mmplayerclient

Description:

Get the state of the currently connected player. The library allocates memory for the

structure referenced in state but it's the caller's responsibility to later deallocate that

memory.

Returns:

0 on success, -1 on failure

60 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

mm_player_get_current_track_info()

Get information on the current track.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_get_current_track_info(
 mmplayer_hdl_t *hdl,
 mmp_track_info_t **track_info)

Arguments:

hdl

The mm-player connection handle

track_info

Information on the current track

Library:

mmplayerclient

Description:

Get information on the current track, which is the track either actively being played

or selected to be played next. This information includes the track's metadata and its

index (i.e., playback position) in the active tracksession. Client applications can then

refresh their HMI display and deliver this up-to-date media information to users.

The library allocates memory for the structure referenced in track_info but it's the

caller's responsibility to later deallocate that memory.

Returns:

0 on success, -1 on failure

mm_player_get_current_track_position()

Get the position of the current track.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_get_current_track_position(
 mmplayer_hdl_t *hdl,
 int *position)

Copyright © 2014, QNX Software Systems Limited 61

Media browsing and playback interface

Arguments:

hdl

The mm-player connection handle

position

The current position, in milliseconds from the start of the track

Library:

mmplayerclient

Description:

Get the position of the currently playing or paused track. The call fails if there's no

active tracksession or track. We recommend retrieving the current track's position

through the event interface instead of using this function.

Returns:

0 on success, -1 on failure

mm_player_get_current_trksession_info()

Get tracksession information.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_get_current_trksession_info(
 mmplayer_hdl_t *hdl,
 mmp_trksession_info_t **trksession_info)

Arguments:

hdl

The mm-player connection handle

trksession_info

Information on the current tracksession

Library:

mmplayerclient

62 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

Description:

Get information on the current tracksession. In this release, each player can store only

one tracksession at a time, so the last tracksession created is always the “current”

tracksession.

The library allocates memory for the structure referenced in trksession_info but it's

the caller's responsibility to later deallocate that memory.

Returns:

0 on success, -1 on failure

mm_player_get_extended_metadata()

Get extended metadata associated with a media node.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_get_extended_metadata(
 mmplayer_hdl_t *hdl,
 const int media_source_id,
 const char *media_node_id,
 char *const keyv[],
 char *valuev[])

Arguments:

hdl

The mm-player connection handle

media_source_id

The media source ID

media_node_id

The media node ID

keyv

Array listing the metadata fields to retrieve

valuev

Array storing the values read from the requested metadata fields

Library:

mmplayerclient

Copyright © 2014, QNX Software Systems Limited 63

Media browsing and playback interface

Description:

Get extended metadata associated with the media node identified by media_node_id

and located on the media source identified by media_source_id. Here, extended

metadata refers to nonstandard metadata values that aren't returned by

mm_player_get_metadata(), such as the URL of a media node.

The mm_player_get_extended_metadata() function retrieves values for the fields listed

in keyv and populates valuev with references to the strings that store those values.

The library allocates the memory for the strings, but the caller must provide sufficient

memory in valuev for storing the references. The last member of keyv must be a NULL

pointer. The size of keyv and valuev must be the same.

The default mm-player configuration defines two different views for reading extended

metadata from a media source. You can see which view is configured for a given media

source by:

• Reading the view_name field in the mmp_ms_t structure whose id field matches

the value of media_source_id. The mm_player_get_media_sources() (p. 64) function

returns an array of these structures, with each array element describing a particular

media source.

• Examining the configuration file (p. 30), which lists the view name for each plugin

used to access a specific device type. You must know the device type of your media

source to know which plugin configuration determines the fields that you can read.

If the view_name value is “synced”, you can retrieve the folder_type and url

extended metadata fields (by listing them in keyv). If view_name is “live”, you can

retrieve only the url field.

The media node can be either a folder or a leaf node. However, folder_type applies

only to folder nodes and url applies only to leaf nodes.

Returns:

0 on success, -1 on failure

mm_player_get_media_sources()

Get information on all connected media sources.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_get_media_sources(mmplayer_hdl_t *hdl,
 mmp_ms_t **media_sources,
 int *len)

Arguments:

64 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

hdl

The mm-player connection handle

media_sources

An array containing the connected media sources

len

The array size

Library:

mmplayerclient

Description:

Get information on all media sources connected to the system. The library allocates

memory for the array that gets stored in media_sources but it's the caller's responsibility

to later deallocate that memory. Each array element stores information on a single

media source. This information includes the media source's name, hardware type, and

supported browsing and playback operations. Client applications can display this

information in the HMI to provide users with data describing the accessible media

devices.

Returns:

0 on success, -1 on failure

mm_player_get_metadata()

Get metadata associated with a media node.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_get_metadata(mmplayer_hdl_t *hdl,
 const int media_source_id,
 const char *media_node_id,
 mmp_ms_node_metadata_t **metadata)

Arguments:

hdl

The mm-player connection handle

media_source_id

Copyright © 2014, QNX Software Systems Limited 65

Media browsing and playback interface

The media source ID

media_node_id

The media node ID

metadata

The metadata associated with the media node

Library:

mmplayerclient

Description:

Get metadata associated with the media node specified by media_node_id and located

on the media source identified by media_source_id. The media node must be a leaf

node, that is, not a folder. The metadata retrieved includes track creation and playback

details, which client applications can display in the HMI to provide users with useful

media information.

The library allocates memory for the structure referenced in metadata but it's the

caller's responsibility to later deallocate that memory.

Returns:

0 on success, -1 on failure

mm_player_get_trksession_tracks()

Get information on the media nodes associated with a tracksession.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_get_trksession_tracks(
 mmplayer_hdl_t *hdl,
 const uint64_t tsid,
 const int offset,
 int *limit,
 mmp_ms_node_t **media_nodes)

Arguments:

hdl

The mm-player connection handle

tsid

66 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

The tracksession ID

offset

The tracksession offset to starting reading tracks from

limit

On input, the maximum number of items requested. On output, the number

of items actually found (if the function succeeded).

media_nodes

The media nodes of the tracks contained in the tracksession

Library:

mmplayerclient

Description:

Get information on the media nodes associated with a tracksession. This function

allocates the necessary memory and populates the media_nodes array, with each array

element storing information on a single track in the tracksession identified by tsid.

It's the caller's responsibility to later deallocate the array memory.

You can restrict which tracks get retrieved by setting the offset and limit parameters.

The offset parameter makes mm-player retrieve media nodes for only those tracks

at or beyond a certain offset (i.e., playback position) within the tracksession. The limit

parameter restricts how many tracks can be retrieved.

Returns:

0 on success, -1 on failure

mm_player_jump()

Jump to a new track in the tracksession.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_jump(mmplayer_hdl_t *hdl,
 const int index)

Arguments:

hdl

Copyright © 2014, QNX Software Systems Limited 67

Media browsing and playback interface

The mm-player connection handle

index

The tracksession position of the next track to play

Library:

mmplayerclient

Description:

Jump to a new track in the tracksession. This function sets the current track (i.e., the

tracksession item selected for playback) to the track specified by index.

If playback is active when this function is called, the player starts playing the track

specified by index. If playback isn't active, the track specified by index will be played

when playback resumes.

Returns:

0 on success, -1 on failure

mm_player_next()

Skip to the next track.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_next(mmplayer_hdl_t *hdl)

Arguments:

hdl

The mm-player connection handle

Library:

mmplayerclient

Description:

Skip to the next track. The track considered as the "next track" depends on the shuffle

and repeat mode settings.

When the repeat mode is REPEAT_ONE, the next track is always the current track

(because it's set to repeat continuously).

68 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

When the repeat mode is REPEAT_ALL, the next track is the track immediately

following the current track in either the sequential playback list (if shuffling is off) or

in the randomized list (if shuffling is on). If the current track is the last track in the

list, the next track is the first track in the list (because playback is looped).

When the repeat mode is REPEAT_OFF, the next track is selected in a similar manner

based on the shuffle mode, except if the current track is the last track in the list, in

which case playback stops because there is no next track.

Returns:

0 on success, -1 on failure

mm_player_open()

Open a connection to a player.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_open(mmplayer_hdl_t *hdl,
 const char *player_name,
 int oflag)

Arguments:

hdl

The mm-player connection handle

player_name

The player to connect to

oflag

Flags specifying the status and access modes. This field is unused and

should be set to 0.

Library:

mmplayerclient

Description:

Open a connection to the player specified by player_name. If the player doesn't exist,

it gets created. The player is the mechanism that carries out the browsing and playback

actions, so all subsequent API commands using the same mm-player handle will be

directed to this player.

Copyright © 2014, QNX Software Systems Limited 69

Media browsing and playback interface

Returns:

0 on success, -1 on failure

mm_player_pause()

Pause playback.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_pause(mmplayer_hdl_t *hdl)

Arguments:

hdl

The mm-player connection handle

Library:

mmplayerclient

Description:

Pause playback. This function changes the player status to STATUS_PAUSED but

maintains the current playback position. This way, you can resume playback at the

exact position at which you paused it.

Returns:

0 on success, -1 on failure

mm_player_play()

Start playback.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_play(mmplayer_hdl_t *hdl)

Arguments:

hdl

The mm-player connection handle

70 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

Library:

mmplayerclient

Description:

Start playback. This function changes the player status to STATUS_PLAYING. This

status setting remains in effect until you pause or stop playback, or the end of the

tracksession is reached and repeating is disabled.

The track that begins playing is the one selected as the "current" track in the active

tracksession. When this track finishes playing, the player chooses a new track to play

based on the shuffle and repeat mode settings. For more details, see

mm_player_repeat() (p. 72) and mm_player_shuffle() (p. 76).

At any time during playback, you can seek to a new position in the current track by

calling mm_player_seek() (p. 74) or change the current track by calling

mm_player_jump() (p. 67).

Returns:

0 on success, -1 on failure

mm_player_previous()

Skip to the previous track.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_previous(mmplayer_hdl_t *hdl)

Arguments:

hdl

The mm-player connection handle

Library:

mmplayerclient

Description:

Skip to the previous track. The track considered as the "previous track" depends on

the shuffle and repeat mode settings.

When the repeat mode is REPEAT_ONE, the previous track is always the current track

(because it's set to repeat continuously).

Copyright © 2014, QNX Software Systems Limited 71

Media browsing and playback interface

When the repeat mode is REPEAT_ALL, the previous track is the track immediately

preceeding the current track in either the sequential playback list (if shuffling is off)

or in the randomized list (if shuffling is on). If the current track is the first track in

the list, the previous track is the last track in the list (because playback is looped).

When the repeat mode is REPEAT_OFF, the previous track is selected in a similar

manner based on the shuffle mode, except if the current track is the first track in the

list, in which case playback stops because there is no previous track.

Returns:

0 on success, -1 on failure

mm_player_repeat()

Set the repeat mode.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_repeat(mmplayer_hdl_t *hdl,
 const repeat_e mode)

Arguments:

hdl

The mm-player connection handle

mode

The new repeat mode setting

Library:

mmplayerclient

Description:

Set the repeat mode. This function allows you to repeatedly play an individual track

or a sequence of tracks.

The REPEAT_ONE repeat mode causes the player to play the same track continuously

until you either stop playback or skip to another track. A repeat mode of REPEAT_ALL

makes the player play all the tracks in the active tracksession and then loop back to

the beginning of the tracksession. The playback order is either sequential (when

shuffling is off) or random (when shuffling is on). If the repeat mode is REPEAT_OFF,

the player plays all the tracks exactly once but stops when it reaches the end of the

tracksession.

72 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

By default, repeating is disabled, meaning the repeat mode is REPEAT_OFF when a

player is created.

Returns:

0 on success, -1 on failure

mm_player_search()

Search for media nodes with metadata properties matching a search string.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_search(mmplayer_hdl_t *hdl,
 const int media_source_id,
 const char *filter,
 const char *search_term,
 const int offset,
 int *limit,
 mmp_ms_node_t **media_nodes)

Arguments:

hdl

The mm-player connection handle

media_source_id

The ID of the media source to search

filter

A JSON-formatted string listing the metadata fields to examine for values

matching the search string (can be NULL to examine all fields)

search_term

The search string

offset

The offset to start searching from within the root folder of the media source

limit

On input, the maximum number of items requested. On output, the number

of items actually found (if the function succeeded).

media_nodes

Copyright © 2014, QNX Software Systems Limited 73

Media browsing and playback interface

The media nodes found in the media source that have metadata matching

the search string

Library:

mmplayerclient

Description:

Search the media source identified by media_source_id for media nodes with metadata

properties matching a search string. The filter parameter lets you list which properties

are examined. You can set this field to NULL to examine all properties. Otherwise,

this parameter must reference a JSON-formatted string that lists the properties between

square brackets:

["artist","album","genre","song","video"]

This sample string shows all available filter fields. When assigning such a string

to a const char* variable in C code, be sure to escape each double quote

within the string by using a backslash (\).

The search_term parameter contains the text to match; regular expressions or wildcards

aren't supported so it must be an exact match.

You can set offset to make mm-player search media nodes starting from a certain

index within the set of child items (i.e., contained media nodes) in the root of the

media source being searched. You can also set limit to restrict how many child items

can be returned.

The library allocates memory for media_nodes but it's the caller's responsibility to

later deallocate that memory.

Returns:

0 on success, -1 on failure

mm_player_seek()

Seek to a position in the current track.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_seek(mmplayer_hdl_t *hdl,
 const int position)

Arguments:

hdl

74 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

The mm-player connection handle

position

The new track position (in milliseconds)

Library:

mmplayerclient

Description:

Seek to a position in the current track. The value in position is the number of

milliseconds from the start of the track (e.g., 2500).

Returns:

0 on success, -1 on failure

mm_player_set_playback_rate()

Set the playback rate.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_set_playback_rate(mmplayer_hdl_t *hdl,
 const float rate)

Arguments:

hdl

The mm-player connection handle

rate

The new playback rate, relative to a normal rate of 1.0

Library:

mmplayerclient

Description:

Set the playback rate (speed). The floating-point value in rate is relative to a normal

rate of 1.0. A value of 0 pauses playback.

Returns:

0 on success, -1 on failure

Copyright © 2014, QNX Software Systems Limited 75

Media browsing and playback interface

mm_player_shuffle()

Set the shuffle mode.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_shuffle(mmplayer_hdl_t *hdl,
 const shuffle_e mode)

Arguments:

hdl

The mm-player connection handle

mode

The new shuffle mode setting

Library:

mmplayerclient

Description:

Set the shuffle mode. This function lets you enable and disable randomized playback.

The shuffle mode setting determines which of two lists the player uses to select a new

track for playback when the current track finishes playing. When the mode is

SHUFFLE_ON, the player uses a randomized track list, which indexes tracks in an

order different from their order in the media source. For example, when the track listed

as number 2 on its album finishes playing, the next track played could be any other

track on the album (including the track listed as number 3). When the mode is

SHUFFLE_OFF, the player uses the sequential track list, which reflects the track order

in the media source. In this case, when track number 2 finishes playing, track number

3 will play next.

When you call this function with mode set to SHUFFLE_ON, the player generates a

new randomized playback list. So you can keep randomized playback enabled and

just change to a different random order by calling this function multiple times with

this mode setting.

By default, shuffling is disabled, meaning the shuffle mode is SHUFFLE_OFF when

a player is created.

Returns:

0 on success, -1 on failure

76 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

mm_player_stop()

Stop playback.

Synopsis:

#include <mmplayer/mmplayerclient.h>

int mm_player_stop(mmplayer_hdl_t *hdl)

Arguments:

hdl

The mm-player connection handle

Library:

mmplayerclient

Description:

Stop playback. This function changes the player status to STATUS_STOPPED and

resets the playback position to the beginning of the current track.

Returns:

0 on success, -1 on failure

Copyright © 2014, QNX Software Systems Limited 77

Media browsing and playback interface

Event interface

The event interface enumerates the mm-player event types, defines the data structures

that store event information, and defines the functions for processing mm-player

events.

Events provide a practical mechanism for detecting changes in media sources and

playback status. By using the event interface functions, you can receive notifications

of such changes from mm-player instead of constantly polling it for state information

and manually examining the retrieved data to detect those changes.

Enumerations in events.h and types.h

Enumerations defined in events.h and types.h for mm-player event types, media

source and tracksession event types, and error severity levels.

ms_error_e

Media source error severity levels.

Synopsis:

#include <mmplayer/types.h>

typedef enum {
 MS_ERROR_RECOVERABLE = 0,
 MS_ERROR_NONRECOVERABLE
} ms_error_e;

Data:

MS_ERROR_RECOVERABLE

The error is recoverable

MS_ERROR_NONRECOVERABLE

The error is not recoverable

Library:

mmplayerclient

Description:

Media source error severity levels. For MMP_EVENT_ERROR events, the event

information returned to the client includes an mmp_event_error structure with its

type field set to one the MS_ERROR_* values.

78 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

ms_event_e

Media source event types.

Synopsis:

#include <mmplayer/types.h>

typedef enum {
 MS_EVENT_ADDED = 0,
 MS_EVENT_REMOVED,
 MS_EVENT_UPDATED
} ms_event_e;

Data:

MS_EVENT_ADDED

A media source has been connected

MS_EVENT_REMOVED

A media source has been disconnected

MS_EVENT_UPDATED

The status of a connected media source has changed

Library:

mmplayerclient

Description:

Media source event types. For MMP_EVENT_MEDIASOURCE events, the event

information returned to the client includes an mmp_event_mediasource structure

with its type field set to one the MS_EVENT_* values.

mmp_event_type_e

The mm-player event types.

Synopsis:

#include <mmplayer/event.h>

typedef enum mmp_event_type {
 MMP_EVENT_NONE = 0,
 MMP_EVENT_ERROR,
 MMP_EVENT_MEDIASOURCE,
 MMP_EVENT_STATE,
 MMP_EVENT_TRACKSESSION,
 MMP_EVENT_TRACK,
 MMP_EVENT_TRACKPOSITION,

Copyright © 2014, QNX Software Systems Limited 79

Event interface

 MMP_EVENT_OTHER
} mmp_event_type_e;

Data:

MMP_EVENT_NONE

No pending events

MMP_EVENT_ERROR

Browsing or playback has stopped due to an error

MMP_EVENT_MEDIASOURCE

State change for the media source

MMP_EVENT_STATE

State update (shuffle mode, repeat mode, status, or playback speed has

changed)

MMP_EVENT_TRACKSESSION

Tracksession update (index, tsid, or the track items have changed)

MMP_EVENT_TRACK

Metadata update (msid, media node, metadata)

MMP_EVENT_TRACKPOSITION

Position update

MMP_EVENT_OTHER

None of the above, but something has changed; you can typically ignore this

event type

Library:

mmplayerclient

Description:

The mm-player event types. For all events, the type field in the mmp_event_t

structure is set to one of the MMP_EVENT_* values.

80 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

trksession_event_e

Tracksession event types.

Synopsis:

#include <mmplayer/types.h>

typedef enum {
 TRKSESSION_EVENT_CREATED = 0,
 TRKSESSION_EVENT_DESTROYED,
 TRKSESSION_EVENT_APPENDED
} trksession_event_e;

Data:

TRKSESSION_EVENT_CREATED

A tracksession has been created

TRKSESSION_EVENT_DESTROYED

A tracksession has been destroyed

TRKSESSION_EVENT_APPENDED

A tracksession has been appended with additional tracks

Library:

mmplayerclient

Description:

Tracksession event types. For MMP_EVENT_TRACKSESSION events, the event

information returned to the client includes an mmp_event_trksession structure

with its type field set to one the TRKSESSION_EVENT_* values.

Data types in events.h

Data types defined in event.h for storing event information delivered to clients.

mmp_event

The mm-player event information.

Synopsis:

#include <mmplayer/event.h>

typedef struct mmp_event {
 mmp_event_type_e type;
 repeat_e repeat;

Copyright © 2014, QNX Software Systems Limited 81

Event interface

 shuffle_e shuffle;
 status_e status;
 float rate;
 union mmp_event_details details;
 const strm_dict_t *data;
 const char *objname;
 void *usrdata;
} mmp_event_t;

Data:

mmp_event_type_e type

Event type

repeat_e repeat

The player's repeat mode

shuffle_e shuffle

The player's shuffle mode

status_e status

The player's status

float rate

Playback rate

union mmp_event::mmp_event_details details

Additional details that vary by event type

const strm_dict_t *data

The set of mm-player properties reported by the event, stored in a dictionary

object. This field is NULL when no set of properties exists; for example, if

a media source has just been connected and no information has been read

yet.

const char *objname

The name of the internal mm-player object associated with this event

void *usrdata

The user data associated with the dictionary; this field is always NULL

because it's currently unused

Library:

mmplayerclient

82 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

Description:

The mmp_event_t structure is returned by mmp_event_get() (p. 86) and stores

information on the latest event. For all events, the structure contains the event type

and the latest player state information (e.g., repeat mode, playback status). For all

event types except MMP_EVENT_NONE and MMP_EVENT_OTHER, the structure contains

additional, type-specific information in the details and data fields. For instance, for

MMP_EVENT_MEDIASOURCE events, each of these fields stores the type of the media

source event (e.g., a media source connection or a disconnection) and information on

the media source affected by the event.

mmp_event::details
Type-specific mm-player event details.

Synopsis:

#include <mmplayer/event.h>

union mmp_event_details {

 struct mmp_event_state {
 status_e oldstatus;
 float oldrate;
 repeat_e oldrepeat;
 shuffle_e oldshuffle;
 } state;

 struct mmp_event_trksession {
 trksession_event_e type;
 int length;
 uint64_t tsid;
 } trksession;

 struct mmp_event_error {
 ms_error_e type;
 } error;

 struct mmp_event_track {
 int index;
 uint64_t tsid;
 mmp_ms_node_t *media_node;
 mmp_ms_node_metadata_t *metadata;
 } track;

 struct mmp_event_trkpos {
 int position;
 } trkpos;

 struct mmp_event_mediasource {
 ms_event_e type;
 mmp_ms_t *mediasource;
 } mediasource_info;
} details;

Data:

state

Copyright © 2014, QNX Software Systems Limited 83

Event interface

Used when mmp_event.type is MMP_EVENT_STATE.

The mmp_event_state structure has these members:

status_e oldstatus

The player's status before the event

float oldrate

The playback rate (speed) before the event

repeat_e oldrepeat

The player's repeat mode before the event

shuffle_e oldshuffle

The player's shuffle mode before the event

trksession

Used when mmp_event.type is MMP_EVENT_TRACKSESSION.

The mmp_event_trksession structure has these members:

trksession_event_e type

The tracksession event type

int length

The number of tracks within the tracksession

uint64_t tsid

The tracksession ID

error

Used when mmp_event.type is MMP_EVENT_ERROR.

The mmp_event_error structure has these members:

ms_error_e type

The severity level of the media source error

track

Used when mmp_event.type is MMP_EVENT_TRACK.

84 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

The mmp_event_track structure has these members:

int index

The track's position within the tracksession

uint64_t tsid

The ID of the associated tracksession

mmp_ms_node_t *media_node

A reference to the structure that describes the media node

associated with the track

mmp_ms_node_metadata_t *metadata

A reference to the structure that stores the track's metadata

trkpos

Used when mmp_event.type is MMP_EVENT_TRACKPOSITION.

The mmp_event_trkpos structure has these members:

int position

The track's new position in the tracksession

mediasource_info

Used when mmp_event.type is MMP_EVENT_MEDIASOURCE.

The mmp_event_mediasource structure has these members:

ms_event_e type

The media source event type

mmp_ms_t *mediasource

A reference to the structure that describes the media source

Library:

mmplayerclient

Description:

Type-specific mm-player event details. Only one structure within the details field

can be defined at a time. The structure that's defined depends on the event type.

Copyright © 2014, QNX Software Systems Limited 85

Event interface

Applications must read the mmp_event.type field to learn the event type so they can

properly parse the contents of the details field.

mmp_event::data
The properties reported by the event, stored in dictionary format.

Description:

All the mm-player properties reported by the event, represented as a dictionary

object. This field provides an alternative mechanism for reading event properties.

For all event types, the names of the dictionary keys match the names of the equivalent

fields in the structure defined in mmr_event::details. The exception is any field with

a name consisting of multiple words, such as mediasource (found in the

mmp_event_mediasource structure when the event type is

MMP_EVENT_MEDIASOURCE). The equivalent dictionary key contains an underscore

(_) between the individual words (i.e., media_source is the correct key).

To look up values in a strm_dict_t dictionary object by key name, see the

strm_dict_find_value() function in the Multimedia Renderer Developer's Guide.

Functions in events.h

Functions defined in events.h for processing mm-player events.

mmp_event_get()

Get the next available event.

Synopsis:

#include <mmplayer/event.h>

const mmp_event_t* mmp_event_get(mmplayer_hdl_t *hdl)

Arguments:

hdl

A player handle

Library:

mmplayerclient

Description:

Get the next available event. This function returns an mmp_event_t (p. 81) structure

populated with the event details. Typically, you would call this function within an

event-processing loop, after calling mmp_event_wait() (p. 87).

86 Copyright © 2014, QNX Software Systems Limited

Multimedia Player API

The data in the returned structure is valid only until the next mmp_event_get() call.

If you want to keep the data longer, copy the mmp_event_t contents into other

program variables, cloning any strm_string_t fields within the structure.

If an event occurs, causing mmp_event_wait() to return, but the event's data

gets deleted by mm-player before you call mmp_event_get(), the latter

function will return the MMP_EVENT_NONE event. This event does not signify

an error but instead that the previous event is no longer available. Applications

must gracefully handle the MMP_EVENT_NONE event, preferrably by ignoring

it.

Returns:

A pointer to an event, or NULL on error

mmp_event_wait()

Wait until an event is available.

Synopsis:

#include <mmplayer/event.h>

int mmp_event_wait(mmplayer_hdl_t *hdl)

Arguments:

hdl

A player handle

Library:

mmplayerclient

Description:

Wait for an mm-player event. This function usually blocks until an event occurs, at

which point it unblocks and you can call mmp_event_get() (p. 86) to get the event

details.

Typically, you call mmp_event_wait() within an event-processing loop, right before you

call mmr_event_get().

Returns:

0 on success, or -1 on error

Copyright © 2014, QNX Software Systems Limited 87

Event interface

Index

A

AVRCP plugin 19

B

browsing and playback interface 38, 39, 47, 55
constants 38
data types 47
enumerations 39
functions 55

C

car.mediaplayer extension 10
configuration file 30
configuring Media Player Plugins (MPPs) 30
configuring playback settings 30

D

Digital Media Controller (DMC) 20
Digital Media Renderer (DMR) 20
Digital Media Server (DMS) 20
DLNA plugin 20

E

event interface 78, 81, 86
data types 81
enumerations 78
functions 86

H

HMI app communication with mm-player 10

I

iPod plugin 21

M

media nodes 15
Media Player Plugins (MPPs), See mm-player plugins
media sources 14
mm-detect status object 10
mm-player 9, 10, 11, 17, 28, 34, 35

architecture 10
browsing and playback engine 10
client layer 11
client library 10

mm-player (continued)
command line description 35
command line syntax 34
command options 34
entry in the SLM configuration file 28
information flow 10
layers 11
overview 9
plugin layer 11
plugins 17
prerequisites 28
server 10
server layer 11
supported media sources 9
workflow 28

mm-player API 37, 38, 78
browsing and playback functionality, See browsing and
playback interface
event-handling, See event interface
overview 37
sections 37

multimedia player, See mm-player
multimedia player API, See mm-player API

P

players 13
plugins 18, 19, 20, 21, 23

AVRCP 19
DLNA 20
iPod 21
POSIX 18
synceddb 23

POSIX plugin 18

R

restarting mm-player from an application 27

S

slm configuration file 28
SLM configuration file 28
starting mm-player during bootup with SLM 25
synceddb plugin 23
System Launch Monitor (SLM) service 25

T

Technical support 8
tracksessions 16
Typographical conventions 6

Copyright © 2014, QNX Software Systems Limited 89

Multimedia Player Developer's Guide

90 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Multimedia Player Overview
	Architecture
	Layers of mm-player

	Players
	Media sources
	Media nodes
	Tracksessions

	Media Player Plugins
	POSIX plugin
	AVRCP Plugin
	DLNA Plugin
	iPod Plugin
	synceddb Plugin

	Running mm-player
	Restarting mm-player
	SLM specification of mm-player
	Configuration file
	Command line for mm-player

	Multimedia Player API
	Media browsing and playback interface
	Constants in types.h
	Definitions in types.h

	Enumerations in types.h
	ms_browse_capability_e
	ms_node_type_e
	ms_playback_capability_e
	ms_status_e
	ms_type_e
	repeat_e
	shuffle_e
	status_e

	Data types in types.h
	mmp_ms_t
	mmp_ms_node_t
	mmp_ms_node_metadata_t
	mmp_state_t
	mmp_track_info_t
	mmp_trksession_info_t

	Functions in mmplayerclient.h
	mm_player_browse()
	mm_player_close()
	mm_player_connect()
	mm_player_create_trksession()
	mm_player_destroy_trksession()
	mm_player_disconnect()
	mm_player_get_current_state()
	mm_player_get_current_track_info()
	mm_player_get_current_track_position()
	mm_player_get_current_trksession_info()
	mm_player_get_extended_metadata()
	mm_player_get_media_sources()
	mm_player_get_metadata()
	mm_player_get_trksession_tracks()
	mm_player_jump()
	mm_player_next()
	mm_player_open()
	mm_player_pause()
	mm_player_play()
	mm_player_previous()
	mm_player_repeat()
	mm_player_search()
	mm_player_seek()
	mm_player_set_playback_rate()
	mm_player_shuffle()
	mm_player_stop()

	Event interface
	Enumerations in events.h and types.h
	ms_error_e
	ms_event_e
	mmp_event_type_e
	trksession_event_e

	Data types in events.h
	mmp_event
	mmp_event::details
	mmp_event::data

	Functions in events.h
	mmp_event_get()
	mmp_event_wait()

	Index

