
QNX CAR™ Platform for Infotainment 2.1

QNX CAR™ Platform for Infotainment 2.1

PPS Objects Reference

©2012–2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Monday, October 6, 2014

Table of Contents

About This Reference ...7
Typographical conventions ...13

Technical support ...15

Chapter 1: Overview of the PPS Service ..17

Chapter 2: Setting Up Your Own Objects ..25

Chapter 3: PPS Objects Reference Pages ...33

/pps/accounts/ ..34

/pps/applications/mediaplayer ..35

/pps/applications/weathernetwork/ ..37

/pps/qnx/dbnotify/dbs ..38

/pps/qnx/device/<device> ...39

/pps/qnx/device/<device>_ctrl ..42

/pps/qnx/driver/<pid> ..45

/pps/qnx/mount/<device> ...47

/pps/qnx/qdb/config/<dbname> ..50

/pps/qnx/qdb/status/<dbname> ..52

/pps/qnxcar/hvac ...53

/pps/qnxcar/locale ...55

/pps/qnxcar/navigation/control ..56

/pps/qnxcar/navigation/geolocation ..60

/pps/qnxcar/navigation/options ...61

/pps/qnxcar/navigation/status ...62

/pps/qnxcar/profile/theme ..64

/pps/qnxcar/profile/user ...65

/pps/qnxcar/sensors ...66

/pps/qnxcar/system/info ...68

/pps/qnxcar/system/settings ...69

/pps/qnxcar/themes ...71

/pps/radio/command ..73

/pps/radio/status ...74

/pps/radio/ti_control ..75

/pps/radio/ti_rds ..76

/pps/radio/ti_status ...77

/pps/radio/tuners ...78

/pps/servicedata/schedule ..79

/pps/services/app-launcher ...80

/pps/services/appinst-mgr/control ..82

PPS Objects Reference

/pps/services/appinst-mgr/status ...84

/pps/services/asr/control ...86

/pps/services/audio/audio_router_control ...89

/pps/services/audio/audio_router_status ...95

/pps/services/audio/control ...97

/pps/services/audio/devices/ ...104

/pps/services/audio/mixer ...108

/pps/services/audio/status ..109

/pps/services/audio/types/ ..111

/pps/services/audio/voice_status ...113

/pps/services/bluetooth/control ...114

/pps/services/bluetooth/handsfree/control ..118

/pps/services/bluetooth/handsfree/status ..119

/pps/services/bluetooth/messages/control ...121

/pps/services/bluetooth/messages/notification ..123

/pps/services/bluetooth/messages/status ..124

/pps/services/bluetooth/paired_devices/<mac_addr> ...125

/pps/services/bluetooth/phonebook/control ...126

/pps/services/bluetooth/phonebook/status ..127

/pps/services/bluetooth/remote_devices/<mac_addr> ..128

/pps/services/bluetooth/services ..129

/pps/services/bluetooth/settings ..130

/pps/services/bluetooth/spp/spp ..131

/pps/services/bluetooth/status ..134

/pps/services/bootmgr/ ...136

/pps/services/clock/control ...138

/pps/services/clock/status ...140

/pps/services/gears/control ...141

/pps/services/gears/status ...143

/pps/services/geolocation/control ..144

/pps/services/geolocation/status ..146

/pps/services/hmi-notification/control ..147

/pps/services/hmi-notification/Messaging ...150

/pps/services/hmi-notification/Status ...151

/pps/services/launcher/control ..152

/pps/services/mirrorlink/applications ...154

/pps/services/mirrorlink/entities ..156

/pps/services/mirrorlink/rtp ...157

/pps/services/mm-control/control ..158

/pps/services/mm-control/<playername>/status ..168

/pps/services/mm-detect/status ..170

/pps/services/multimedia/mediacontroller/control ...172

/pps/services/multimedia/mediaplayer/control ..177

/pps/services/multimedia/mediaplayer/phone ...183

/pps/services/multimedia/mediaplayer/status ..187

Table of Contents

/pps/services/multimedia/renderer/component/ ...190

/pps/services/multimedia/renderer/context/<contextname> ..191

/pps/services/multimedia/renderer/context/<contextname>/input ..192

/pps/services/multimedia/renderer/context/<contextname>/metadata193

/pps/services/multimedia/renderer/context/<contextname>/output#194

/pps/services/multimedia/renderer/context/<contextname>/p# ...195

/pps/services/multimedia/renderer/context/<contextname>/param196

/pps/services/multimedia/renderer/context/<contextname>/play-queue198

/pps/services/multimedia/renderer/context/<contextname>/q# ...199

/pps/services/multimedia/renderer/context/<contextname>/state ..200

/pps/services/multimedia/renderer/context/<contextname>/status202

/pps/services/multimedia/renderer/control ..203

/pps/services/networking/all/interfaces/<interface> ...206

/pps/services/networking/all/proxy ...208

/pps/services/networking/all/status_public ..209

/pps/services/networking/control ...211

/pps/services/networking/proxy ..214

/pps/services/networking/status ..215

/pps/services/networking/status_public ..216

/pps/services/tethering/control ..217

/pps/services/tethering/status ...220

/pps/services/update/control ...222

/pps/services/update/settings ..224

/pps/services/update/status ..225

/pps/services/update/target ..227

/pps/services/vnc/discovery/ ..228

/pps/services/wifi/control ..229

/pps/services/wifi/status ...237

/pps/system/keyboard/control ...240

/pps/system/keyboard/status ...241

/pps/system/navigator/appdata ..242

/pps/system/navigator/applications/applications ..243

/pps/system/navigator/command ...245

/pps/system/navigator/status/mobile_hotspot ..247

/pps/system/navigator/status/tethering ...248

/pps/system/navigator/windowgroup ..249

/pps/system/navigator/windowparams ..250

Chapter 4: List of Objects Used Internally ..251

PPS Objects Reference

Table of Contents

About This Reference

The PPS Objects Reference describes each PPS object supplied with the QNX CAR

platform. The following table may help you find information quickly:

Go to:To find out about:

Overview of the PPS ServiceFormat of PPS objects

Setting Up Your Own ObjectsCustom objects

PPS Objects Reference PagesDetails of each PPS object

List of Objects Used InternallyObjects used internally by system

processes

For more information about the PPS service itself, see:

• The “PPS” chapter in the QNX Neutrino System Architecture

guide

• Persistent Publish/Subscribe Developer's Guide

Using this reference

In this reference, each PPS object in the system has its own page. The title of each

page is the object's filename (e.g., /pps/services/bluetooth/control). Pages

are listed in alphabetical order.

The following groupings may help you locate one or more related PPS objects:

App Launcher

• /pps/services/app-launcher

• /pps/services/launcher/control

Audio

• /pps/services/audio/audio_router_control

• /pps/services/audio/audio_router_status

• /pps/services/audio/control

• /pps/services/audio/devices/

• /pps/services/audio/mixer

• /pps/services/audio/status

• /pps/services/audio/types/

© 2014, QNX Software Systems Limited 7

• /pps/services/audio/voice_status

Authorization

• /pps/accounts

Bluetooth

• /pps/services/bluetooth/control

• /pps/services/bluetooth/handsfree/control

• /pps/services/bluetooth/handsfree/status

• /pps/services/bluetooth/messages/control

• /pps/services/bluetooth/messages/notification

• /pps/services/bluetooth/messages/status

• /pps/services/bluetooth/paired_devices/<mac_addr>

• /pps/services/bluetooth/phonebook/control

• /pps/services/bluetooth/phonebook/status

• /pps/services/bluetooth/remote_devices/<mac_addr>

• /pps/services/bluetooth/services

• /pps/services/bluetooth/settings

• /pps/services/bluetooth/spp/spp

• /pps/services/bluetooth/status

Demo applications

• /pps/applications/weathernetwork/

• /pps/services/gears/control

• /pps/services/gears/status

Devices

• /pps/qnx/device/<device>

• /pps/qnx/device/<device>_ctrl

• /pps/qnx/driver/<pid>

• /pps/qnx/mount/<device>

• /pps/services/clock/control

• /pps/services/clock/status

Geolocation

8 © 2014, QNX Software Systems Limited

About This Reference

• /pps/services/geolocation/control

• /pps/services/geolocation/status

Keyboard

• /pps/system/keyboard/control

• /pps/system/keyboard/status

MirrorLink

• /pps/services/mirrorlink/applications

• /pps/services/mirrorlink/entities

• /pps/services/mirrorlink/rtp

• /pps/services/vnc/discovery/

Multimedia

• /pps/applications/mediaplayer

• /pps/services/mm-control/control

• /pps/services/mm-control/<playername>/status

• /pps/services/multimedia/renderer/component

• /pps/services/multimedia/renderer/context/<contextname>/

• /pps/services/multimedia/renderer/context/<contextname>/metadata

• /pps/services/multimedia/renderer/context/<contextname>/output#

• /pps/services/multimedia/renderer/context/<contextname>/p#

• /pps/services/multimedia/renderer/context/<contextname>/param

• /pps/services/multimedia/renderer/context/<contextname>/play-queue

• /pps/services/multimedia/renderer/context/<contextname>/q#

• /pps/services/multimedia/renderer/context/<contextname>/status

• /pps/services/multimedia/renderer/context/<contextname>/state

• /pps/services/multimedia/renderer/control

Navigation (turn-by-turn)

• /pps/qnxcar/navigation/control

• /pps/qnxcar/navigation/geolocation

• /pps/qnxcar/navigation/options

• /pps/qnxcar/navigation/status

© 2014, QNX Software Systems Limited 9

Navigator (Applications Window Manager)

• /pps/system/navigator/appdata

• /pps/system/navigator/applications/applications

• /pps/system/navigator/command

• /pps/system/navigator/windowgroup

• /pps/system/navigator/windowparams

Networking

• /pps/services/networking/all/interfaces/<interface>

• /pps/services/networking/all/proxy

• /pps/services/networking/all/status_public

• /pps/services/networking/control

• /pps/services/networking/proxy

• /pps/services/networking/status

• /pps/services/networking/status_public

Now Playing

• /pps/services/multimedia/mediacontroller/control

• /pps/services/multimedia/mediaplayer/control

• /pps/services/multimedia/mediaplayer/phone

• /pps/services/multimedia/mediaplayer/status

Profiles

• /pps/qnxcar/profile/theme

• /pps/qnxcar/profile/user

• /pps/qnxcar/themes

QDB

• /pps/qnx/dbnotify/dbs

• /pps/qnx/qdb/config/<dbname>

• /pps/qnx/qdb/status/<dbname>

Radio

• /pps/radio/command

10 © 2014, QNX Software Systems Limited

About This Reference

• /pps/radio/status

• /pps/radio/ti_control

• /pps/radio/ti_rds

• /pps/radio/ti_status

• /pps/radio/tuners

Software Update

• /pps/services/update/control

• /pps/services/update/settings

• /pps/services/update/status

• /pps/services/update/target

Speech

• /pps/services/asr/control

System

• /pps/qnxcar/system/info

• /pps/services/appinst-mgr/control

• /pps/services/appinst-mgr/status

• /pps/services/bootmgr/

• /pps/services/hmi-notification/control

• /pps/services/hmi-notification/Messaging

• /pps/services/hmi-notification/Status

Vehicle settings

• /pps/qnxcar/hvac

• /pps/qnxcar/locale

• /pps/qnxcar/sensors

• /pps/qnxcar/system/settings

Wi-Fi

• /pps/services/tethering/control

• /pps/services/tethering/status

• /pps/services/wifi/control

• /pps/services/wifi/status

© 2014, QNX Software Systems Limited 11

• /pps/system/navigator/status/mobile_hotspot

• /pps/system/navigator/status/tethering

12 © 2014, QNX Software Systems Limited

About This Reference

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

© 2014, QNX Software Systems Limited 13

Typographical conventions

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

14 © 2014, QNX Software Systems Limited

About This Reference

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

© 2014, QNX Software Systems Limited 15

Technical support

http://www.qnx.com

Chapter 1
Overview of the PPS Service

The services layer of the QNX CAR Platform for Infotainment is built on the QNX

Persistent Publish/Subscribe (PPS) service, a simple filesystem-based facility that

provides persistence across reboots. Small and extensible, PPS allows interfacing from

almost any higher-level language that can support open, read, write, and close

operations on files.

For a more in-depth description of PPS, see the Persistent Publish/Subscribe

Developer's Guide.

Key concepts

Objects

Objects are implemented as files under the /pps directory. Your applications

use objects to communicate with each other. There can be many objects in

the system, but never more than one instance of the same object.

Applications often use a control object for sending commands and a

corresponding status object for publishing responses.

Applications can read a single special object (.all) to get notifications of

changes to all the objects in a directory. Apps can use the special .notify

object to get changes for a certain set of objects.

Attributes

Objects contain attributes or properties that apps can modify. Each attribute

appears on a single line in the object file.

Publishers

As publishers, apps can modify objects and their attributes so that other

interested apps can receive updates. Publishing is asynchronous—apps don't

have to wait for the publisher.

To publish to an object, the publisher calls open() for that object and then

write() to modify it. Multiple publishers can publish to the same object.

When a publisher changes an object, the PPS service informs all subscribers

of the change.

Subscribers

© 2014, QNX Software Systems Limited 17

As subscribers, apps receive updates for objects and attributes that publishers

have modified. To get updates for an object, a subscriber calls open() for

that object and then read() to query it. Note that reads are nonblocking by

default. Multiple subscribers can subscribe to the same object.

The same app can be a publisher, a subscriber, or

both.

Full subscription mode

In full mode (the default), the subscriber gets a “snapshot” of the entire

object as it exists when the request is made. Note that if a publisher changes

the object many times, the subscriber may miss some of the changes. Full

mode is useful, for instance, for high-bandwidth objects that have numerous

and frequent changes.

Delta subscription mode

In delta mode, the subscriber gets only the changes made to an object. On

first read, the subscriber will get all the object's attributes (because the

subscriber knows nothing yet about the object's state); subsequent reads

will return only the changes since the previous read. Delta mode is useful,

for instance, when you want to receive all the warnings or error messages

that might be published to an object.

Persistence

PPS maintains objects in memory while it's running and can save them to

persistent storage (either at shutdown or on demand) on any reliable

filesystem, such as flash or hard disk. Objects can be restored immediately

on startup or on first access.

Server objects

A publisher can designate itself as a server for a particular object. When an

app writes to a server object, only the publisher will get the message. PPS

appends a unique identifier to the object name so that the publisher knows

which client app is sending the message. For details, see “Server objects”

in the Persistent Publish/Subscribe Developer's Guide.

Command-line options for the PPS service

pps [-A file][-b][-C][-d backlog][-l argument][-m mount][-p dir]
 [-P prio][-t period][-T tolerance][-U uid:gid][-v]

-A file

18 © 2014, QNX Software Systems Limited

Overview of the PPS Service

Set path to ACL configuration file. For details, see “Access Control List

configuration file” in the Persistent Publish/Subscribe Developer's Guide.

-b

Don't run in the background (useful for debugging).

-C

Convert between -U and non-U persistence formats.

-d backlog

Set size of delta backlog (default is 256 kilobytes).

-l argument

Set load behavior:

• 0 — load directory names and objects on demand (default).

• 1 — load directories at startup, but objects on demand.

• 2 — load directories and objects at startup.

-m mount

Specify the mountpoint for PPS (default is /pps).

-p dir

Specify the directory for persistent storage (default is /var/pps).

-P prio

Set the priority of the persistence thread.

-t period

Set the time period (in milliseconds) for writing to persistent storage (default

is off).

-T tolerance

Set the tolerance (in milliseconds) for writing to persistent storage (default

is off).

-U uid:gid

Downgrade from root to the specified UID and GID.

-v

Run in verbose mode (use multiple v's to increase verbosity).

© 2014, QNX Software Systems Limited 19

You can also use SIGUSR1 to increase

verbosity.

Pathname options

PPS lets you use various pathname options when opening objects. An option must

follow a question mark (?). Use a comma to separate multiple options. For example,

opening the playlist object like this:

/pps/media/playlist?wait,delta

will open the object with the wait and delta options.

backlog

Total delta size to keep before flushing this OCB (Open Control Block).

cred

Output the credentials for this object.

critical

Designate the publisher as critical to the object.

crypt

Set the crypto domain for this object.

delta

Open the object in delta mode.

deltadir

Return the names of all objects in the .all object in a directory.

f=<attrspec>{+<attrspec>}...

Filter notifications based on changes to the names and/or values of specified

attributes, where attrspec can be either an attribute's name or an expression

specifying an attribute's value. Here's the syntax for a value expression:

<attr_name><operator><value>

• Operators for integers (which must be in the range of a long long) are:

<, <=, >, >=, =, ==, and !=

• Operators for strings are: =, ==, and != (you can use + if escaped with

\)

flow

20 © 2014, QNX Software Systems Limited

Overview of the PPS Service

Treat the object as a server object, with purge and overflow notifications.

hiwater

Flow high-water mark as percent of client backlog. If this tag isn't specified,

the default (100) is used.

nopersist

Make the object nonpersistent.

notify=id:value

Associate the object with the notification group specified by id:value, where:

• id is the string returned by the first read from the .notify object

• value is any arbitrary string

opens

Update an _opens::rd,wr attribute when the open count changes.

reflect

Reflect attribute changes made on this object back to itself.

server

Designate the publisher as a server for the object.

verbose

Set the verbosity level for this object.

wait

Clear the O_NONBLOCK flag so that read() calls will wait until the object

changes or a delta appears.

Object format

Objects appear as files and directories in the PPS filesystem. For example, to view

the contents of an object called AA:BA:19:B2:AA:70 (in this case the filename is

a device's MAC address) under the

/pps/services/bluetooth/remote_devices/ directory, you can simply use

cat at the command line:

cat /pps/services/bluetooth/remote_devices/AA:BA:19:B2:AA:70

The object's contents might look like this:

@AA:BA:19:B2:AA:70
[n]cod::0x007a020c

© 2014, QNX Software Systems Limited 21

[n]name::My mobile
[n]paired:b:false
[n]rssi::0x00

The first line always begins with an at sign (@), immediately followed by the object's

name. Each line after that can begin with a qualifier, followed by an attribute name,

followed by its encoding, followed by its value. For example, this line:

[n]paired:b:false

means that the nonpersistence qualifier ([n]) has been set and that the attribute

paired has the Boolean value of false.

For details on encodings and on qualifiers, see these sections in the Persistent

Publish/Subscribe Developer's Guide:

• “ Attribute syntax”

• “Object and attribute qualifiers”

Format for messages to server objects

msg::command_string\nid::ID_number\ndat:json:{JSON_data}

where:

command_string

Name of the command being sent to the object.

ID_number

Any ID that identifies this instance of the message. The server always reflects

the ID back in the response.

JSON_data

The dat is usually JSON encoded, because it may contain more than a

simple string.

Format for responses

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\ndat:json:{JSON_data}\nerr::er

rno_number\nerrstr::error_description

22 © 2014, QNX Software Systems Limited

Overview of the PPS Service

Changing the directory for persistent storage

The root PPS object tree (/pps by default) may look something like this:

pwd
/pps
ls -1F
accounts/
applications/
qnx/
qnxcar/
services/
system/
#

PPS populates its root object tree from the persistence tree (/var/pps by default),

where the objects and attributes that you want to persist are stored.

To specify a different directory for persistent storage:

1. Create your own persistence directory (e.g., mkdir /myobjects).

2. Start the PPS service from a different mountpoint (e.g., /fs/pps) and specify

your new persistence directory:

pps -m /fs/pps -p /myobjects

You may want to run PPS with the -t option, which lets you specify the time

period (in milliseconds) that the service will use to write to persistent storage.

Without the -t, you won't see any changes in your persistence directory until

PPS exits.

© 2014, QNX Software Systems Limited 23

Chapter 2
Setting Up Your Own Objects

Overview

Creating a PPS object is as easy as making an open() call on a file under /pps with

the O_CREAT flag, which will create the PPS object if it doesn't already exist. Opening,

closing, reading from, and writing to PPS objects will use the exact same mechanisms

as opening, closing, reading from, and writing to files on the filesystem. As shown in

“Overview of the PPS Service” in this guide, as long as the data you write conforms

to the format PPS expects, you can write anything to your PPS objects.

We recommend that you use the libpps API for encoding/decoding PPS data.

These library functions make handling data easier, faster, and more reliable

than using standard libc functions. For more information, see “PPS API

reference” in the Persistent Publish/Subscribe Developer's Guide.

Guidelines

You could design your program to interact with PPS objects in any variety of ways.

Your design will include decisions such as whether to read objects in delta mode, how

frequently to read, what data to write, whether or not you receive notifications in the

form of pulses, and so on. Even more decisions come into play if you're designing a

system that communicates through PPS using server objects.

Here are the basic steps for setting up your own PPS objects, whether you're designing

a program that interacts with PPS objects or adding that capability to an existing

program:

1. Make sure your program includes the <fcntl.h> and <sys/pps.h> header files.

2. Open the PPS object as if it were a file. For example, to make an open call on an

existing object:

open("/pps/myobject", O_RDWR);

This will open myobject with read and write privileges.

If you're creating a PPS object that doesn't already exist, include the O_CREAT

flag:

open("/pps/an-object", O_RDWR | O_CREAT);

Here we're including both O_RDWR and O_CREAT in one field with the bitwise OR

operation.

© 2014, QNX Software Systems Limited 25

3. If you need to make a new directory, you can use the mkdir() function. For example,

to create a directory called myservice under /pps/services/:

mkdir("/pps/services/myservice", S_IWUSR | S_IWGRP | S_IWOTH |

S_IRUSR | S_IRGRP | S_IROTH);

This will make your new directory with read and write privileges for all users.

4. Now you probably want to perform a read or write. Remember to use the

pps_encoder_*() and pps_decoder_*() functions for handling your data.

5. Eventually you'll need to close the PPS object before your program terminates.

Interacting with your PPS objects

The basic “building blocks” you'll use for interacting with PPS objects are relatively

few:

• open()

• read()

• write()

• close()

• pps_encoder_*()

• pps_decoder_*()

• delta mode

• wait mode

But you'll find many possibilities of combining these together, combining them with

synchronization techniques (mutual exclusion locks, condition variables, etc.), and

employing various ways to perform the same tasks. Again, see the Persistent

Publish/Subscribe Developer's Guide for guidance.

How you'll use mutexes and other synchronization tools is up to you and depends on

the needs of your program. As you'll see in the “gears” example below, mutexes are

used to ensure coherency between two parallel threads: one is reading new data from

PPS while the other is using existing data to draw the gears. In this case, mutexes are

used so that one thread doesn't try to change attributes that the other thread is trying

to use. Naturally, the synchronization needs of your programs may be different.

OpenGL “gears” example

The QNX CAR platform includes the popular OpenGL ES 2.0 “gears” demo, which

runs as a sample app in the HMI. Besides providing a useful example of a 3D graphics

program on an embedded system, our version of the gears demo also supports PPS.

The source code is available, so you can use it as a reference for building your own

PPS objects.

We have modified the gears program to create two PPS objects:

26 © 2014, QNX Software Systems Limited

Setting Up Your Own Objects

• /pps/services/gears/control

• /pps/services/gears/status

The control object lets you change the size of the window, the speed of the gears, and

other properties, while the status object publishes the animation frame rate.

SVN repository for demo source

The source code for the gears demo projects is available here:

http://community.qnx.com/svn/repos/qnxcar2_platform/2.0/src/sample/

Under the sample directory you'll find three subdirectories for different versions of

the gears program:

DescriptionDirectory

The classic OpenGL gears demo for embedded

systems. The demo draws the animated gears on

the screen and prints the frame rate.

gles2-gears

The same gears demo, but modified for PPS. The

program creates and uses the

gles2-gears-pps

/pps/services/gears/control and

/pps/services/gears/status objects.

The same PPS version of the demo, but with

HTML5 support. The HTML5 elements show how

gles2-gears-pps-html

your HMI can write to the control object and see

the changes on the screen.

Note that the gles2-gears-pps-html program contains a C-language part as well

as a WebWorks part, which is located here:

http://community.qnx.com/svn/repos/qnxcar2_platform/2.0/html5/webworks/apps/HTMLGears/

The gears.h header for gles2-gears-pps

Let's start with gears.h, a header file for the gles2-gears-pps demo. We set up

this header for these key operations:

1. Include <sys/pps.h> to provide access to functions in the libpps library.

2. Define PPS_DIR for the directory for the status and control objects

(/pps/services/gears/).

3. Define PPS_STATUS_PATH for the status object

(/pps/services/gears/status). The path to the control object

(/pps/services/gears/control) is defined as a macro in the pps.c file.

Note that the file descriptors for the status and control objects are saved as global

© 2014, QNX Software Systems Limited 27

variables after the files are opened. The status object is opened in the pps_init()

function; the control object is opened in the ctrl_pps_monitor_thread() function.

4. Create a macro for writing to the status and control objects:

#define write_pps_buf(buf, strFmt, fd, val)\
 flushall();\
 sprintf(buf, strFmt, val);\
 write(fd, buf, strlen(buf));\
 flushall();

5. List the attributes used in the control object:

enum {
 PPS_GEARS_ATTR_OBJNAME,
 PPS_GEARS_ATTR_INTERVAL,
 PPS_GEARS_ATTR_PAUSE,
 PPS_GEARS_ATTR_SCREEN_GROUP,
 PPS_GEARS_ATTR_ACTIVATED,
 PPS_GEARS_ATTR_X,
 PPS_GEARS_ATTR_Y,
 PPS_GEARS_ATTR_W,
 PPS_GEARS_ATTR_H,
 PPS_GEARS_ATTR_Z,
 PPS_GEARS_ATTR_LAST
}

6. Set up a mutex to coordinate access to the interval variable (for the swap interval):

pthread_mutex_t pps_mutex;

7. Set up condition variables:

//For waiting for valid screen group
 pthread_cond_t screenGroup_cond;

//For waiting to be activated
 pthread_cond_t activated_cond;

//For pause/unpause
 pthread_cond_t pause_cond;

8. Set up file handles:

int fd_pps_status;
int fd_pps_ctrl;

9. Set up these functions (implemented in pps.c) for access by other files:

// pps.c
extern void *ctrl_pps_monitor_thread(void * arg);
extern void pps_init(gears_t *gr);

28 © 2014, QNX Software Systems Limited

Setting Up Your Own Objects

The pps.c file for gles2-gears-pps

As mentioned previously, the pps.c file sets up the path to the control object:

#define PPS_CTRL_PATH "/pps/services/gears/control?wait,delta"

The pps.c file also sets up these functions:

pps_init()

Creates and opens the status object for publishing the frame rate. If the

object doesn't already exist, PPS creates it before the open() call returns.

The pps_init() function also spawns a thread to run the

ctrl_pps_monitor_thread() function.

ctrl_pps_monitor_thread()

Forever looping, this function opens the /pps/services/gears/control

object, reads from it, and changes the demo's global settings variables in

response to changes in the object. If the control object doesn't already exist,

PPS creates it before the open() call returns. Note that the control object is

opened with the ?wait and ?delta flags (together as ?wait,delta). This

is done so that the read() call will block until a change is made to the object

since the last read, thus returning only the attributes that have changed.

psparse()

A custom function to tokenize attributes read from a PPS object.

The libpps library includes a set of encoder/decoder functions,

so you won't need to write your own parsing functions. For details,

see “PPS encoding and decoding API” in the Persistent

Publish/Subscribe Developer's Guide.

The gles2-gears.c file for gles2-gears-pps

We modified the original gles2-gears.c file for PPS support as follows:

1. The main(int argc, char *argv[]) function calls the pps_init() function.

The main thread then loops over the functionality outlined in the following steps.

Note that this loop isn't strictly due to PPS (a draw loop is needed in any case).

2. The main thread waits for a window group to be set in the ctrl_pps_monitor_thread()

function with a value read from the control object.

3. The main thread attempts to join the window group. If this fails, it publishes a

value of "" (the empty string) for the screenGroup attribute in the control object.

© 2014, QNX Software Systems Limited 29

4. If the main thread detects that the pause variable is set to true (1), the thread

waits on a condvar until ctrl_pps_monitor_thread() signals and updates pause to

false.

5. The main thread continues to read global parameters that could have been changed

by ctrl_pps_monitor_thread() and then updates its own working variables based on

them. If the main thread encounters an error while assigning updated global

variables to its local copies, it will publish the attributes and values that it's using

(instead of the new values) to the control object.

6. The main thread then draws the gears (which has nothing to do with PPS).

7. The main thread swaps draw buffers. If there's an error, the thread publishes a

value of "" (the empty string) for screenGroup in the control object.

8. Finally, the main thread publishes the frame rate to the status object, using the

rate calculated from the last draw cycle.

HTMLGears

The HTMLGears app is the HTML5 version of our gears demo. HTMLGears includes

these JavaScript files:

• client.js—the client interface

• gears.js—the abstraction layer

• index.js—the extension interface

The gears.js file deals with the PPS activities of the HTMLGears demo. The code

is as follows:

var _pps = require("lib/pps/ppsUtils"),
 _gearsCtrlPPS;

/**
 * Exports are the publicly accessible functions
 */
module.exports = {

 init: function () {
 _gearsCtrlPPS = _pps.createObject();
 _gearsCtrlPPS.init();
 _gearsCtrlPPS.open("/pps/services/gears/control", JNEXT.PPS_WRONLY);
 },

 /**
 * Sets the parameters for the Gears application
 */
 setParams: function(args) {
 // otherwise uses application defaults
 _gearsCtrlPPS.write({x:args.x, y:args.y, w:args.w, h:args.h});

 // otherwise uses no screen group and appears fullscreen,
 // on top of all other windows
 if (typeof args.screenGroup != 'undefined') {
 _gearsCtrlPPS.write({screenGroup:args.screenGroup});
 } else {
 rc = false;
 }

30 © 2014, QNX Software Systems Limited

Setting Up Your Own Objects

 return rc;
 },

 /**
 * Writes the activation command to the pps object
 *
 */
 start: function() {
 _gearsCtrlPPS.write({activated:1});
 },

 /**
 * Writes the pause command to the pps object
 *
 */
 stop: function() {
 _gearsCtrlPPS.write({activated:0});
 }
};

Let's look at the key parts:

• The file links to the PPS utilities file ppsUtils.js (which resides under the

Framework/lib/ directory). This file defines the PPS-related functions for the

JavaScript interface.

• These lines create and initialize a JavaScript object that can then interact with the

PPS control object:

_gearsCtrlPPS = _pps.createObject();
_gearsCtrlPPS.init();

• The JavaScript object opens /pps/services/gears/control as a write-only

object.

• The setParams: function(args) function sets the window parameters (x

dimension, y dimension, width, height, and screenGroup). When the HTMLGears

app runs, the Window Group field in the display will show the screenGroup value

(e.g., 1-2412607-BlackBerry-window-group).

• These lines:

_gearsCtrlPPS.write({activated:1});
_gearsCtrlPPS.write({activated:0});

will write the values for the activated attribute to the PPS control object. In the

HTMLGears app, the Start and Stop buttons reflect the activated:n:1 and ac

tivated:n:0 values shown in the control object. Here's a sample control object:

cat /pps/services/gears/control
@control
activated:n:1
h:n:395
screenGroup::1-2412607-BlackBerry-window-group
w:n:800
x:n:0

© 2014, QNX Software Systems Limited 31

y:n:0
#

Here's the basic pattern for creating a PPS object in JavaScript:

this.applicationPPS = new JNEXT.PPS();
this.applicationPPS.init();
this.applicationPPS.open(APPLICATION_PPS, "4");

32 © 2014, QNX Software Systems Limited

Setting Up Your Own Objects

Chapter 3
PPS Objects Reference Pages

PPS objects in alphabetical order

Each PPS object has its own reference page. The title of each page is the

object's filename (e.g., /pps/qnxcar/hvac/).

© 2014, QNX Software Systems Limited 33

/pps/accounts/

Directory that third-party applications use as their sandbox

This directory serves as a sandbox for third-party applications. When an app

is launched, PPS will create these subdirectories:

• /pps/accounts/1000/vendor

• /pps/accounts/1000-corp/vendor

34 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/applications/mediaplayer

Object to control multimedia playback

Publishers

Any app

Subscribers

Media Player

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Overview

You can control media playback from PPS objects by using the

/pps/applications/mediaplayer object. This will be the entry point for voice

control, external physical buttons (e.g., on the steering wheel), or other means to

remotely control the mediaplayer.

Request format

Commands sent to the /pps/applications/mediaplayer object are of the form:

req:json:{"id":ID_number, "cmd":"command_string"}

The ID_number is a unique identifier that will be reflected in the response from the

PPS service to your request. You can set the ID to any number you wish.

Commands

The multimedia app must be running for these commands to

work.

req:json:{"id":1, "cmd":"stop"}

req:json:{"id":1, "cmd":"pause"}

req:json:{"id":1, "cmd":"next"}

req:json:{"id":1, "cmd":"prev"}

req:json:{"id":1, "cmd":"play"}

req:json:{"id":1, "cmd":"play", "data": {"type":"fid", "id":1}}

© 2014, QNX Software Systems Limited 35

/pps/applications/mediaplayer

req:json:{"id":1, "cmd":"play", "data": {"type":"artist", "id":1}}

req:json:{"id":1, "cmd":"play", "data": {"type":"album", "id":1}}

The data-level ID field can be the fid, artist_id, or album_id from the mmlibrary.db

database. You can obtain these by using the queries in the MMLibrary class included

with the mediaplayer app.

Examples

Stop the currently selected song:

echo 'req:json:{"id":1, "cmd":"stop"}' >> /pps/applications/medi

aplayer

Play the next song in the list:

echo 'req:json:{"id":1, "cmd":"next"}' >> /pps/applications/medi

aplayer

36 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/applications/weathernetwork/

Directory for The Weather Network (TWN) application

This directory contains a sample object (demo-commands) for your reference.

Publishers

TWN

Subscribers

Any app

Sample demo-commands object

DescriptionData typeAttribute

Current direction (0 - 360o)StringdrivingDirection

LatitudeStringlat

LongitudeStringlong

Examples

Change the location to New York City:

echo lat::40.71 >> /pps/applications/weathernetwork/demo-commands

echo long::-74.00 >> /pps/applications/weathernetwork/demo-com

mands

© 2014, QNX Software Systems Limited 37

/pps/applications/weathernetwork/

/pps/qnx/dbnotify/dbs

Object for media database notification

Publishers

QDB

Subscribers

Any app

Overview

This object is used for database change notifications (e.g., artwork sync). For example,

when a new song is selected, an artwork sync component wakes up and fetches the

appropriate artwork for the selected song.

Here's a sample object:

pwd
/pps/qnx/dbnotify
ls -a
dbs
cat dbs
@dbs
[n]db_mme::1
#

38 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/qnx/device/<device>

Directory of status objects for devices attached to the head unit

Publishers

Device publishers (e.g., usblauncher)

For more information about all the device publishers and how they

interact with PPS, see the Device Publishers Developer's Guide.

Subscribers

Any app

Overview

When USB sticks are connected to the computer, PPS objects appear under the

/pps/qnx/device/ directory to provide status information and control. For USB

devices, object names are of the form:

usb-bus_number.device_number

If usblauncher is called with the -S option, then the object name will also

include the stackno attribute before the bus_number (e.g., usb-0.0.3).

For device control objects, see /pps/qnx/device/<device>_ctrl.

Sample USB object

[n]@usb-0.0.3
bus::USB
busno::0x00
configuration::1
configurations::1
device_class::0xff
device_protocol::0x00
device_subclass::0xff
devno::0x03
drivers_matched::1
drivers_running::1
manufacturer::D-Link Corporation
max_packet_size0::64
product::DUB-E100
product_id::0x3c05
serial_number::000001
stackno::0
topology::(1,3),(0,0)
upstream_device_address::1

© 2014, QNX Software Systems Limited 39

/pps/qnx/device/<device>

upstream_host_controller::0
upstream_port::3
upstream_port_speed::High
vendor_id::0x2001

Attributes for USB objects

DescriptionAttribute

Type of bus (USB).bus

Bus number (in hex).busno

The device's USB configuration that is selected before launching suitable drivers.configuration

Number of configurations.configurations

Device class ID (in hex).device_class

Device protocol (present only if device_class is not 0x00).device_protocol

Device subclass ID (present only if device_class is not 0x00).device_subclass

Device number.devno

Number of drivers that match the device, based on rules in the usblauncher

configuration file (0 means the device is unsupported). For details about these rules, see

“Configuration files” in the Device Publishers Developer's Guide.

drivers_matched

Number of drivers launched for the device, which can be less than drivers_matched if

some drivers haven't been started yet or have terminated (possibly in error).

drivers_running

Device manufacturer.manufacturer

Maximum packet size.max_packet_size0

Product name (e.g., DUB-E100).product

OEM product ID (in hex).product_id

Product serial number.serial_number

The USB stack number as specified with the -S command-line option for usblauncher

(e.g., usblauncher -S 0).

stackno

Device status. Normally, this field is present only when the device is being reset; the

field is deleted when the reset completes. For “bad” devices (i.e., devices that io-usb

status

couldn't assign a device number), this field will contain: 48 (Not supported). When

an overcurrent condition is detected, this field will contain: -1 (Overcurrent).

Duplicates the immediate upstream device and port numbers (devno,upstream_port)

and also provides the upstream information for the hub chain. For example, topolo

topology

gy::(2,1),(0,2) indicates the device is attached to hub device 2 port 1, which in

turn is connected to root port 2.

40 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionAttribute

USB address where the device is connected. When connected to a host controller, this

is 0; when connected to a USB hub, this is the hub's device address.

upstream_device_address

Host controller number (usually 0). If you have multiple USB controllers, this is the

number of the controller that detected the device.

upstream_host_controller

Port number (hub port number or 0 if connected to host controller).upstream_port

Port speed:upstream_port_speed

• Full

• High

• Low

Manufacturer ID (in hex).vendor_id

© 2014, QNX Software Systems Limited 41

/pps/qnx/device/<device>

/pps/qnx/device/<device>_ctrl

Control object for devices

Publishers

Any app

Subscribers

Device publishers (e.g., usblauncher)

For more information about all the device publishers and how they

interact with PPS, see the Device Publishers Developer's Guide.

Overview

When you start usblauncher, the following PPS object is created:

/pps/qnx/device/usb_ctrl

This object allows apps to perform actions on the USB hardware. Note that this type

of object is known as a server object, a special PPS object designed for point-to-point

communication between a server and one or more clients. For details, see “Server

objects” in the Persistent Publish/Subscribe Developer's Guide.

The control object's name also includes the stackno if the usblauncher

service is started with the -S option (which allows for multiple server objects,

one for each instance of usblauncher). For example, if you issue the

following command:

usblauncher –S 1

the USB service creates a PPS object named

/pps/qnx/device/usb-1_ctrl.

Commands for USB control object

Applications can send the following commands to the /pps/qnx/device/usb_ctrl

object:

DescriptionCommand

Set a hub's power state. The command takes the form:

port_power::busno,devno,power_state[,portno]

port_power

42 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionCommand

If the optional portno is omitted, then all ports on that hub are controlled by the power level.

The power_state can be one of 0 (“off”) or 1 (“on”).

Turn a port's power off and back on after a fixed delay. The command takes the form:

toggle_port_power::busno,devno,portno

toggle_port_power

The numbers for busno,devno,portno can be decimal, hex, or mixed. For example, all three

of these forms are valid:

toggle_port_power::0,10,3
toggle_port_power::0x0,0xa,0x3
toggle_port_power::0x0,0xa,15

Note that the port_power command is useful to repower the port if the upstream

hub has disabled it (e.g., as a result of an overcurrent condition and you wish to see

if the overcurrent condition still applies).

Disabling the port's power doesn't cause a “removal” event of the downstream

device as you might expect, but when it's reenabled, you'll then see a removal

event immediately followed by an insertion event.

Responses from usblauncher

When usblauncher executes commands, it publishes these attributes to the control

object:

DescriptionAttribute

Latest power setting for the port. Values:port_power

• 1 (“on”)

• 0 (“off”)

• -1 (“unknown”)

String giving the errno_number and error condition (see below (p.

44)).

cmd_status

USB control examples

After starting the usblauncher process as usual, enter this command from a terminal:

cat /pps/qnx/device/usb_ctrl?wait

Then from a second terminal, enter these commands:

sloginfo -w &

© 2014, QNX Software Systems Limited 43

/pps/qnx/device/<device>_ctrl

echo toggle_port_power::xx,y,z >>
/ramdisk/pps/qnx/device/usb_ctrl

The first terminal (cat usb_ctrl?wait) will show the command status and the

power result of the command for the specified bus, device, and port.

For example:

cat usb_ctrl?wait,delta
@usb_ctrl
port_power::0
@usb_ctrl
port_power::1
@usb_ctrl
cmd_status::0

A value of 0 for cmd_status means no errors.

Possible error conditions

Here is a subset of possible errors:

MeaningCommand status

No such device.cmd_status::19

Could not set feature. For example, the specified port

number is greater than the maximum number of available

ports.

cmd_status::5

Not supported. For example, the specified device isn't a

hub.

cmd_status::48

If a command isn't recognized, an error message such as the following will be

published to stdout or to sloginfo (if usblauncher was started with the

-l option):

CMD: unknown cmd_name

44 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/qnx/driver/<pid>

Directory for device driver objects

Publishers

Device publishers (e.g., usblauncher)

For more information about all the device publishers and how they

interact with PPS, see the Device Publishers Developer's Guide.

Subscribers

Any app

Overview

When a USB stick or other device is connected to the computer, a PPS status object

appears under the /pps/qnx/driver/ directory to report details of the connected

device's driver. The object name is the driver's process ID.

Here's a sample object:

[n]@2818054
PPS_DEVICE_ID::/pps/qnx/device/usb-1.4
arguments::cam quiet blk cache=1m,vnode=384,auto=none,delwri=2:2,
rmvto=none,noatime disk name=umass cdrom name=umasscd
dos exe=all umass priority=21,
vid=0x0951,did=0x1625,busno=0x01,
devno=0x04,iface=00,ign_remove
interface::0
interface_class::0x08
interface_protocol::0x50
interface_subclass::0x06
name::devb-umass
pid::2818054

Attributes

DescriptionAttribute

A copy of the command-line arguments that were given to

the device driver.

arguments

Interface number.interface

Class ID (in hex).interface_class

Protocol number (in hex).interface_protocol

© 2014, QNX Software Systems Limited 45

/pps/qnx/driver/<pid>

DescriptionAttribute

Subclass ID (in hex).interface_subclass

Process name of the driver.name

The driver's process ID.pid

Path to the device object.PPS_DEVICE_ID

46 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/qnx/mount/<device>

Directory for mounted devices

Publishers

Device publishers (e.g., usblauncher)

For more information about all the device publishers and how they

interact with PPS, see the Device Publishers Developer's Guide.

Subscribers

Any app

Overview

The /pps/qnx/mount/ directory contains objects that hold information for all devices

mounted in the system. Object names are of the form:

rawdevice[.partition#]

For example, for a USB stick (/dev/umass0) with a DOS partition, the PPS objects

would be named:

/pps/qnx/mount/umass0

/pps/qnx/mount/umass0.0

Here's a sample USB object:

[n]@umass0.0
PPS_DRIVER_ID::/pps/qnx/driver/2052107
PPS_RAWMOUNT_ID::/pps/qnx/mount/umass0
blocks_size::512
blocks_total::7830408
fs_type::dos (fat32)
id::6485a02e-4cd0-4ed6-80a1-a0bce5acde3e
label::KINGSTON
mnt_status::0 (No error)
mount::/fs/usb0
name::KINGSTON
partition::/dev/umass0t11
partition_order::0
plugin_name::generic
raw::/dev/umass0
read_only::0

© 2014, QNX Software Systems Limited 47

/pps/qnx/mount/<device>

Attributes for USB objects

DescriptionAttribute

Size of each block (in bytes).blocks_size

Total number of blocks.blocks_total

Filesystem type:fs_type

• cd

• dos (fat32)

• ipod

• iso9660

• joliet

• pfs (e.g., for MTP devices)

• qnx

• udf

• unknown

The specific values for fs_type depend on the relevant filesystem driver. For details

about each driver, see the fs-* entries in the OS Utilities Reference.

Device identifier.id

Partition label.label

Error string indicating the outcome of the mount operation (e.g., 48 (Not supported)).mnt_status

Filesystem mountpoint of the device (e.g., /fs/usb0).mount

Name given to the device.name

Device partition (e.g., /dev/umass0t11).partition

Number of partitions on this raw device.partition_count

Order in the partition table.partition_order

Name of the plugin used for this device.plugin_name

Name of the PPS object that contains information about the device driver.PPS_DRIVER_ID

Name of the PPS object that contains information about the raw device.PPS_RAWMOUNT_ID

Mountpoint of the raw device.raw

Indicates (1 for true, 0 for false) whether this is a read-only device.read_only

Error string (present only if an error occurred).status

48 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

The Juke Box app happens to create the following object under the

/pps/qnx/mount/ directory:

@mme
device_type::hdd
fs_type::qnx
id::mme
mount::/accounts/1000/shared/
name::Juke Box

Note that the device_type attribute and hdd value here are specific to the

QNX CAR platform.

© 2014, QNX Software Systems Limited 49

/pps/qnx/mount/<device>

/pps/qnx/qdb/config/<dbname>

QDB parses this object to set up a database

Publishers

Any app

Subscribers

QDB

Overview

For every loaded database, the /pps/qnx/qdb/config directory contains a PPS

object with the same name as the database (e.g.,

/pps/qnx/qdb/config/bluetoothdb).

Configuration parameters

For more information about these parameters, see “Database configuration

objects” in the QDB Developer's Guide.

DescriptionParameter

Specifies other databases to attach to the current

one (using the SQL ATTACH DATABASE statement).

AutoAttach

Sets this operation as the default for attached

databases when a command is issued to the main

database.

BackupAttached

Specifies the directories for storing database

backups.

BackupDir

Specifies an interim directory to copy a database

as part of the backup.

BackupVia

Names the client schema file (with an absolute

path) that contains the SQL commands to run

whenever a client calls qdb_connect().

ClientSchemaFile

Installs user-provided collation (sorting) routines.Collation

Specifies the compression algorithm to apply to

backups. Options:

Compression <option>

• none

50 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionParameter

• lzo

• bzip

• diocopy (direct I/O copy uisng DMA)

Used with BackupVia and any Compression setting

specified. Default is false. Set this to true if

CompressionVia true|false

you want BackupVia to use compression during its

first step.

If SchemaFile is set, names the file (with an

absolute path) that contains the SQL commands

to populate a database when it's created.

DataSchemaFile

Sets the name of the database (raw SQLite) file.

This must be an absolute path.

Filename

Installs user scalar/aggregate functions.Function

Names the file (with an absolute path) that

contains the SQL commands to create the initial

SchemaFile

schema of tables, indexes, and views of a new

database.

Sets this operation as the default for attached

databases when a command is issued to the main

database.

SizeAttached

Sets this operation as the default for attached

databases when a command is issued to the main

database.

VacuumAttached

© 2014, QNX Software Systems Limited 51

/pps/qnx/qdb/config/<dbname>

/pps/qnx/qdb/status/<dbname>

QDB publishes database status to this object

Publishers

QDB

Subscribers

Any app

Overview

For every loaded database, the /pps/qnx/qdb/status directory contains a PPS

object with the same name as the database. The status object indicates the state of

the database after the loading attempt.

Status values

The status file contains a Status attribute that can have one of these values:

DescriptionValue

QDB is waiting for an attached database (specified with

the AutoAttach configuration parameter) to become

available.

AttachWait

The configuration contained an error.Error

QDB has seen the configuration object and is now

initializing the database.

Initializing

The database has been configured and can be accessed.Valid

52 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/qnxcar/hvac

This object contains HVAC settings such as fan speed, heated seat levels, etc.

Publishers

Climate Control

Subscribers

Climate Control; any app

Attributes

DefaultValuesData

type

Attribute

falsetrue | falseBooleanairConditioning_all

falsetrue (recirculate internal air) | false (use external air)BooleanairRecirculation_all

truetrue | falseBooleandefrost_all

faceAnd

Feet

defrost | defrostAndfeet | face | faceAndFeet | feetStringfanDirection_row1left

facedefrost | defrostAndfeet | face | faceAndFeet | feetStringfanDirection_row1right

10 (off) to 6 (full speed)NumberfanSpeed_row1left

30 (off) to 6 (full speed)NumberfanSpeed_row1right

20 to 3NumberheatedSeat_row1left

00 to 3NumberheatedSeat_row1right

2115 to 26 (oC)Numbertemperature_row1left

1915 to 26 (oC)Numbertemperature_row1right

falsetrue | falseBooleanzoneLink_all

Zone Link

When enabled, the Zone Link feature links the fan temperature and speed values for

both the left and right climate zones.

The left climate zone takes priority when enabling this feature, that is, the right zone

will have its fan temperature and speed set to that of the left. Disabling Zone Link

will once again allow both zones to be managed independently.

© 2014, QNX Software Systems Limited 53

/pps/qnxcar/hvac

Examples

Set the left-zone temperature to 20 oC:

echo temperature_row1left:n:20 >> /pps/qnxcar/hvac

Set the right-zone fan speed to 4:

echo fanSpeed_row1right:n:4 >> /pps/qnxcar/hvac

Turn rear defrost off:

echo defrost_all:b:false >> /pps/qnxcar/hvac

54 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/qnxcar/locale

Object for locale settings

Publishers

HMI

Subscribers

Any app

Attributes

DescriptionValuesData typeAttribute

Language of the UI.en (English)Stringlocale

© 2014, QNX Software Systems Limited 55

/pps/qnxcar/locale

/pps/qnxcar/navigation/control

Control object for the navigation service

Publishers

Any app; navigation service

Subscribers

Navigation service; any app

Message/response format

Commands sent to the /pps/qnxcar/navigation/control object are of the

form:

msg::command_string\nid::ID_number\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\ndat:json:{JSON_data}\nerr::er

rno_number\nerrstr::error_description

Commands

dat:json:id::msg::

NumbergetPOIs
• category (contains several

fields—see table below).

• count

• location (contains several

fields—see table below).

Stop the current navigation session.NumbercancelNavigation

location (contains several fields—see

table below).

NumbernavigateTo

NumberpanMap
• deltaX (number of pixels to move the

map horizontally)

• deltaY (number of pixels to move the

map vertically)

Numbersearch
• country

56 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

dat:json:id::msg::

• province

• city

scale (in meters/pixel)NumberzoomMap

Fields for category

typeparentIdnameid

accommodation0Accommodations +

Amenities

1

attraction0Attractions2

public0Public Places + Services3

restaurant0Restaurants +

Entertainment

4

transportation0Transportation5

accommodation1Hotel or Motel6

transportation5Airport7

sports4Golf Course8

transportation5Ferry9

restaurant4Restaurant10

restaurant4Nightlife11

restaurant4Casino12

restaurant4Movie Theatre13

public3Community Centre14

public3City Hall15

sports3Sports Centre16

attraction2Amusement Park17

museum2Museum18

attraction2Historical Monument19

attraction2Tourist Office20

parking5Parking Garage21

© 2014, QNX Software Systems Limited 57

/pps/qnxcar/navigation/control

typeparentIdnameid

parking5Park & Ride22

transportation5Automobile Dealer23

park5Rest Area24

hospital1Hospital25

accommodation1School26

public3Police Station27

church1Place of Worship28

Fields for location

DescriptionField

The destination's city.city

The city's country.country

Distance from current location to destination.distance

Destination identifier.id

The destination's latitude.latitude

The destination's longitude.longitude

The destination's name (e.g., Toronto City Hall).name

Street address.number

The postal code's first three characters, which indicate the

Forward Sortation Area (FSA).

postalCode

The destination's province.province

Name of the destination's street.street

Point-of-interest (POI) type:type

• accommodation

• attraction

• church

• hospital

• museum

• park

• parking

• public

58 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionField

• restaurant

• sports

• transportation

This attribute is a byproduct of using the Sencha framework

and is ignored when present.

xindex

© 2014, QNX Software Systems Limited 59

/pps/qnxcar/navigation/control

/pps/qnxcar/navigation/geolocation

Geolocation object for the navigation service

Publishers

Any app

Subscribers

Navigation service

Attributes

DescriptionData typeAttribute

Current direction (0 - 360o).Numberheading

The current latitude.Numberlatitude

The current longitude.Numberlongitude

60 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/qnxcar/navigation/options

Set options for the navigation service

Publishers

Any app

Subscribers

Navigation service

Attributes

DescriptionDefaultData

type

Attribute

Indicates whether to avoid known construction areas.falseBooleanavoid_construction

Indicates whether to avoid routes that have ferries.falseBooleanavoid_ferries

Indicates whether to avoid motorways (controlled-access highways).falseBooleanavoid_motorways

Indicates whether to avoid seasonal roads.falseBooleanavoid_seasonal_roads

Indicates whether to avoid time-restricted roads.falseBooleanavoid_time_restricted

Indicates whether to avoid toll roads.falseBooleanavoid_tolls

Indicates whether to avoid roads that have tunnels.falseBooleanavoid_tunnels

Indicates whether to avoid unpaved roads.falseBooleanavoid_unpaved

Set map display to day mode, night mode, or both (not currently

implemented).

bothStringdaynight

Set the language.en_USStringlanguage

Set routing method (not currently implemented).fastestStringrouting

Show turn restrictions.trueBooleanshow_turn_restrictions

Set the units for distance (not currently implemented).metricStringunits

Set the voice persona (not currently implemented).RupertStringvoice

© 2014, QNX Software Systems Limited 61

/pps/qnxcar/navigation/options

/pps/qnxcar/navigation/status

The navigation service publishes status information to this object

Publishers

Navigation service

Subscribers

Any app

Attributes

DescriptionValuesData

type

Attribute

Data for the destination (e.g., city, country,

distance).

Contains several fields (see

table below).

JSONdestination

Data while navigating (e.g., current street,

turns).

Contains several fields (see

table below).

JSONmaneuvers

Indicates whether the system is currently

navigating.

true | falseBooleannavigating

Distance to destination (in meters).>=0Numbertotal_distance_remaining

Estimated time of arrival (in minutes).>=0Numbertotal_time_remaining

Fields for destination

DescriptionField

The destination's city.city

The city's country.country

Distance from current location to destination.distance

Destination identifierid

The destination's latitude.latitude

The destination's longitude.longitude

The destination's name (e.g., Toronto City Hall).name

Street address.number

62 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionField

The postal code's first three characters, which

indicate the Forward Sortation Area (FSA).

postalCode

The destination's province.province

Name of the destination's street.street

Point-of-interest (POI) type (e.g., restaurant, public

building).

type

This attribute is a byproduct of using the Sencha

framework and is ignored when present.

xindex

Fields for maneuvers

DescriptionField

Street currently traveling on.street

Directional command. Values:command

• dt (arrived at destination)

• dt-l (destination is on the left)

• dt-r (destination is on the right)

• lht-rx (follow the roundabout on the left)

• lht-ut (make a U-turn on the left)

• nc (no change; follow the street)

• rx (follow the roundabout on the right)

• tr-l (turn left)

• tr-r (turn right)

• ut (make a U-turn on the right)

Distance to travel on current street (in meters).distance

© 2014, QNX Software Systems Limited 63

/pps/qnxcar/navigation/status

/pps/qnxcar/profile/theme

View or modify the settings for the Personalization Theme field

Publishers

Personalization

Subscribers

Any app

Attributes

DescriptionDefaultValuesData

type

Attribute

falsetrue | falseBooleannightMode
This feature isn't fully implemented

yet.

The vehicle sensor responsible for the headlights

modifies this attribute. When the headlights are

turned on, the current theme will be rejigged to

display higher-contrast graphics for better readability

at nighttime.

The theme attribute affects the graphics assets of

all registered applications. Structural changes are

de

fault

The possible values for this

release are as follows:

Stringtheme

minimal; most changes are cosmetic (image swaps,
• default

color changes, font changes, etc.). The attribute is
• midnightblue controlled by the Active Theme field in the

Personalization application.

The theme attribute can be modified in two ways:

• titanium

Note that a related PPS

object • The user changes the theme of the current

profile.(/pps/qnxcar/themes)
• The user changes to a new profile that has a

different theme defined.
holds the attributes of

the Personalization

theme packages

available on the

QNX CAR platform.

64 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/qnxcar/profile/user

View or change settings in the Personalization application

Publishers

Personalization; any app

Subscribers

Personalization; any app

Attributes

DescriptionDefaultValuesData

type

Attribute

Image of the currently selected profile in the list of the

Personalization application. Changes made to the avatar

field are propagated to PPS.

male1Stringavatar
• male1

• male2

• female1

• female2

Preferred Bluetooth device.0Device's MAC.StringbluetoothDeviceId

The user name appears on the status bar (far-left label)

in the Personalization application. Changes made to

this field are propagated to PPS.

"Default"User-specified

name.

StringfullName

Represents the currently selected profile in the

Personalization application. The number changes only

when a different profile is selected.

1>=0Numberid

Preferred theme, which is selected in the Personalization

Theme field (see /pps/qnxcar/profile/theme for

details).

de

fault

Stringtheme
• default

• midnightblue

• titanium

© 2014, QNX Software Systems Limited 65

/pps/qnxcar/profile/user

/pps/qnxcar/sensors

Get the status of various components, such as fuel level, tire pressure, etc.

Publishers

Virtual Mechanic

Subscribers

Climate Control; Virtual Mechanic

This is the only PPS object that Virtual Mechanic uses. Status values for all

components are read from this object. The only case where Virtual Mechanic

writes to /pps/qnxcar/sensors is when turning the ABS brakes setting

(brakeAbsEnabled) on or off.

Attributes

Alert status

condition

Caution status

condition

DefaultValuesData

type

Attribute

n/an/atruetrue | falseBooleanbrakeAbsEnabled

n/afalsetruetrue | falseBooleanbrakeAbsFrontLeft

n/afalsetruetrue | falseBooleanbrakeAbsFrontRight

n/afalsetruetrue | falseBooleanbrakeAbsRearLeft

n/afalsetruetrue | falseBooleanbrakeAbsRearRight

<=70<=80900 - 100%NumberbrakeFluidLevel

<=20<=401000 - 100%NumberbrakePadWearFrontLeft

<=20<=401000 - 100%NumberbrakePadWearFrontRight

<=20<=40500 - 100%NumberbrakePadWearRearLeft

<=20<=40650 - 100%NumberbrakePadWearRearRight

n/an/afalsetrue | falseBooleancameraRearviewActive

<=70<=801000 - 100%NumbercoolantLevel

<=75<=85950 - 100%NumberengineOilLevel

<=75<=85100>=0 (PSI)NumberengineOilPressure

<=10<=25750 - 100%NumberfuelLevel

66 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

Alert status

condition

Caution status

condition

DefaultValuesData

type

Attribute

n/afalsetruetrue | falseBooleanlightHeadLeft

n/afalsetruetrue | falseBooleanlightHeadRight

n/afalsefalsetrue | falseBooleanlightTailLeft

n/afalsetruetrue | falseBooleanlightTailRight

>=7000>=62502800>=0Numberrpm

n/an/a0>=0Numberspeed

<=24, >=38<=26, >=3631>=0 (PSI)NumbertirePressureFrontLeft

<=24, >=38<=26, >=3631>=0 (PSI)NumbertirePressureFrontRight

<=24, >=38<=26, >=3625>=0 (PSI)NumbertirePressureRearLeft

<=24, >=38<=26, >=3632>=0 (PSI)NumbertirePressureRearRight

<=20<=30900 - 100%NumbertireWearFrontLeft

<=20<=30900 - 100%NumbertireWearFrontRight

<=20<=30700 - 100%NumbertireWearRearLeft

<=20<=30700 - 100%NumbertireWearRearRight

<=40<=60700 - 100%NumbertransmissionClutchWear

<=70<=80850 - 100%NumbertransmissionFluidLevel

>=240>=215185-273.15 - 1000 (degrees

F)

NumbertransmissionFluidTemperature

n/an/app,r,n,d,1,2,3,4,5,6,7StringtransmissionGear

<=10<=20200 - 100%NumberwasherFluidLevel

Examples

Set the fuel level to 15%:

echo fuelLevel:n:15 >> /pps/qnxcar/sensors

Turn ABS off:

echo brakeAbsEnabled:b:false >> /pps/qnxcar/sensors

© 2014, QNX Software Systems Limited 67

/pps/qnxcar/sensors

/pps/qnxcar/system/info

Holds software build information

Publishers

coreServices

Subscribers

Any app

Attributes

DescriptionData typeAttribute

Build host.StringbuildHost

Identifier showing the date and time of the build.StringbuildID

Build number.StringbuildNum

Branch in the repository.Stringcar2Branch

Revision number.Stringcar2Rev

Date and time stamp of the build.Stringdate

Target hardware platform (e.g., omap5uevm).Stringplatform

Project name for this build.Stringproject

Variant name.Stringvariant

68 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/qnxcar/system/settings

Configure HMI application displays

Publishers

Any app

Subscribers

HMI

Attributes

ImpactDefaultValuesData

type

Attribute

highhighhigh, midStringappSection_profile

• Application carousel is free-dragging and animates

between categories.

mid

• Application carousel supports swipe gestures but doesn't

animate between categories.

highhighhigh, midStringcarControl_profile

• Climate Control fan dials are free-dragging.

• Audio slider controls update their display while dragging.

• Virtual Mechanic dialogs fade in and out when appearing

and disappearing.

mid

• Climate Control fan dials use a tap gesture on the top-

and bottom-third of the control to change settings.

• Audio slider controls don't update their display while

dragging.

• Virtual Mechanic dialogs appear and disappear instantly.

highhighhigh, midStringcommunication_profile

• Pulldown submenus slide in and out from the right.

mid

© 2014, QNX Software Systems Limited 69

/pps/qnxcar/system/settings

ImpactDefaultValuesData

type

Attribute

• Pulldown submenus don't animate when appearing and

disappearing.

mmcontrolmmplay

er

mmcon

trol, mm

player

Stringhome_profile

• Specify mm-control as the media service that the

Home application should use to display Now Playing

information.

mmplayer

• Specify the new mm-player as the media service to

use.

highhighhigh, midStringmediaPlayer_profile

• Pulldown submenus slide in and out from the right.

• Radio view uses a free-dragging dial to change stations.

• Coverflow component offers enhanced visuals and

interactivity.

mid

• Pulldown submenus don't animate when appearing and

disappearing.

• Radio view uses a horizontal slider to change stations.

• Coverflow component shows only the current track's

album art, but still supports swipe gestures to change

tracks.

Specify Elektrobit (EB) street director as the navigation

engine to use as the default provider. Note that this setting

elek

trobit

elektro

bit

StringnavigationProvider

will cause the JavaScript extension framework to load the

appropriate provider bundle and to communicate with the

appropriate PPS objects.

70 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/qnxcar/themes

View the attributes of Personalization theme packages

Publishers

Personalization

Subscribers

Any app

Overview

The /pps/qnxcar/themes object holds the attributes of the Personalization theme

packages available on the QNX CAR platform. This object is updated to notify the

system whenever a new theme has been added or removed.

These themes are currently available:

• default

• midnightblue

• titanium

A related PPS object (/pps/qnxcar/profile/theme) has a theme

attribute that can be set to one of the available themes for the desired

appearance (image swaps, color changes, font changes, etc.) of all the HMI

apps. The theme attribute is controlled by the Theme field in the Personalization

application.

Here's a sample /pps/qnxcar/themes object:

default:json:{"ppsName":"default","title":"Default","themePackageName":"default","packageDate":"2013-05-13"}
midnightblue:json:{"ppsName":"midnightblue","title":"Midnight Blue","themePackageName":"midnightblue",
 "packageDate":"2013-05-13"}
titanium:json:{"ppsName":"titanium","title":"Titanium","themePackageName":"titanium","packageDate":"2013-05-13"}

Each line gives the theme, followed by the json data type, followed by the attributes

and values for that theme.

Attributes

DescriptionAttribute

Value of the theme attribute in the

/pps/qnxcar/profile/theme object.

ppsName

Name that appears in the title field in the Personalization

app.

title

© 2014, QNX Software Systems Limited 71

/pps/qnxcar/themes

DescriptionAttribute

Name of the theme's package file.themePackageName

Date of the theme's package file.packageDate

72 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/radio/command

The radio app listens for commands from the HMI on this control object

Publishers

Any app

Subscribers

Radio

Commands

The control object accepts the following commands:

DescriptionCommand

Seek either up or down.seek direction

Stop seeking.seek stop

Tune to the specified station.tune

Set the tuner to am or fm.tuner tuner

Examples

Use the FM tuner:

echo tuner::fm >> /pps/radio/command

Seek down:

echo seek::down >> /pps/radio/command

Stop seeking:

echo seek::stop >> /pps/radio/command

© 2014, QNX Software Systems Limited 73

/pps/radio/command

/pps/radio/status

View the status of radio attributes such as artist, song, etc.

Publishers

Radio

Subscribers

Any app

The object's format looks like this:

@status
am:json:{"presets":[880,910,950,1020,1220,1430],"station":1680}
artist::Bjork
fm:json:{"presets":[87.5,88.5,99.9,105.3,106.9,107.1],"station":96.5}
genre::News & Entertainment
hd:b:true
song::All is Full of Love
station::CBC Radio 2
tuner::fm

Attributes

DescriptionData typeAttribute

Indicates the AM band and contains:JSONam

• presets, a set of six preset AM stations

• station, the AM station currently tuned in

Name of the artist currently playing.Stringartist

Indicates the FM band and contains:JSONfm

• presets, a set of six preset FM stations

• station, the FM station currently tuned in

Category of the station's format.Stringgenre

Indicates whether HD radio is enabled.Booleanhd

Title of the song currently playing.Stringsong

Name identifying the station.Stringstation

Indicates the type of band (AM or FM).Stringtuner

74 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/radio/ti_control

Radio control object for TI Jacinto hardware

This PPS object is supplied as a reference design for your

convenience.

© 2014, QNX Software Systems Limited 75

/pps/radio/ti_control

/pps/radio/ti_rds

Radio object for TI Jacinto hardware

This PPS object is supplied as a reference design for your

convenience.

76 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/radio/ti_status

Radio status object for TI Jacinto hardware

This PPS object is supplied as a reference design for your

convenience.

© 2014, QNX Software Systems Limited 77

/pps/radio/ti_status

/pps/radio/tuners

Get the status of attributes of the radio tuners

Publishers

Radio

Subscribers

Any app

The object's format looks like this:

@tuners
am:json:{"type":"analog","rangeMin":880,"rangeMax":1710,"rangeStep":10}
fm:json:{"type":"analog","rangeMin":87.5,"rangeMax":107.1,"rangeStep":0.2}

Attributes

DescriptionData typeAttribute

Indicates the AM tuner and contains:JSONam

• type (analog or digital)

• rangeMin (the minimum frequency in the AM tuner's range, e.g.,

880 kHz)

• rangeMax (the maximum frequency in the AM tuner's range, e.g.,

1710 kHz)

• rangeStep (the size of the intervals between the mimimum and

maximum values in the range, e.g., 10 kHz)

Indicates the FM tuner and contains:JSONfm

• type (analog or digital)

• rangeMin (the minimum frequency in the FM tuner's range, e.g.,

87.5 MHz)

• rangeMax (the maximum frequency in the FM tuner's range, e.g.,

107.1 MHz)

• rangeStep (the size of the intervals between the mimimum and

maximum values in the range, e.g., 0.2 MHz)

78 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/servicedata/schedule

Sample object for the Schedule Maintenance feature in Virtual Mechanic

Publishers

Virtual Mechanic

Subscribers

Any app

This directory contains a sample schedule object used by the Virtual

Mechanic application.

Attributes

DescriptionData

type

Attribute

Days since last service.NumberDays

Odometer reading.NumberOdometer

Contains:JSONRecommended

• service (recommended)

• booked (false)

• km

• time

• duration (in minutes)

• cost (in dollars)

• date (hour, minute, day, month, year)

• type (0 to 7)

© 2014, QNX Software Systems Limited 79

/pps/servicedata/schedule

/pps/services/app-launcher

Object to control the Applications Navigator

Publishers

Applications Navigator; any app

Subscribers

Applications Navigator; any app

Overview

You can control the Applications Navigator by sending commands to the

/pps/services/app-launcher PPS object.

The /pps/services/app-launcher object must exist before the

Applications Navigator starts.

Command format

Commands sent to the /pps/services/app-launcher object are of the form:

req:json:{"id":ID_number,"cmd":"com

mand_string","app":"app_string,"dat":""}

The ID_number is a unique identifier that will be reflected in the response from the

PPS service to your request. You can set the ID to any number you wish.

The dat attribute is responsible for setting parameters that will be sent to the

application. Parameters can be either strings or JSON objects.

Launching and stopping applications

At start time, the Applications Navigator publishes a list of existing applications in

the PPS object's app_list attribute:

app_list:json:{apps[app_string,app_string],...]}

You can use PPS to launch any application given in app_list. For example, to launch

the application named “MediaPlayer”, issue the following command:

echo 'req:json:{"id":1,"cmd":"launch app","app":"MediaPlay

er","dat":""}' >> /pps/services/app-launcher

To stop the MediaPlayer application, use the "close app" command:

echo 'req:json:{"id":1,"cmd":"close app","app":"MediaPlay

er","dat":""}' >> /pps/services/app-launcher

80 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

Responses

Each command issued will receive a status response. The status attribute will contain

the ID number that you used in your command as well as any errors that may have

occurred. For example:

status:json:{"error":"OK","id":1}

This response indicates that the command with ID 1 was executed successfully.

The Applications Navigator creates the PPS object

/pps/system/navigator/command for publishing all necessary data.

Applications that subscribe to this object should open it using the ?wait

option and delta mode so as to receive all relevant changes.

For more information on ?wait and on delta mode, see “Subscribing” in the

Persistent Publish/Subscribe Developer's Guide.

© 2014, QNX Software Systems Limited 81

/pps/services/app-launcher

/pps/services/appinst-mgr/control

The appinst-mgr service listens for commands from the HMI on this control object

Publishers

Any app

Subscribers

appinst-mgr; any app

The appinst-mgr service is provided as a reference design for your

convenience.

Overview

The appinst-mgr service is used by the QNX App Portal client to install/uninstall

apps. QNX App Portal is an application showcase where developers can submit their

apps for users of the QNX CAR platform to download and evaluate on their targets.

The appinst-mgr service subscribes to the

/pps/services/appinst-mgr/control object for commands that apps want to

issue, and then publishes results to the /pps/services/appinst-mgr/status

object.

Commands

DescriptionCommand

Download and install the specified .bar file from the specified

URL. Note that you must also specify the app's 32-character auth

token.

install

Uninstall the installed app specified in the appname field.uninstall

Examples

Install the HelloWorld.bar file that resides at http://10.222.98.197 and has

an authentication token of 85vD2COZBmBjDVGlR3mooOttcqysfLFb:

echo "command::install\nurl::http://10.222.98.197/HelloWorld.bar\n

authtoken::85vD2COZBmBjDVGlR3mooOttcqysfLFb\n" >> /pps/services/ap

pinst-mgr/control

Uninstall the HelloWorld app:

82 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

echo "command::uninstall\nappname::HelloWorld\n" >> /pps/ser

vices/appinst-mgr/control

© 2014, QNX Software Systems Limited 83

/pps/services/appinst-mgr/control

/pps/services/appinst-mgr/status

Status object for reporting the results of commands sent to the appinst-mgr service

Publishers

appinst-mgr

Subscribers

Any app

The appinst-mgr service is provided as a reference design for your

convenience.

Overview

The appinst-mgr service uses this status object to publish the results of commands

sent to the /pps/services/appinst-mgr/control object.

Attributes

ValuesAttribute

Error or information message.msg

Number (percent) indicating the progress of the install/uninstall

operation.

progress

install|uninstallstate

OK|ERRORstatus

Sample status objects

Successful installation:

@status
msg::HelloWorld.testRel_HelloWorld_1a2fa200
progress:n:100
state::install
status::OK

Successful uninstallation:

@status
msg::successfully removed
progress:n:100
state::uninstall
status::OK

84 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

Attempt to install a .bar file that doesn't exist:

@status
msg::unzip: cannot find zipfile directory in /tmp/temp.bar
progress:n:100
state::install
status::ERROR

Attempt to uninstall an invalid app (e.g., the app named “my_test” doesn't exist):

@status
msg::Error: Unable to determine installed application: [my_test]
progress:n:100
state::uninstall
status::ERROR

© 2014, QNX Software Systems Limited 85

/pps/services/appinst-mgr/status

/pps/services/asr/control

The io-asr manager uses this object to communicate with the HMI

Publishers

io-asr; any app

Subscribers

io-asr; any app

Overview

When running, the io-asr manager updates its state on this object, responds to

any strobe commands, and then goes into listening mode.

Attributes

DescriptionAttribute

JSON object that contains the "confidence" level of the speech

input. Range is from 0 (input not recognized at all) to 1000 (full

confidence—no other possible results for the input).

result

Indicates input is being handled. Values:speech

• processing

• handled

Indicates io-asr's current state. Values:state

• held

• idle

• listening

• processing

• prompting

• running

Controls speech sessions. Values:strobe

• barge-in

• cancel

• hold

• mic-off

86 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionAttribute

• off

• on

• on?audio_log_dir=path (directory to use to capture session

logs)

• on?audio_source_dir=path (directory of stored logs to

use for recognition sessions)

• on?repeat=[true|false] (if set to true, speech sessions

will auto-trigger as long as another application isn't launched)

If a third-party app initiated the current speech session,

it will be interrupted and a new system-level session

will be started. The results of a third-party session are

delivered only to the requesting app and won't be used

to carry out system-level speech commands.

• release (releases a held speech session)

How io-asr responds to strobe commands

Has this effect:Then this

command:

If io-asr is:

Begins a speech session.strobe::onidle

Interrupts any currently playing prompts, allowing

the speech session to advance to the next state

(usually listening).

barge-inrunning

Cancels the current speech session.strobe::can

cel

running

Interrupts the current speech turn and suspends

the session, maintaining its state.

strobe::holdrunning

Interrupts capturing of audio so that the session

can advance to processing; this is useful if the

strobe::mic-

off

running

auto end-pointing isn't detecting silence because

of ambient noise levels.

n/astrobe::onrunning

n/astrobe::offstopped

© 2014, QNX Software Systems Limited 87

/pps/services/asr/control

Has this effect:Then this

command:

If io-asr is:

Ends the speech session. If the repeat modifier

is in effect, it will be canceled.

strobe::offrunning and

listening

Silences the prompt.strobe::offrunning and

prompting

Releases a held speech session, allowing it to

return to the running state.

strobe::re

lease

held

Examples

Start a speech session and then record each utterance to the speech_logs directory:

echo strobe::on?audio_log_dir=speech_logs >>/pps/services/asr/con

trol

Play back the recorded session:

echo strobe::on?audio_source_dir=speech_logs >>/pps/ser

vices/asr/control

88 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/audio/audio_router_control

The Audio Manager listens for routing commands on this control object

Publishers

Audio Manager; any app

Subscribers

Audio Manager; any app

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Message/response format

Commands sent to the /pps/services/audio/audio_router_control object

are of the form:

msg::command_string\nid::ID\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID\ndat:json:{JSON_data}\n error::error_de

scription

Commands

DescriptionData

type

ParametersCommands

Indicates whether the paired device

supports A2DP.

BooleansupportedBT_A2DP_capability

Indicates whether the A2DP stream is

connected.

Booleanconnected

Indicates whether the paired device

supports SCO.

BooleansupportedBT_SCO_capability

Indicates whether the A2DP stream is

connected.

Booleanconnected

© 2014, QNX Software Systems Limited 89

/pps/services/audio/audio_router_control

DescriptionData

type

ParametersCommands

Type of volume control supported by the

paired device:

Stringvolumecontrol

• unavailable (no volume control)

• simple (supports only increase and

decrease)

• percentage (supports full control,

including mute, specific steps, etc.)

Indicates whether the paired device

supports audio processing.

Booleanaudioprocessing

Handle returned by get_handle.Numberaudioman_handlefree_handle

The Audio Manager returns a unique handle

given the target handle. Audio on the new

Numbertargetget_alias_handle

handle will be impacted by audio ducking

whenever the target handle is impacted.

The returned Audio Manager handle that

the client should use for all other actions.

Numberaudioman_handle

The audio source type:Stringtypeget_handle

• alert

• default

• inputfeedback

• multimedia

• pushtotalk

• ringtone

• soundeffect

• texttospeech

• videochat

• voice

• voicerecognition

• voicerecording

• voicetones

The process ID of the caller (returned by

the getpid() call). Note that Audio Manager

will get this automatically if not filled.

Numberpid

90 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData

type

ParametersCommands

Indicates whether the audio handle is

activated right away. Default is true.

Booleansuspended

The returned Audio Manager handle that

the client should use for all other actions.

Numberaudioman_handle

Handle returned by get_handle.Numberaudioman_handleget_handle_concurrency_status

Indicates whether the given handle's audio

type is being attenuated.

Booleanattenuated

Indicates whether the given handle's audio

type is being muted.

Booleanmuted

Name of the audio type that mutes the given

handle.

Stringmuted_by

The process ID of the audio source that

mutes the given handle.

Stringmuted_by_pid

Name of the audio type whose audio

concurrency policy is being returned.

Stringtypeget_type_concurrency_status

Indicates whether the given handle's audio

type is being attenuated.

Booleanattenuated

Indicates whether the given handle's audio

type is being muted.

Booleanmuted

Name of the audio type that mutes the given

handle.

Stringmuted_by

The process ID of the audio source that

mutes the given handle.

Stringmuted_by_pid

Name of the voice source:Stringsourceget_voice_enhanced_audio_option

• cellular (default)

• voip

Name of the specific output device for this

enhanced audio option. Default is handset.

Stringoutput

Name of the enhanced audio option:Stringoption

• normal

• boost_bass

• boost_treble

© 2014, QNX Software Systems Limited 91

/pps/services/audio/audio_router_control

DescriptionData

type

ParametersCommands

Name of the voice source:Stringsourceget_voice_mode

• cellular (default)

• voip

The voice mode:Stringmode

• ringer

• on

• off

Number of channels (1 or 2).Numbernumbernumchans

Handle returned by get_handle.Numberaudioman_handlepcm_input_closed

This command notifies apps that

a PCM channel for input has

been closed/suspended by the

libasound library.

Handle returned by get_handle.Numberaudioman_handlepcm_input_opened

This command notifies apps that

a PCM channel for input has

been opened through the

libasound library. The Audio

Manager will default the type of

this source to generic.

Handle returned by get_handle.Numberaudioman_handlepcm_output_closed

Handle returned by get_handle.Numberaudioman_handlepcm_output_opened

This command causes the Audio Manager

to log all the active audio sources.

n/an/aprint_audio_srcs

Handle returned by get_handle.Numberaudioman_handleset_audio_src

The audio source type:Stringtype

• alert

• generic

• multimedia

92 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData

type

ParametersCommands

• soundeffect

• ringtone

• texttospeech

• videochat

• voice

• voicerecognition

• voicerecording

The input device name overridden by the

audio source. (See

Stringinput

/pps/services/audio/devices/ for

the supported devices.) The default

device clears the input setting.

The output device name overridden by the

audio source.

Stringoutput

A client normally shouldn't need

to set the input and output

parameters. Use these fields only

to override the default routing

path. For example, if the user has

a headset in during a phone call,

the default routing that the Audio

Manager picks would be through

the headset. However, the user

could force the device to send

output through the loud speaker

and get input from the handset,

in which case the phone app

would have to tell phone-pps

to override the output to

speaker(3) and input to

handset(1).

Name of the voice source:Stringsourceset_voice_enhanced_audio_option

• cellular (default)

• voip

© 2014, QNX Software Systems Limited 93

/pps/services/audio/audio_router_control

DescriptionData

type

ParametersCommands

Name of the specific output device for this

enhanced audio option. Default is handset.

Stringoutput

Name of the enhanced audio option:Stringoption

• normal

• boost_bass

• boost_treble

Name of the voice source:Stringsourceset_voice_mode

• cellular (default)

• voip

The voice mode:Stringmode

• ringer

• on

• off

94 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/audio/audio_router_status

The Audio Manager uses this object to reflect the status of voice routing

Publishers

Audio Manager

Subscribers

Any app

The /pps/services/audio/audio_router_status object contains telephony

settings (cellular and voip) for voice enhancement for the supported devices. The

object's format looks like this:

@audio_router_status
voiceservices.cellular.a2dp.audio_option::normal
voiceservices.cellular.btsco.audio_option::normal
voiceservices.cellular.hac.audio_option::normal
voiceservices.cellular.handset.audio_option::normal
voiceservices.cellular.hdmi.audio_option::normal
voiceservices.cellular.headphone.audio_option::normal
voiceservices.cellular.headset.audio_option::normal
voiceservices.cellular.lineout.audio_option::normal
voiceservices.cellular.speaker.audio_option::normal
voiceservices.cellular.status::off
voiceservices.cellular.tones.audio_option::normal
voiceservices.cellular.toslink.audio_option::normal
voiceservices.cellular.tty.audio_option::normal
voiceservices.cellular.usb.audio_option::normal
voiceservices.cellular.voice.audio_option::normal
voiceservices.voip.a2dp.audio_option::normal
voiceservices.voip.btsco.audio_option::normal
voiceservices.voip.hac.audio_option::normal
voiceservices.voip.handset.audio_option::normal
voiceservices.voip.hdmi.audio_option::normal
voiceservices.voip.headphone.audio_option::normal
voiceservices.voip.headset.audio_option::normal
voiceservices.voip.lineout.audio_option::normal
voiceservices.voip.speaker.audio_option::normal
voiceservices.voip.status::off
voiceservices.voip.tones.audio_option::normal
voiceservices.voip.toslink.audio_option::normal
voiceservices.voip.tty.audio_option::normal
voiceservices.voip.usb.audio_option::normal
voiceservices.voip.voice.audio_option::normal

The possible values for audio_option are:

• normal

• boost_bass

© 2014, QNX Software Systems Limited 95

/pps/services/audio/audio_router_status

• boost_treble

The status field gives the current status of the voice call. The possible values are:

• ringer

• on

• off

For more information on the audio devices, see the

/pps/services/audio/devices/ entry.

96 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/audio/control

The Audio Manager listens for commands on this control object

Publishers

Any app

Subscribers

Audio Manager

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Audio Manager library

Besides reading from and writing to the PPS audio objects directly, you may also

choose to use the Audio Manager library, which allows your apps to set up and process

events from audio devices. This library provides a C/C++ interface to audio devices

that are accessible through the underlying PPS framework. Using this library, you can

get and set properties for audio device status, volume, routing, and concurrency. You

can also add and remove device events to notify clients that are using audio devices.

For more information, see the Audio Manager Library Reference.

Message/response format

Commands sent to the /pps/services/audio/control object are of the form:

msg::command_string\nid::ID_number\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\ndat:json:{JSON_data}\n er

ror::error_description

Commands

DescriptionData

type

ParametersCommand

The device name, which is listed under

/pps/services/audio/devices/ (e.g., head

set).

Stringnameadjust_input_level

© 2014, QNX Software Systems Limited 97

/pps/services/audio/control

DescriptionData

type

ParametersCommand

Percentage representing the desired adjustment of

the input volume level.

Doublelevel

The device name. The device's volumecontrol must

be percentage.

Stringnameadjust_output_level

Percentage representing the adjustment of the output

volume level.

Doublelevel

Name of the device to adjust the output volume level

of when a voice call is activated.

Stringnameadjust_voice_output_level

Percentage representing the change of the output

volume level.

Doublelevel

The device name. The device's volumecontrol can be

percentage or simple.

Stringnamedecrease_output_level

Indicates whether the paired device supports A2DP.Booleansupportedget_a2dp_status

Indicates whether the A2DP stream is connected.Booleanconnected

Number of channels that the A2DP stream supports

(1 or 2).

Numbernumchans

Type of volume control that the current device

supports for A2DP:

Stringvolumecontrol

• unavailable (no volume control)

• simple (supports only increase and decrease)

• percentage (supports full control, including

mute, specific steps, etc.)

Default is unavailable.

State of the A2DP stream:Stringstate

• closed

• idle

• open

• streaming

The device name.Stringnameget_device_property

Name of the device's attribute.Stringproperty

Value of the given attribute.Stringvalue

98 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData

type

ParametersCommand

Number of audio channels supported by the connected

HDMI device.

Numbernumchansget_hdmi_info

Audio channel order of the connected HDMI device

(e.g., FL,FR).

Stringhdmiorder

Configuration of the audio output channels (e.g., "2.0",

"5.1"). Note that this is used only by the hdmi device.

Stringaudioconfig

Indicates whether mirror mode is enabled.Booleanmirror

Indicates whether the hdmi driver is to be kept alive

when no audio stream is active.

Booleankeep_alive

Indicates whether the HDMI device is enabled.Booleanenabled

Type of volume control supported by the attached

HDMI device. Values:

Stringvolumecontrol

• unavailable (no volume control)

• simple (supports only increase and decrease)

• percentage (supports full control, including

mute, specific steps, etc.)

The device name.Stringnameget_headphone_enable

Indicates whether the paired device supports HFP.Booleansupportedget_hfpg_sco_state

Indicates whether the handsfree connection can be

established.

Booleanconnected

Type of volume control that the current device

supports for A2DP:

Stringvolumecontrol

• unavailable (no volume control)

• simple (supports only increase and decrease)

• percentage (supports full control, including

mute, specific steps, etc.)

Default is unavailable.

Indicates whether the paired device needs audio

processing by the handset or modem.

Booleanaudioprocessing

State of the handsfree connection:Stringstate

• closed

© 2014, QNX Software Systems Limited 99

/pps/services/audio/control

DescriptionData

type

ParametersCommand

• idle

• open

• streaming

Whether HFP is suspended as requested by the device.

Default is false.

Booleansuspended

Whether HFP also supports VAD and voice recording.BooleanremoteVAD

The device name.Stringnameget_input_level

If an invalid name is given, the level of the

currently selected input device is returned.

If the given device is output only, the level

of the corresponding input device when the

output device is selected is returned.

The device name.Stringnameget_input_mute

The device name. The device's volumecontrol must

be percentage.

Stringnameget_output_level

The device name. The device's volumecontrol must

be percentage.

Stringnameget_output_mute

The device to get the output volume level of when a

voice call is activated.

Stringnameget_voice_output_level

Percentage representing the current output volume

level.

Doublelevel

The device name.Stringnameget_voice_output_mute

Indicates whether the device output is muted.Booleanmuted

The device name. The device's volumecontrol can be

percentage or simple.

Stringnameincrease_output_level

The device name.Stringnamekeep_output_alive

Indicates whether the given output device is to be

kept alive when no audio stream is active.

Booleankeep_alive

Tunings to apply to the hardware codec:Stringaudiomodeset_audio_mode (may be

deprecated)
• audio

• video

100 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData

type

ParametersCommand

• voice

• record

Indicates whether HAC (Hearing Aid Compatibility) is

enabled for voice handset mode.

Booleanenabledset_hac_enabled

Indicates whether an HDMI device is connected.Booleanenabledset_hdmi_enable

The HDMI device is activated only when

these conditions are met:

1. No higher-priority device is active.

2. Mirror mode is set for the HDMI device.

3. The numchans, hdmiorder, and

audioconfig parameters for

set_hdmi_info are set correctly.

Number of audio channels supported by the connected

HDMI device.

Numbernumchansset_hdmi_info

Audio channel order of the connected HDMI device

(e.g., FL,FR).

Stringhdmiorder

Configuration of the audio output channels (e.g., "2.0",

"5.1"). Note that this is used only by the hdmi device.

Stringaudioconfig

Type of volume control supported by the attached

HDMI device:

Stringvolumecontrol

• unavailable (no volume control)

• simple (supports only increase and decrease)

• percentage (supports full control, including

mute, specific steps, etc.)

The hdmi audio driver sends HDMI info to

the Audio Manager before the HDMI handler

calls set_hdmi_enable. This is to prevent

set_hdmi_enable from publishing

inaccurate HDMI info.

Indicates whether mirror mode is enabled.Booleanmirrorset_hdmi_mode

© 2014, QNX Software Systems Limited 101

/pps/services/audio/control

DescriptionData

type

ParametersCommand

Name of the device to be activated as the default

because of this event.

Stringnameset_headphone_enable (may

be deprecated)

Indicates whether the headphone is enabled as the

output.

Booleanenabled

Indicates whether headphone volume boost is enabled.

If enabled, volume >92% is allowed.

Booleanhpoverrideset_headphone_override

The device name.Stringnameset_input_level

If an invalid name is given, the level of the

currently selected input device is returned.

If the given device is output only, the level

of the corresponding input device when the

output device is selected is returned.

Percentage representing the desired input volume

level.

Doublelevel

The device name.Stringnameset_input_mute

Indicates whether the given device input is muted.Booleanmuted

The device name. The device's volumecontrol must

be percentage.

Stringnameset_output_level

Percentage representing the desired output volume

level.

Doublelevel

The device name. The device's volumecontrol must

be percentage.

Stringnameset_output_mute

Indicates whether the given device output is muted.Booleanmuted

Indicates whether a TOSLINK connection is used.Booleanenabledset_toslink_enable

Indicates whether TTY mode is selected for voice

headset mode. The Audio Manager automatically picks

Booleanenabledset_tty_enabled

TTY mode only when a headset is connected and TTY

is enabled during a voice call.

The device to set the output volume level of when a

voice call is activated.

Stringnameset_voice_output_level

Percentage representing the desired output volume

level.

Doublelevel

102 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData

type

ParametersCommand

The device to mute/unmute.Stringnameset_voice_output_mute

Indicates whether the device output is muted.Booleanmuted

The device name.Stringnametoggle_input_mute

If an invalid name is given, the level of the

currently selected input device is updated.

If the given device is output only, the

corresponding input device when the output

device is selected is updated.

The device name. The device's volumecontrol must

be percentage.

Stringnametoggle_output_mute

The device to toggle the mute status of when a voice

call is activated.

Stringnametoggle_voice_output_mute

Examples

Set the volume level of the headset to 75%:

msg::set_output_level\nid::1\ndat:json:{"name":"headset", "lev

el":75}

The "level" field is a double, so its value doesn't have

quotes.

Mute the speaker:

msg::set_output_mute\nid::2\ndat:json:{"name":"speaker", "mut

ed":"true"}

© 2014, QNX Software Systems Limited 103

/pps/services/audio/control

/pps/services/audio/devices/

This directory contains all the supported audio devices

Publishers

Audio Manager

Subscribers

Any app

Supported devices

DescriptionDevice name

Bluetooth A2DP connection. When selected, the default input

(onboard mic) is selected.

a2dp

Bluetooth SCO/HFP connection.btsco

HAC telecoil used for hearing aids. When selected, the default input

(onboard mic) is selected.

hac

The handset on the device phone receiver. When selected, the

default input (onboard mic) is selected.

handset

HDMI audio connection. When selected, the default input (onboard

mic) is selected.

hdmi

Headphone with no mic input. When selected, the default input

(onboard mic) is selected.

headphone

Headset with mic input.headset

An output device connected through the headset jack. When

selected, the default input (onboard mic) is selected.

lineout

The main speaker on the device (handsfree on mobile phones).speaker

A virtual audio device for the system tones.tones

Optical audio device (“Toshiba Link”) used by some receivers.toslink

Telecommunications device for the deaf (connected through the

headphone jack).

tty

Used for USB audio devices.usb

A virtual audio device for voice content.voice

Wireless connection to TVs for A/V playback.wifidisplay

104 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

To find all the connected audio devices on your system, read the

/pps/services/audio/devices/.all object.

The default device

The status of the default audio device is published to the

/pps/services/audio/devices/default object.

The default device has the following attributes:

DescriptionAttribute

Name of the default audio device used for playback (e.g., speaker).device

The current default audio device for capture (e.g. handset).input.device

The mountpoint to access the input device (e.g.,

/dev/snd/pcmPreferredp).

input.path

Path to the actual audio interface for input and output (e.g.,

/dev/snd/pcmPreferredp).

path

Device attributes

Each device has the following attributes:

DescriptionData typeAttribute

Configuration of the audio output channels (e.g.,

"2.0", "5.1"). Note that this is used only by the

hdmi device.

Stringaudioconfig

Indicates whether the device can do some audio

processing that the system won't need to handle

Booleanaudioprocessing

(e.g., a headset may be able to do noise

cancellation).

Indicates whether a given device is connected.Booleanconnected

The path of the device's PPS control object. If this

object exists, then the device is controlled by a

PPS interface instead of an actual audio driver.

Stringcontrolpps

Indicates whether this device depends on another

device (this device has no effect unless the other

is also connected).

Booleandependency

Total number of input channels on the hardware.Numberhwinchans

© 2014, QNX Software Systems Limited 105

/pps/services/audio/devices/

DescriptionData typeAttribute

Default number of channels that the client should

use for multimedia audio capture. For example,

Numberinchans

for a device with four microphones, the client

might use two for multimedia, in which case

inchans would be 2 (hwinchans would be 4).

If inchans is 0, then no input is

supported for this device.

The current default audio device for capture (e.g.

handset). This attribute appears only in the

default object.

Stringinput.device

Name of the mixer group implemented by the input

device for volume control. Values depend on the

Stringinput.mixer

particular audio drivers and on the Audio Manager

configuration. Default names are:

• BT A2DP In

• BT SCO In

• HDMI In

• Input Gain

• Tones In

• TosLink In

• USB In

• Voice In

• WIFI In

For details about audio drivers, see the io-audio

manager and the deva-* entries in the QNX

Neutrino Utilities Reference.

The mountpoint to access the input device (e.g.,

/dev/snd/pcmPreferredc).

Stringinput.path

Indicates whether the output device is to be kept

alive when no audio stream is active.

Booleankeepalive

Name of the mixer group implemented by the

output device for volume control. As for

Stringmixer

input.mixer, values depend on the particular audio

drivers and on the Audio Manager configuration.

Default names are:

106 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData typeAttribute

• BT A2DP Out

• BT SCO Out

• HDMI Out

• Master

• PCM Mixer

• Tones Out

• TosLink Out

• USB Out

• Voice Out

Indicates whether the device can be muted. During

audio transitions from one device to another, the

Booleanmutable

Audio Manager may mute both devices until the

transition is complete so as to avoid sound leaks.

Number of audio channels supported by the device.Numbernumchans

The channel order (e.g., FL,FR) for two channels.

Note that this is used only by the hdmi device.

Stringorder

Path to the actual audio interface for input and

output (e.g., /dev/snd/pcmPreferredp).

Stringpath

Indicates whether the device can be heard publicly

(e.g., the value for a speaker would be true).

Booleanpublic

Indicates whether the device is physically installed

on the target.

Booleansupported

Indicates whether the device is temporarily

disabled by the system.

Booleansuspended

Type of volume control supported:Stringvolumecontrol

• unavailable (no volume control)

• simple (supports only increase/decrease)

• percentage (supports full control, including

mute, specific steps, etc.)

© 2014, QNX Software Systems Limited 107

/pps/services/audio/devices/

/pps/services/audio/mixer

Status object for audio mixer levels

Publishers

Audio Control

Subscribers

Any app

Overview

The /pps/services/audio/mixer object contains the mixer settings (for balance,

fade, etc.) used in the Audio Control app. The values shown indicate a range from 0

to 100%. Here's a sample object:

@mixer
balance:n:51.1811023622047
bass::74.02597402597402
fade::42.2077922077922
mid::92.20779220779221
treble::78.57142857142857

Volume levels are handled through the /pps/services/audio/control

and /pps/services/audio/status objects.

Attributes

DescriptionData typeAttribute

Distribution level of the left and right channels.Numberbalance

Bass level.Stringbass

Distribution level of the front and rear channels.Stringfade

Middle level.Stringmid

Treble level.Stringtreble

108 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/audio/status

The Audio Manager uses this object to reflect the status of audio devices

Publishers

Audio Manager

Subscribers

Any app

Attributes

DescriptionData typeAttribute

Current audio mode:Stringaudio.mode

• audio

• record

• video

• voice

Headphone boost level.Numberhpboostlevel

This is true if the headphone output

volume is limited by regulations (e.g., the

Booleanhpoutput.regulated

setting may be 100% by an app, but the

regulation limits the volume to 90%). This

field will become true when headphone

is the default routing path.

The unregulated volume setting (e.g.,

100%), which may differ from the actual

volume (e.g., 90%).

Numberhpoutput.unregulatedlevel

Indicates whether audio boost is on.Booleanhpoverride

Indicates whether audio-boost override is

supported.

Booleanhpoverride.supported

The unsafe volume level for headphones.Numberhpunsafelevel

The unsafe volume range for headphones.Booleanhpunsafezone

Indicates whether the unsafe volume

range is supported.

Booleanhpunsafezone.supported

© 2014, QNX Software Systems Limited 109

/pps/services/audio/status

DescriptionData typeAttribute

The hardware codec digital gain (in

percent) for this device.

Numberinput.<device>.gain

Indicates whether the input is muted for

this device.

Booleaninput.<device>.muted

The input gain (in percent).Numberinput.gain

Indicates whether the input is muted.Booleaninput.muted

Indicates whether a device is selected as

the default.

Booleanoutput.available

Indicates whether the output is muted for

this device.

Booleanoutput.<device>.muted

The output gain (in percent) for this

device.

Stringoutput.<device>.volume

110 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/audio/types/

This directory contains all the supported audio types

Publishers

Audio Manager

Subscribers

Any app

Overview

The Audio Manager publishes the status of each audio type for concurrent audio

playback to the /pps/services/audio/types/ directory. By monitoring these

objects, an application may take certain actions when an event occurs. For example,

a multimedia application may decide to pause when it is being muted by a

higher-priority audio source.

Supported audio types

DescriptionAudio type

Notifiers, such as calendar events, email, SMS, etc.alert

Any unclassified audio stream.default

Used for keyboard clicks.inputfeedback

Used by media player applications.multimedia

Used to denote streams related to push-to-talk use cases.pushtotalk

Used for playback of ringtones when an incoming phone

call occurs.

ringtone

Sound effects that can never be attenuated, such as the

camera click.

soundeffect

Text-to-speech services.texttospeech

Used by the video chat client, this type isn't covered by the

voice type because of a difference in automatic routing

policy.

videochat

Voiceband-related streams and certain telephony items

(cellular or VoIP).

voice

© 2014, QNX Software Systems Limited 111

/pps/services/audio/types/

DescriptionAudio type

Voice-recognition services such as VAD (Voice-Activated

Dialing).

voicerecognition

Used for voice-recording services.voicerecording

DTMF and call-progress tones, but can also be used to play

back nontone-based audio during phone calls.

voicetones

Audio type attributes

Each audio type object has the following attributes:

DescriptionData typeAttribute

The process ID of the application that is currently

playing.

Stringactive_pid

This is used only in the multimedia

type.

Indicates whether the audio type is being

attenuated.

Booleanattenuated

Indicates whether this audio type is being muted.Booleanmuted

The audio type (e.g., ringtone) that causes this

audio type to be muted.

Stringmuted_by

The process ID of the application that is muting

this audio type.

Stringmuted_by_pid

112 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/audio/voice_status

The Audio Manager uses this object to reflect the status of voice settings

Publishers

Audio Manager

Subscribers

Any app

The /pps/services/audio/voice_status object contains voice settings for the

audio devices. The object's format looks like this:

@voice_status
input.muted:b:false
voice.mode::Off
voice.output.a2dp.muted:b:false
voice.output.a2dp.volume:n:100.000000
voice.output.btsco.muted:b:false
voice.output.btsco.volume:n:100.000000
voice.output.handset.muted:b:false
voice.output.handset.volume:n:60.000000
voice.output.hdmi.muted:b:false
voice.output.hdmi.volume:n:100.000000
voice.output.headphone.muted:b:false
voice.output.headphone.volume:n:60.000000
voice.output.headset.muted:b:false
voice.output.headset.volume:n:60.000000
voice.output.lineout.muted:b:false
voice.output.lineout.volume:n:60.000000
voice.output.speaker.muted:b:false
voice.output.speaker.volume:n:60.000000
voice.output.tones.muted:b:false
voice.output.tones.volume:n:100.000000
voice.output.tty.muted:b:false
voice.output.tty.volume:n:100.000000
voice.output.usb.muted:b:false
voice.output.usb.volume:n:100.000000
voice.output.voice.muted:b:false
voice.output.voice.volume:n:100.000000

For more information on the audio devices, see the

/pps/services/audio/devices/ entry.

© 2014, QNX Software Systems Limited 113

/pps/services/audio/voice_status

/pps/services/bluetooth/control

The Bluetooth Manager listens for commands from the HMI on this control object

Publishers

Any app

Subscribers

Bluetooth Manager

Commands

The control object accepts the following commands:

DescriptionParametersCommand

Authorize an incoming Bluetooth connection request.data: MAC address of the device.

data2: Boolean value (true |

false) to indicate whether to

authorize.

authorize

Cancel an initiated device search.n/acancel_device_search

Cancel an initiated device pairing request. Note that this

command must be issued before the pairing completes.

data: MAC address of the device.cancel_pairing

Connect to a Bluetooth service on the remote paired

device.

data: MAC address of the device.

data2: Service number:

connect_service

For the SPP service, you need to specify the

UUID in the data2 parameter by putting a colon

• 0x110B: A2DP/AVRCP

(Advanced Audio Distribution

Profile / Audio/Video Remote

Control Profile)
between the service number and the UUID. For

example:

0x1101:5DF26DC6-8E42-8401-6D98-

75C100B108B1

• 0x111E: HANDSFREE

(Hands-Free Profile)

• 0x1134: MAP_PROFILE

(Message Access Profile)

• 0x1115: PAN (Personal Area

Networking Profile)

• 0x1130: PBAP_PROFILE

(Phone Book Access Profile)

• 0x1101: SERIAL_PORT

(Serial Port Profile)

114 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionParametersCommand

Search for remote devices. Results will be published to

/pps/services/bluetooth/status (devices will

n/adevice_search

also be published under

/pps/services/bluetooth/remote_devices/<mac_addr>).

Disconnect a connected Bluetooth service. For SPP (as

with the connect_service command), you must

specify the UUID in the data2 parameter.

data: MAC address of the device.

data2: Service number:

disconnect_service

• 0x110B: A2DP/AVRCP

(Advanced Audio Distribution

Profile / Audio/Video Remote

Control Profile)

• 0x111E: HANDSFREE

(Hands-Free Profile)

• 0x1134: MAP_PROFILE

(Message Access Profile)

• 0x1115: PAN (Personal Area

Networking Profile)

• 0x1130: PBAP_PROFILE

(Phone Book Access Profile)

• 0x1101: SERIAL_PORT

(Serial Port Profile)

Initiate pairing to a remote device.data: MAC address of the device.initiate_pairing

Initialize the Bluetooth system and the radio chip.n/aradio_init

Shut down the radio.n/aradio_shutdown

Delete a paired device from the system.data: MAC address of the device.remove_device

Set the accessibility level of the Bluetooth system.data: Accessibility level (0 - 4):set_access

• 0: IOBT_NOT_ACCESSIBLE

(no discoverability and

connectability)

• 1: IOBT_GENERAL_ACCESSI

BLE (general discoverability

and connectability)

• 2: IOBT_LIMITED_ACCESSI

BLE (limited discoverability

and connectability)

© 2014, QNX Software Systems Limited 115

/pps/services/bluetooth/control

DescriptionParametersCommand

• 3: IOBT_CONNECTABLE_ON

LY (connectable but not

discoverable)

• 4: IOBT_DISCOVERABLE_ON

LY (discoverable but not

connectable)

Set a numeric PIN required for authentication during

pairing.

data: MAC address of the device.

data2: PIN of legacy device

(usually a four-digit number).

set_legacy_pin

Set the friendly name of the Bluetooth system.data: Desired name.set_name

Set the pass phrase required for authentication during

pairing.

data: MAC address of the device.

data2: Pass phrase string (usually

four, but not more than six,

characters).

set_passkey

Confirm an authorization request from a remote device.data: MAC address of the device.

data2: Boolean value (true |

false) to indicate whether to

confirm request.

user_confirm

Examples

Set the accessibility level so devices will be discoverable:

echo "command::set_access\ndata:n:1" >> /pps/services/bluetooth/con

trol

Allow a connection request from the specified device:

echo "command::authorize\ndata::BB:C3:33:AD:66:CD\ndata2::b:true"

>> /pps/services/bluetooth/control

Connect the specified device using the Phone Book Access Profile:

echo "command::connect_service\ndata::BA:C3:32:AD:55:CC\nda

ta2::0x1130" >> /pps/services/bluetooth/control

Connect the specified device to the specified UUID using the Serial Port Profile:

echo "command::connect_service\ndata::BA:C3:32:AD:55:CC\nda

ta2::0x1101:5DF26DC6-8E42-8401-6D98-75C100B108B1" >> /pps/ser

vices/bluetooth/control

Pair with the specified device:

116 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

echo "command::initiate_pairing\ndata::CC:55:AD:24:46:51" >>

/pps/services/bluetooth/control

echo "command::user_confirm\ndata::CC:55:AD:24:46:51\ndata2:b:true"

>> /pps/services/bluetooth/control

Remove pairing for the specified device:

echo "command::remove_device\ndata::CC:55:AD:24:46:51" >>

/pps/services/bluetooth/control

© 2014, QNX Software Systems Limited 117

/pps/services/bluetooth/control

/pps/services/bluetooth/handsfree/control

Control object for accepting phone call commands from the HMI

Publishers

Any app

Subscribers

Bluetooth Manager

Overview

The results of commands sent to this control object are published to

/pps/services/bluetooth/handsfree/status.

Commands

The control object accepts the following commands:

DescriptionParametersCommand

Accept incoming call.cmd_data (phone number)HFP_ACCEPT

Call a number.cmd_data (phone number)HFP_CALL

End the call.cmd_data (phone number)HFP_HANGUP

118 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/bluetooth/handsfree/status

Status object for reporting the results of call operations and the state of the device's

phone line

Publishers

Bluetooth Manager

Subscribers

Any app

Overview

The Bluetooth Manager uses this status object to publish the results of commands

sent to the /pps/services/bluetooth/handsfree/control object.

Attributes

DescriptionValuesAttribute

Command success or

failure.

cmd_status
• HFP_SUCCESS

• HFP_FAIL

See table below.HFP_*state

State-specific data.Various (e.g., phone number)state_param

Values for state

DescriptionValue

An active call.HFP_CALL_ACTIVE

An active call and also one or more held calls.HFP_CALL_ACTIVE_HELD

An active call, one or more held calls, as well as an incoming waiting call.HFP_CALL_ACTIVE_HELD_WAITING

An active call and also an incoming waiting call.HFP_CALL_ACTIVE_WAITING

One or more held calls and also an outgoing call (alerting remote party).HFP_CALL_HELD_OUTGOING_ALERTING

One or more held calls and also an outgoing call (dialing remote party's

number).

HFP_CALL_HELD_OUTGOING_DIALING

One or more held calls.HFP_CALL_HELD

One or more held calls and also an incoming waiting call.HFP_CALL_HELD_WAITING

© 2014, QNX Software Systems Limited 119

/pps/services/bluetooth/handsfree/status

DescriptionValue

An incoming call.HFP_CALL_INCOMING

An outgoing call (alerting remote party).HFP_CALL_OUTGOING_ALERTING

An outgoing call (dialing remote party's number).HFP_CALL_OUTGOING_DIALING

A waiting call (used only for call list state info).HFP_CALL_WAITING

No call activity; service is connected and idle.HFP_CONNECTED_IDLE

An error occurred.HFP_ERROR

Profile initialized.HFP_INITIALIZED

Profile initializing.HFP_INITIALIZING

120 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/bluetooth/messages/control

Control object for accepting message commands from the HMI

Publishers

Any app

Subscribers

Bluetooth Manager

Overview

The results of commands sent to this control object are published to

/pps/services/bluetooth/messages/status.

Commands

The control object accepts the following commands:

DescriptionParametersCommand

Deletes or undeletes a message.DELETE
• account_id (number from the MAP

database)

• message_handle (hex number ID)

• message_status:b:true|false

Refreshes the folder listing and stores it in

the DB.

GET_FOLDER_LISTING
• account_id (number from the MAP

database)

Gets a specific, full message from the device

and stores it in the DB.

GET_MSG
• account_id (number from the MAP

database)

• message_handle (hex number ID)

Gets message listings (first 256 characters

of the subject, the sender, etc.) for a specific

folder and stores them in the DB.

GET_MSG_LISTING
• account_id (number from the MAP

database)

• message_folder

An internal command used to signal the

completion of the initialization.

n/aINITIALIZATION_COMPLETE

Sets a specific message as either read or

unread.

SET_MSG_STATUS
• account_id (number from the MAP

database)

© 2014, QNX Software Systems Limited 121

/pps/services/bluetooth/messages/control

DescriptionParametersCommand

• message_handle (hex number ID)

• message_status:b:true|false

Forces device to connect to and sync with the

network, if possible.

UPDATE_INBOX
• account_id (number from the MAP

database)

122 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/bluetooth/messages/notification

Object for notifications of Bluetooth messages

Publishers

Bluetooth Manager

Subscribers

Any app

Overview

The Bluetooth Manager uses this object to publish notifications of messages.

Attributes

ValuesAttribute

Number starting from zero found in the MAP database.account_id

Hex number ID.message_handle

message_type
• EMAIL

• MMS

• SMS_CDMA

• SMS_GSM

status
• DELIVERY_FAILURE

• DELIVERY_SUCCESS

• MEMORY_AVAILABLE

• MEMORY_FULL

• MESSAGE_DELETED

• MESSAGE_SHIFT

• NEW_MESSAGES

• SENDING_FAILURE

• SENDING_SUCCESS

© 2014, QNX Software Systems Limited 123

/pps/services/bluetooth/messages/notification

/pps/services/bluetooth/messages/status

Status object for reporting the results of message commands

Publishers

Bluetooth Manager

Subscribers

Any app

Overview

The Bluetooth Manager uses this status object to publish the results of commands

sent to the /pps/services/bluetooth/messages/control object.

Attributes

ValuesAttribute

device
• MAC address of the connected device

state
• CONNECTED

• CONNECTING (processing the initial sync)

• DISCONNECTED

• UNINITIALIZED (shown if an error occurred at startup)

status
• COMPLETE

• ERROR_BUSY (occurs when the Bluetooth Manager is

already busy processing another command)

• ERROR_COMMAND_NOT_KNOWN

• ERROR_NOT_CONNECTED (occurs when a command is

received and there's no connection)

• FAILED

• PROCESSING

124 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/bluetooth/paired_devices/<mac_addr>

Directory that the Bluetooth Manager uses for publishing paired devices

Publishers

Bluetooth Manager

Subscribers

Any app

Overview

The /pps/services/bluetooth/paired_devices directory contains one object

per Bluetooth device successfully paired when issuing an initiate_pairing

command (via /pps/services/bluetooth/control). The object's name is the

device's MAC address.

Attributes

DescriptionData typeAttribute

Comma-separated list of profile services

available (e.g., 0x1101 for SPP).

Stringavailable_services

Class of device code.Stringcod

Comma-separated list of profile services

currently connected.

JSONconnected_services

NOTE: This attribute is not actually used.Booleanin_range

Friendly name of the device.Stringname

Indicates whether device has been paired.Booleanpaired

Received Signal Strength Indicator (in

dBm).

Stringrssi

© 2014, QNX Software Systems Limited 125

/pps/services/bluetooth/paired_devices/<mac_addr>

/pps/services/bluetooth/phonebook/control

Control object for accepting phonebook commands from the HMI

Publishers

Any app

Subscribers

Bluetooth Manager

Overview

The results of commands sent to this control object are published to

/pps/services/bluetooth/phonebook/status.

Commands

DescriptionCommand

An internal command used to signal the

completion of the initialization.

INITIALIZATION_COMPLETE

Issue the phonebook sync command.SYNC_START

126 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/bluetooth/phonebook/status

Status object for reporting the phonebook sync progress

Publishers

Bluetooth Manager

Subscribers

Any app

Overview

The Bluetooth Manager uses this status object to publish the results of commands

sent to the /pps/services/bluetooth/phonebook/control object.

Attributes

ValuesAttribute

MAC address of the connected devicedevice

state
• CONNECTED

• CONNECTING (processing the initial sync)

• DISCONNECTED

• UNINITIALIZED (shown if an error occurred at startup)

status
• COMPLETE

• ERROR_BUSY (occurs when the Bluetooth Manager is

already busy processing another command)

• ERROR_COMMAND_NOT_KNOWN

• ERROR_NOT_CONNECTED (occurs when a command is

received and there's no connection)

• FAILED

• PROCESSING

© 2014, QNX Software Systems Limited 127

/pps/services/bluetooth/phonebook/status

/pps/services/bluetooth/remote_devices/<mac_addr>

Directory that the Bluetooth Manager uses for publishing discovered devices

Publishers

Bluetooth Manager

Subscribers

Any app

Overview

The /pps/services/bluetooth/remote_devices directory contains one object

per Bluetooth device discovered when issuing a device_search command (via

/pps/services/bluetooth/control). The object's name is the device's MAC

address.

Attributes

DescriptionData typeAttribute

Comma-separated list of profile services

available (e.g., 0x1101 for SPP).

Stringavailable_services

Class of device code.Stringcod

Comma-separated list of profile services

currently connected.

JSONconnected_services

NOTE: This attribute is not actually used.Booleanin_range

Friendly name of the device.Stringname

Indicates whether device has been paired.Booleanpaired

Received Signal Strength Indicator (in

dBm).

Stringrssi

128 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/bluetooth/services

Shows the profile used for a connected device

Publishers

Bluetooth Manager

Subscribers

Any app

Overview

When a remote Bluetooth device is paired with the head unit, the Bluetooth Manager

uses the /pps/services/bluetooth/services object to indicate which profile

is being used. For each profile supported on the QNX CAR platform, the information

appears in the object in this form:

service::mac_addr

where service is the abbreviated name of the profile and mac_addr is the remote

device's MAC address.

Here's a sample object:

@services
[n]avrcp::98:D8:CB:5D:71:0C
[n]hfp::98:D8:CB:5D:71:0C
[n]map::98:D8:CB:5D:71:0C
[n]pan::
[n]pbap::98:D8:CB:5D:71:0C
[n]spp::

This object indicates that a remote device with a MAC address of 98:D8:CB:5D:71:0C

is connected via A2DP/AVRCP, HFP, MAP, and PBAP; the other profiles (PAN and

SPP) aren't currently being used.

© 2014, QNX Software Systems Limited 129

/pps/services/bluetooth/services

/pps/services/bluetooth/settings

Contains information about the Bluetooth stack

Publishers:

Bluetooth Manager

Subscribers:

Any app; Bluetooth Manager

Attributes

DescriptionData typeAttributes

NOTE: This attribute is not actually used.Numberaccessibility

Indicates the presence of any active

connections.

Booleanactive_connections

MAC address of the local Bluetooth chip.Stringbtaddr

Indicates whether the Bluetooth system

is enabled.

Booleanenabled

Friendly name of the local Bluetooth chip.Stringname

130 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/bluetooth/spp/spp

Control object for the pps-spp service

Publishers

pps-spp; any app

Subscribers

pps-spp; any app

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Overview

The pps-spp service supports any HTML5 application (e.g., PandoraLink) that needs

to access Bluetooth SPP data. The server object will accept commands to open and

close one SPP stream for a client. Once the SPP connection is open, the service will

notify the client when new data has been read from SPP. This object also supports a

command to write data to SPP.

Besides using this PPS server object, an HTML5 app would also need to use

the qnx.bluetooth and qnx.bluetooth.spp JavaScript extensions to

start or stop the SPP service on a paired device before communicating with

the pps-spp service. For more information, see WebWorks JavaScript

Extensions (CAR 2.0—deprecated) in HTML5 and JavaScript Framework.

Apps may also use the /pps/services/bluetooth/control object to

issue Bluetooth commands for setting the accessibility level for devices,

initiating pairing, and so on.

Message/response format

Commands sent to the /pps/services/bluetooth/spp/spp object are of the

form:

msg::command_string\nid::ID_number\ndat::command_parameters

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\nerr::errno_number

© 2014, QNX Software Systems Limited 131

/pps/services/bluetooth/spp/spp

The id field can be omitted if there's no need to get a response back for the

message.

Messages sent by the client

DescriptionParametersCommand

Open an SPP stream.dat

JSON-encoded object that

holds two parameters:

open_stream

• mac—MAC address of

the device

• uuid—UUID of the SPP

server

Close the SPP stream.n/aclose_stream

Write Base64-encoded data

to the stream.

base64Datawrite_data

Responses returned by the server

Besides returning the client's message and ID, the server can also send a new_data

response:

DescriptionParametersResponse

Indicates new data was read from the SPP stream.base64Datanew_data

Examples

These examples show how to open an SPP stream, write “Hello World!”, then close

the stream.

These examples assume that you've already opened an SPP connection to a

device using the connect_service Bluetooth command. For example:

echo "command::connect_service\ndata::D5:DA:8E:43:ED:68\n

data2::0x1101:453994D5-D58B-96F9-6616-B37F586BA2EC" >>

/pps/services/bluetooth/control

For more information on Bluetooth commands, see the entry for

/pps/services/bluetooth/control in this reference.

1. We need to force the shell to keep the file descriptor open (because this is a server

object):

132 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

exec 3<> /pps/services/bluetooth/spp/spp

2. Issue the command to open the stream, along with a cat so we can see the

response:

echo

"msg::open_stream\nid::1\ndat:json:{\"mac\":\"D5:DA:8E:43:ED:68\",

\"uuid\":\"453994D5-D58B-96F9-6616-B37F586BA2EC\"}" >&3; cat

<&3

The spp object should show the response:

@spp
res::open_stream
id::1

3. Next we write “Hello World!” to the SPP stream. Remember that the caller will

need to Base64-encode the data before sending the message:

echo "msg::write_data\nid::2\ndat::SGVsbG8gV29ybGQh" >&3; cat

<&3

Again, the spp object will show the response:

@spp
res::write_data
id::2

4. Finally, we send the close_stream message to close the stream:

echo "msg::close_stream\nid::3\ndat::" >&3; cat <&3

And the object should look like this:

@spp
res::close_stream
id::3

© 2014, QNX Software Systems Limited 133

/pps/services/bluetooth/spp/spp

/pps/services/bluetooth/status

Status object that the Bluetooth Manager uses to publish responses to requests

Publishers

Bluetooth Manager

Subscribers

Any app

Events

The Bluetooth Manager publishes these events in response to requests made via the

/pps/services/bluetooth/control object:

DescriptionEvent

Incoming Bluetooth connection request needs to be authorized.BTMGR_EVENT_AUTHORIZE_REQUIRED

The last command sent has failed.BTMGR_EVENT_COMMAND_FAILED

A pairing request from a remote device has been confirmed.BTMGR_EVENT_CONFIRM_NUMERIC_REQ

The attempt to connect all services has failed.BTMGR_EVENT_CONNECT_ALL_FAILURE

The attempt to connect all services has succeeded.BTMGR_EVENT_CONNECT_ALL_SUCCESS

A remote device was paired.BTMGR_EVENT_DEVICE_ADDED

The specified paired device was successfully deleted.BTMGR_EVENT_DEVICE_DELETED

Request to delete the specified paired device has failed.BTMGR_EVENT_DEVICE_DELETED_FAILED

List of devices under

/pps/services/bluetooth/remote_devices/<mac_addr>

has changed.

BTMGR_EVENT_DEVICE_LIST_CHANGED

Search for remote devices is done.BTMGR_EVENT_DEVICE_SEARCH_COMPLETE

The attempt to disconnect all services has failed.BTMGR_EVENT_DISCONNECT_ALL_FAILURE

The attempt to disconnect all services has succeeded.BTMGR_EVENT_DISCONNECT_ALL_SUCCESS

Authentication number shown during pairing.BTMGR_EVENT_DISPLAY_NUMERIC_IND

Request to initiate pairing to the remote device has failed.BTMGR_EVENT_INIT_PAIRING_FAILED

Request to initiate pairing to the remote device has succeeded.BTMGR_EVENT_INIT_PAIRING_SUCCESS

Legacy PIN requested during pairing.BTMGR_EVENT_LEGACY_PIN_REQUIRED

Request to cancel an initiated device pairing has succeeded.BTMGR_EVENT_PAIRING_CANCELED

134 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionEvent

Request to initiate pairing to a remote device has succeeded.BTMGR_EVENT_PAIRING_COMPLETE

Request to initiate pairing to a remote device has failed.BTMGR_EVENT_PAIRING_FAILED

Passkey (alphanumeric PIN) requested during pairing.BTMGR_EVENT_PASSKEY_REQUIRED

Bluetooth system and the radio chip were initialized.BTMGR_EVENT_RADIO_INIT

Radio was shut down.BTMGR_EVENT_RADIO_SHUTDOWN

A service was connected.BTMGR_EVENT_SERVICE_CONNECTED

A service was disconnected.BTMGR_EVENT_SERVICE_DISCONNECTED

Request to set the accessibility level has failed.BTMGR_EVENT_SET_ACCESS_FAILURE

Request to set the accessibility level has succeeded.BTMGR_EVENT_SET_ACCESS_SUCCESS

Bluetooth stack has failed; restart required.BTMGR_EVENT_STACK_FAULT

© 2014, QNX Software Systems Limited 135

/pps/services/bluetooth/status

/pps/services/bootmgr/

Directory for objects used by the Boot Manager and HMI

Publishers

Boot Manager; HMI

Subscribers

Boot Manager; HMI

Overview

The Boot Manager and the HMI use the /pps/services/bootmgr/ directory as a

means to inform each other of which apps to launch and in what order.

The /pps/services/bootmgr/ directory contains the following objects:

history

The HMI uses the last_tab attribute in this object to publish the name of

each app selected via the tabs on the screen. The history object persists

across reboots, so by subscribing to this object, the Boot Manager can know

the last app that was selected and will start that app first when the system

boots.

modules_ready/

The Boot Manager creates an object in this directory for every app that's

specified in the /base/etc/slm-config-modules.xml file. The HMI

reads the .all object in the modules_ready/ directory and launches the

apps listed there. The objects themselves are empty and nonpersistent.

Sample history object

@history
last_tab::Home

Sample .all object

@Home
@launcher
@MediaPlayer
@navigation
@carcontrol
@Communication
@AppSection
@ASR

136 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

The Boot Manager collaborates with the System Launch and Monitor (SLM),

a special service that automates process management. For more information,

see the entry for SLM in the System Services Reference.

© 2014, QNX Software Systems Limited 137

/pps/services/bootmgr/

/pps/services/clock/control

Control object for setting the date and time

Publishers

Any app

Subscribers

coreServices

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Message/response format

Commands sent to the /pps/services/clock/control object are of the form:

msg::command_string\nid::ID_number\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\ndat:json:{JSON_data}\nerr::er

rno_number\nerrstr::error_description

The set command

This object accepts only one command:

dat:json:id::msg::

{"parameter":"value", "parameter":"val

ue", ...} (see below)

Numberset

Parameters and values are as follows:

ValueParameter

1970-9999year

1-12month

138 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

ValueParameter

1-31day

The set command doesn't completely validate input. For

example, if you enter a month and day of "2":"31"

(February 31), the set command will pass this input to

the date command-line utility, which will reject it, but

set won't report the error back to you. Remember to

sanitize your input.

0-24hour

0-59minute

0-60second

On real hardware (with a hardware clock on the I2C bus), the set command

will set the time in the hardware clock. On VMware VMs, the command will

set the Neutrino system time but not the hardware clock.

Response

errstr::err::dat:json:id::res::

as appropriateerrno_numbern/aNumber

(whatever was

sent in id::)

set

If your application is concerned with changes to the system clock or time zone,

you can monitor the /pps/services/clock/status object.

© 2014, QNX Software Systems Limited 139

/pps/services/clock/control

/pps/services/clock/status

Get changes to system clock or time zone

Publishers

coreServices

Subscribers

Any app

Attributes

DescriptionData typeAttribute

The number represents the POSIX time value (in

seconds since the epoch) after the clock was

Numberdatechange

changed. This is updated whenever the system

clock is changed.

This is updated whenever the _CS_TIMEZONE

system variable is updated.

Stringtimezonechange

Note that the datechange attribute must be treated as an approximation.

Although the attribute is the new POSIX time value (as returned by the time()

function) after the clock has been changed, the value might have been read

from the system after the clock was actually changed because of scheduling

delays. Furthermore, a thread that subscribes to this status object might not

receive notification of the change and get a chance to run until some time

after datechange is modified. Notifications of changes can be relied upon, but

only up to a point. The changed values should be considered only a hint.

140 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/gears/control

Control object for the OpenGL ES 2.0 Gears demo

Publishers

Any app

Subscribers

gles2-gears

Attributes

DescriptionData typeAttribute

Turn the gears on (1) or off (0).Numberactivated

Height (in pixels).Numberh

Swap interval. A value of 0 lets the app run as fast

as possible; a value of 1 or more will limit the rate

to the number of vsync periods.

Numberinterval

Once the gears have been activated, pause (1) or

resume (0) them.

Numberpause

When this attribute is present on startup (or when

it's changed), the demo will try to join its screen

window to this one as an embedded child.

StringscreenGroup

Width (in pixels).Numberw

The x dimension from the top left (in pixels).Numberx

The y dimension from the top left (in pixels).Numbery

The z order of the window. This should be set to

-1 so that the parent window can take advantage

of its own transparency to add a useful overlay.

Numberz

The /pps/services/gears/status object shows the demo's frame

rate.

Examples

Spin the gears as fast as possible:

echo "interval:n:0" >> /pps/services/gears/control

© 2014, QNX Software Systems Limited 141

/pps/services/gears/control

Now get the frame rate:

cat /pps/services/gears/status
@status
framerate::133.462

142 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/gears/status

Status object for the OpenGL ES 2.0 Gears demo

Publishers

gles2-gears

Subscribers

Any app

Attributes

DescriptionData typeAttribute

Animation rate (frames per second).Stringframerate

© 2014, QNX Software Systems Limited 143

/pps/services/gears/status

/pps/services/geolocation/control

The Geolocation service listens for commands on this object

Publishers

Geolocation service; any app

Subscribers

Any app

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Message/response format

Commands sent to the /pps/services/geolocation/control object are of the

form:

msg::command_string\nid::ID_number\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\ndat:json:{JSON_data}\nerr::er

ror_description

Commands

The control object accepts the following commands:

DescriptionCommand

Query the current location based on the IP address. The format for this message is as follows:

msg::location\nid::test_1\ndat:json:{"period": 2.0, "provider":"network",

"fix_type":"wifi"}

location

where:

• period—specifies the periodic delay (in seconds) between the update intervals. If period is 0 then

the update is provided only once.

• provider—geolocation source (always network).

• fix_type—geolocation fix type (e.g., wifi, but the value isn't significant because this field is for

browser compatibility only).

144 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionCommand

Cancel the currently running periodic request.cancel

As soon as the Geolocation service receives the location message from the

client, it queries http://www.hostip.info to get the current location based on

the IP address. The correctness of the result depends on the contents of the

database that the hostip.info site provides. The absence of an IP address for

the requesting client in the database might yield an arbitrary result (e.g., “wrong

location”). Note also that the Geolocation service is multithreaded, so it can

handle requests from multiple clients at the same time.

Messages sent by the Geolocation service

Besides returning the client's message and ID, the Geolocation service can also send

these responses:

DescriptionResponse

A percentage value representing the accuracy of the location

(e.g., 60).

accuracy

The latitude (e.g., 45.3333).latitude

The longitude (e.g., -75.9).longitude

Examples

1. If we want to observe responses from the Geolocation service, we need to force the

shell to keep the file descriptor open (because this is a server object). We also use

the ?wait option to ensure we receive all responses:

exec 3<> /pps/services/geolocation/control?wait &&

2. Now we'll send the location request:

echo 'msg:: location\nid::test_1\ndat:json: {"period": 5.0,

"provider": "network", "fix_type": "wifi"}' >&3 && cat <&3

The control object might now look like this:

@control
res::location
id::test_1
dat:json: {"accuracy":60,"latitude": 45.3333,"longitude":-75.9}

© 2014, QNX Software Systems Limited 145

/pps/services/geolocation/control

http://www.hostip.info

/pps/services/geolocation/status

Status object for the Geolocation service

Publishers

Geolocation service; any app

Subscribers

Any app

Overview

The Geolocation service populates this object at startup to enable the browser to access

current geolocation information. Here's a sample object:

@status
status:json:{"location_manager_location_on":true,
"location_manager_location_gnss_on":true}

Attributes

DescriptionAttribute

Indicates whether the Geolocation service is on/off for the browser.location_manager_location_on

Indicates whether the Global Navigation Satellite System is on/off.location_manager_location_gnss_on

146 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/hmi-notification/control

Control object for the generic event-source plugin for the HMI Notification Manager

Publishers

Any app

Subscribers

HMI Notification Manager

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Overview

The generic event-source plugin for the HMI Notification Manager provides a PPS

interface that allows applications to use the HMI policy-management facilities without

implementing a custom plugin. Applications can use this PPS interface to generate

events. The generic plugin can also be used for automated testing. Using the PPS

interface, a test application can generate customized events and inspect the outcome

for expected results.

PPS messages sent to the plugin's interface from clients take the form of JSON objects

that describe an event. The format is similar to that used by the

pps/services/hmi-notification/Status and

pps/services/hmi-notification/Messaging objects, but additional attributes

are included in this control object.

The event message

This object accepts only one command:

dat:json:msg::

{"parameter":"value", "parameter":"value", ...} (see

below)

event

Parameters and values are as follows:

DescriptionValueParameter

Name of the event to be passed to the HMI

Notification Manager.

event_namename

© 2014, QNX Software Systems Limited 147

/pps/services/hmi-notification/control

DescriptionValueParameter

Name of the application responsible for handling

the event.

view_applicationview

Type of event being passed. One of:event_typetype

• display-start

• display-end

An integer for the priority level (range is 0 to 7).priority_numberpriority

Type of window associated with the event. One of:window_typewindow-type

• Fullscreen

• Growl

• Hidden

• Notification

• Overlay

List of window types to be used as fallbacks for

the event. These events must be given in order of

fallbacksfall

back_types

preference and are used as fallback types if the

requested window type can't be accepted. These

fallbacks will be tried in order until one that can

be accepted is found or the event request is

rejected.

Examples

A client sends a display-start event with a priority of 1, with no fallback window

types:

echo 'event::{"name":"test_event", "view":"TestApp",
"type":"display-start", "priority":1, "window-type":"Overlay",
"fallback_types":[]}' >> /pps/services/hmi-notification/control

The Status object should then look like this:

cat /pps/services/hmi-notification/Status
[n]@Status
display:json:[{"name":"test_event","type":"Overlay","view":"TestApp"}]

The client sends the associated display-end event:

echo 'event::{"name":"test_event", "view":"TestApp",
"type":"display-end", "priority":1, "window-type":"Overlay",
"fallback_types":[]}' >> /pps/services/hmi-notification/control

148 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

The Status object should now be restored, showing the previously displayed event

in its display list:

cat /pps/services/hmi-notification/Status
[n]@Status
display:json:[{"name":"Home","type":"Fullscreen","view":"Home"}]

The following example illustrates a situation where the HMI Notification Manager uses

a fallback window type.

1. The client must be attached to the Messaging object (because it's a server object):

exec 3<> /pps/services/hmi-notification/Messaging

2. Next, the client sends a test-event1 event to the generic plugin to ensure that

an event with priority 1 or greater is active:

echo
'event::{"name":"test-event1","view":"TestApp1","type":"display-start",
"priority":1,"window-type":"Overlay","fallback_types":[]}'
>> /pps/services/hmi-notification/control

3. The client then sends test-event2 with priority 1 and fallback window type

Growl:

echo
'event::{"name":"test-event2","view":"TestApp2","type":"display-start",
"priority":1,"window-type":"Overlay","fallback_types":["Growl"]}'
>> /pps/services/hmi-notification/control

4. Now we can see that the Status object has been updated:

cat /pps/services/hmi-notification/Status ; cat <&3
[n]@Status
display:json:[{"name":"test_event1","type":"Overlay","view":"TestApp1"}]

And the Messaging object will show that a Growl notification event has been

sent:

@Messaging
display:json:[{"name":"test_event2","type":"Growl"}]

© 2014, QNX Software Systems Limited 149

/pps/services/hmi-notification/control

/pps/services/hmi-notification/Messaging

Server object for HMI Notification Manager

Publishers

HMI Notification Manager

Subscribers

Any app

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Overview

Since the Messaging object is used to issue transient notifications, this PPS object

is created in server mode. When a client reads the object, no data is returned

immediately. Clients should connect to the object with the wait flag enabled so as

to be notified when the HMI Notification Manager has issued a transient notification.

For example:

cat /pps/services/hmi-notification/Messaging?wait

When a transient notification is issued, connected clients will be notified with a

message similar to that used to express the manager's internal status. This message

will be a JSON-formatted object that specifies the name of a growl event. The window

type is specified in the message, but the value of this attribute will always be "Growl".

For example:

@Messaging
display:json:{"name":"Fluid::Alert","type":"Growl"}

150 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/hmi-notification/Status

Status object for HMI Notification Manager

Publishers

HMI Notification Manager

Subscribers

Any app

Overview

The Status object is used to expose the HMI Notification Manager's internal state.

This object publishes the status of the various output modalities. Note that this may

not represent the actual state of the output modalities, but rather the manager's belief

of what they are.

For this release of the QNX CAR platform, the HMI Notification Manager

supports only the display interaction modality.

An attribute is defined within the object to publish the internal state of the display.

This attribute's value is a JSON list that specifies which applications should currently

be displayed. The display attribute has the following format:

@Status
display:json:[{"name":"Home","type":"Modal"}]

In this example, the display currently has a single modal view called Home. The

following example shows the contents of the display attribute in the case where a

nontransient notification is to be displayed along with the Home application:

@Status
display:json:[{"name":"Home","type":"Modal"},
{"name":"Fluid::Alert","type":"Notification"}]

The HMI Notification Manager doesn't mandate how the HMI lays out the display in

this case.

© 2014, QNX Software Systems Limited 151

/pps/services/hmi-notification/Status

/pps/services/launcher/control

Control object for the applications launcher

Publishers

Applications Navigator

Subscribers

Any app

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Message/response format

Commands sent to the /pps/services/launcher/control object should be in

this form:

msg::command_string\ndat::{application_string}\nid::ID_number

Responses always reflect the command_string and ID_number that were sent in the

message:

res::command_string\ndat::application_string\nid::ID_number

Commands

id::dat::msg::

Number (or any other

identifier).

Application to launch (string from the app's

directory name and key found under /apps).

start

Number (or any other

identifier).

Application to close.stop

This must be the identifier returned in

the dat attribute of the start response.

Examples

The HTML5 version of the Navigator (also called Applications Window

Manager) isn't intended to work with applications that are started or stopped

152 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

from the command line. As a result, commands such as the following may

not work as expected.

Launch the Communication application by writing the following to the

/pps/services/launcher/control object:

msg::start\ndat::Communication.testDev_mmunicationf1e9ffb6\nid::1

The server responds with:

res::start\nid::1\ndat::2015282

You must pass 2015282 to the stop command to close this application.

Close the Communication application by writing the following to the

/pps/services/launcher/control object:

msg::stop\ndat::2015282\nid::1

© 2014, QNX Software Systems Limited 153

/pps/services/launcher/control

/pps/services/mirrorlink/applications

Holds information about the VNC-typed MirrorLink apps that are currently available

Publishers

mlink-daemon

Subscribers

Any app

Overview

When the mlink-daemon service detects a new MirrorLink device, it publishes the

device's MirrorLink apps (up to a maximum of 10) to the

/pps/services/mirrorlink/applications object.

To enable these MirrorLink apps to be launched from the HMI, the mlink-daemon

service also creates shortcuts for the apps (in the /apps/ directory) and then publishes

the apps to the /pps/system/navigator/applications/applications

object.

The mlink-daemon service also publishes to these PPS objects:

• /pps/services/mirrorlink/entities (for information about the

devices currently available)

• /pps/services/mirrorlink/rtp (for audio-streaming information)

Object format

Each line in the object has three colon-separated fields:

VNC.app_number:MLD.entity:app_name

where:

app_number

The app's current number (0 to 9), prefixed with VNC..

entity

Hexadecimal number identifying the device, prefixed with MLD..

app_name

The app's name as reported by the device.

154 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

Here's a sample object:

[n]@applications
VNC.0:MLD.111eb0:Nokia Drive
VNC.1:MLD.111eb0:Nokia Call
VNC.2:MLD.111eb0:Nokia Music
VNC.3:MLD.111eb0:Car Mode
VNC.4:MLD.111eb0:VNC server
VNC.5:MLD.111eb0:Nokia Phone

© 2014, QNX Software Systems Limited 155

/pps/services/mirrorlink/applications

/pps/services/mirrorlink/entities

Holds information about the MirrorLink entities (devices) that are currently available

Publishers

mlink-daemon

Subscribers

Any app

Object format

This object consists of four fields:

MLD.entity:type:name;uuid:identifier

where:

entity

Hexadecimal number identifying the device, prefixed with MLD..

type

Type of entity as reported by the RealVNC SDK (usually mirrorlink).

name

Device's reported name.

The name field ends with a semicolon (;), not a

colon.

identifier

Device's reported UUID.

Here's a sample object:

[n]@entities
MLD.8058ed8:mirrorlink:Symbian;uuid:59295e3b-5339-f5bf-cac0-3441af27fc53

156 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/mirrorlink/rtp

Holds RTP audio-streaming information for MirrorLink apps

Publishers

mlink-daemon

Subscribers

mlink-rtp

Object format

This object consists of five fields:

RTPip_port:direction:interval/payload,latency,size

where:

ip_port

IP address and port number of the device for the stream, prefixed with RTP.

direction

Stream direction: in or out.

interval

If the direction is in, this is the interval (in milliseconds) for hello messages.

payload

If the direction is out, this is the RTP payload type.

latency

Initial playback latency (in milliseconds).

size

Maximum length (in bytes) of the payload.

Here's a sample object:

[n]@rtp
[n]RTP192.168.3.100_4000:out:1000,4800,9600

© 2014, QNX Software Systems Limited 157

/pps/services/mirrorlink/rtp

/pps/services/mm-control/control

Control object for mm-control mediaplayer

The mm-control mediaplayer is being deprecated. The mm-player

mediaplayer replaces it.

Publishers

mm-renderer; any app

Subscribers

mm-control; any app

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Overview

The mm-control manager conveniently ties together media outputs, zones,

tracksessions, and renderer control. It provides a simple interface for HMIs that have

limited access to native calls.

The following types of commands are supported:

• Output commands (p. 159)

• Zone commands (p. 159)

• Tracksession commands (p. 160)

• Player commands (p. 161)

• iPod Out commands (p. 166)

Message/response format

Commands sent to the /pps/services/mm-control/control object are of the

form:

msg::command_string\nid::ID_number\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\ndat:json:{JSON_data}\nerr::er

rno_number\nerrstr::error_description

158 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

Output commands

dat:json:id::msg::

{"name":"output_name", "url":"output url", "type":"output

type"}

Numberoutput_create

{"name":"output_name"}Numberoutput_destroy

Examples of output commands

echo 'msg::output_create\nid::1\ndat:json:{"name":"output0",

"url":"snd:pcmPreferredp","type":"audio"}' >> /pps/services/mm-

control/control

echo 'msg::output_destroy\nid::2\ndat:json:{"name":"output0"}' >>

/pps/services/mm-control/control

Output responses

errstr::err::dat:json:id::res::

"Output name already exists"EBUSYn/aNumberoutput_create

"Couldn't find output name"ENOENTn/aNumberoutput_destroy

Zone commands

Zones are containers for collecting outputs into sets that can be atomically added to

or removed from players.

Outputs must already exist before you can use the zone_attach_outputs

or zone_detach_outputs commands.

dat:json:id::msg::

{"name":"zone_name", "outputs":["output name",…]}Numberzone_attach_outputs

{"name":"zone_name"}Numberzone_create

{"name":"zone_name"}Numberzone_destroy

{"name":"zone_name", "outputs":["output name",…]}Numberzone_detach_outputs

Examples of zone commands

echo 'msg::zone_create\nid::3\ndat:json:{"name":"zone0"}' >>

/pps/services/mm-control/control

echo 'msg::zone_destroy\nid::4\ndat:json:{"name":"zone0"}' >>

/pps/services/mm-control/control

© 2014, QNX Software Systems Limited 159

/pps/services/mm-control/control

echo 'msg::zone_attach_outputs\nid::5\ndat:json:{"name":"zone0",

"outputs":["output0"]}' >> /pps/services/mm-control/control

echo 'msg::zone_detach_outputs\nid::6\ndat:json:{"name":"zone0",

"outputs":["output0"]}' >> /pps/services/mm-control/control

Zone responses

errstr::err::dat:json:id::res::

as appropriateerrno_numbern/aNumberzone_attach_outputs

as appropriateerrno_numbern/aNumberzone_create

as appropriateerrno_numbern/aNumberzone_destroy

as appropriateerrno_numbern/aNumberzone_detach_outputs

Tracksession commands

Use tracksessions to provide a collection of tracks to a player.

Note the following:

1. The trksession_randomize_range command lets you randomize any

portion of a tracksession. A "start" of 0 and an "end" of -1 will randomize

the entire session. You may want to randomize a subrange to allow the user

to enable random playback partway through a session. Randomizing the

range after the current track permits randomized playback of the remaining

unheard songs without mixing in some of the tracks already heard.

2. The trksession_get_range command lets you view a session in either

sequential or playback order, which will differ if randomized playback is

requested.

dat:json:id::msg::

{"name":"trksession_name", "media_source":"attribute

name in /pps/services/mm-detect/status"}

Numbertrksession_create

{"name":"trksession_name"}Numbertrksession_delete

{"name":"trksession_name","start":start,"end":end,

"type":"random|sequential"}

Numbertrksession_get_range

{"name":"trksession_name","url":"sql"}Numbertrksession_import

{"name": "trksession_name","start": start,"end": end}Numbertrksession_randomize_range

160 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

Examples of trksession commands

echo 'msg::trksession_create\nid::7\ndat:json:{"name":"mtrkses

sion", "media_source":"dbmme"}' >> /pps/services/mm-control/control

echo 'msg::trksession_import\nid::8\ndat:json:{"name":"mtrkses

sion", "url":"SELECT mediastore_metadata.mountpath || fold

ers.basepath || library.filename AS url, fid AS userdata from me

diastore_metadata, folders, file WHERE file.folderid == fold

ers.folderid ORDER BY fid;"}' >> /pps/services/mm-control/control

echo 'msg::trksession_randomize_range\nid::10\ndat:json:{"name":

"mtrksession","start":0,"end":5}' >> /pps/services/mm-control/con

trol

echo 'msg::trksession_get_range\nid::11\ndat:json:{"name": "mtrk

session","start":0,"end":5,"type":"sequential"}' >> /pps/ser

vices/mm-control/control

echo 'msg::trksession_delete\nid::9\ndat:json:{"name":"mtrkses

sion"}' >> /pps/services/mm-control/control

Tracksession responses

errstr::err::dat:json:id::res::

as

appropriate

errno_numbern/aNumbertrksession_create

as

appropriate

errno_number{"num":num, "entries":

[{"fid":fid,"url":"url"},...]}

Numbertrksession_get_range

as

appropriate

errno_number{"trksession_size": int

session_size}

Numbertrksession_import

as

appropriate

errno_numbern/aNumbertrksession_randomize_range

Player commands

Players are used to play tracks from a tracksession. Players are created and referenced

by name so that the HMI can connect to players created or started before the HMI is

initialized.

For every player created, mm-control creates a PPS status object called

/pps/services/mm-control/playername/status to publish the status

associated with that player.

© 2014, QNX Software Systems Limited 161

/pps/services/mm-control/control

Note the following:

1. For player_set_position, the exact format of the position depends

on the input media type.

2. For player_set_read_mode, if the requested read mode for an active

tracksession differs from the current read mode, the tracksession will be

either shuffled or unshuffled and the TABLE trksessionview field

inside the media source’s database will be updated accordingly.

3. For player_set_trksession, the track specified by idx in the

tracksession named by trksession is attached as the new input.

4. For player_set_current, the track specified by index is attached as

the new input.

5. For player_play, if you don't set position, the default playback position

is the beginning of the track.

dat:json:id::msg::

{"player":"player_name","zone":"zone name"}Numberplayer_attach_zone

{"name":"player_name"}Numberplayer_create

{"player":"player_name"}Numberplayer_current_track

{"player":"player_name","zone":"zone name"}Numberplayer_detach_zone

{"player":"player_name"}Numberplayer_next_track

{"player":"player_name","position":position_ms}Numberplayer_play

{"player":"player_name"}Numberplayer_previous_track

{"player":"player_name,"index":index}Numberplayer_set_current

{"player":"player_name,"type":"context|in

put|track","params":[{"key0":"value0"},

{"key1":"value1"},…]}

Numberplayer_set_params

{"player":"player_name,"position":"position_ms"}Numberplayer_set_position

{"player":"player_name,"mode":"random|sequential"}Numberplayer_set_read_mode

{"player":"player_name, "mode":"all|one|none"}Numberplayer_set_repeat_mode

{"player":"player_name","speed":speed}Numberplayer_set_speed

{"player":"player_name"}Numberplayer_stop

{"player":"player_name","trksession":"trkses

sion_name","idx":current_idx}

Numberplayer_set_trksession

162 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

Examples of player commands

echo 'msg::player_create\nid::9\ndat:json:{"name":"mptest"}' >>

/pps/services/mm-control/control

echo 'msg::player_attach_zone\nid::12\ndat:json:{"player":"mptest",

"zone":"zone0"}' >> /pps/services/mm-control/control

echo 'msg::player_detach_zone\nid::12\ndat:json:{"player":"mptest",

"zone":"zone0"}' >> /pps/services/mm-control/control

echo 'msg::player_set_trksession\nid::13\ndat:json:{"play

er":"mptest", "trksession":"mtrksession","idx":0}' >> /pps/ser

vices/mm-control/control

echo 'msg::player_set_speed\nid::14\ndat:json:{"player":"mptest",

"speed":0}' >> /pps/services/mm-control/control

echo 'msg::player_set_position\nid::14\ndat:json:{"play

er":"mptest", "position":"100000"}' >> /pps/services/mm-control/con

trol

echo 'msg::player_set_read_mode\nid::17\ndat:json:{"play

er":"mptest", "mode":"random"}' >> /pps/services/mm-control/control

echo 'msg::player_set_repeat_mode\nid::17\ndat:json:{"play

er":"mptest", "repeatmode":"all"}' >> /pps/services/mm-control/con

trol

echo 'msg::player_set_current\nid::14\ndat:json:{"player":"mptest",

"index":2}' >> /pps/services/mm-control/control

echo 'msg::player_play\nid::13\ndat:json:{"player":"mptest"}' >>

/pps/services/mm-control/control

echo 'msg::player_stop\nid::17\ndat:json:{"player":"mptest"}' >>

/pps/services/mm-control/control

echo 'msg::player_previous_track\nid::17\ndat:json:{"play

er":"mptest"}' >> /pps/services/mm-control/control

echo 'msg::player_next_track\nid::16\ndat:json:{"player":"mptest"}'

>> /pps/services/mm-control/control

echo 'msg::player_current_track\nid::15\ndat:json:{"play

er":"mptest"}' >> /pps/services/mm-control/control

echo 'msg::player_set_params\nid::14\ndat:json:{"player":"mptest",

"type":"track","params":[{"language":"english"}]}' >> /pps/ser

vices/mm-control/control

© 2014, QNX Software Systems Limited 163

/pps/services/mm-control/control

Player responses

errstr::err::dat:json:id::res::

as

appropriate

errno_numbern/aNumberplayer_attach_zone

as

appropriate

errno_number{"status_path":"path to

the status object for this

player"}

Numberplayer_create

as

appropriate

errno_number{"trk_id":idx,"fid":fid,"url":"url"}Numberplayer_current_track

as

appropriate

errno_numbern/aNumberplayer_detach_zone

as

appropriate

errno_number{"trk_id":idx,"fid":fid,"url":"url"}Numberplayer_next_track

as

appropriate

errno_number{"trk_id":fid}Numberplayer_play

as

appropriate

errno_number{"trk_id":idx,"fid":fid,"url":"url"}Numberplayer_previous_track

as

appropriate

errno_numbern/aNumberplayer_set_current

as

appropriate

errno_numbern/aNumberplayer_set_params

as

appropriate

errno_numbern/aNumberplayer_set_position

as

appropriate

errno_numbern/aNumberplayer_set_read_mode

as

appropriate

errno_numbern/aNumberplayer_set_repeat_mode

as

appropriate

errno_numbern/aNumberplayer_set_speed

as

appropriate

errno_numbern/aNumberplayer_set_trksession

as

appropriate

errno_numbern/aNumberplayer_stop

164 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

Player states

Description:State:

No active trksession is set for the player.IDLE

An error has occurred; the player thread is dead. The player cannot accept any new commands from the

HMI.

INVALID

The active trksession is playing.PLAYING

The active trksession is playing; the speed is set to zero.PAUSED

All other scenarios.STOPPED

Attributes published to /pps/services/mm-control/playername/status

These attributes are published to the status object:When this command is called:

player_create
• state::IDLE

• speed::1000

player_play
• trkid:n:index_of_trk

• fid:n: (fid of the track inside the database; stored inside the trksession as

userdata)

• state::PLAYING

• position:n: (current position of the track)

• duration:n: (for iPods only, duration of the track)

player_set_current
• trkid:n:index_of_trk

• fid:n: (fid of the track inside the database; stored inside the trksession as

userdata)

player_set_trksession
• trksession::trksession_name

• media_source::attribute name in /pps/mm/status

• trkid:n:index_of_trk

• fid:n: (fid of the track inside the database; stored inside the trksession as

userdata)

• state::STOPPED

If called when player is PLAYING or PAUSED:player_stop

• state::STOPPED

© 2014, QNX Software Systems Limited 165

/pps/services/mm-control/control

iPod Out commands

Before you can use the following commands, you must first purchase the iPod

addon for the QNX SDK for Apps and Media. For details, contact your QNX

representative.

dat:json:id::msg::

{"name":"player_name","zone":"zone name", "mount

point":"path to ipod"}

Numberipodout_enter

{"name":"player_name"}Numberipodout_exit

{"name":"player_name", "direc

tion":"left"|"right"|"up"|"down"|"select"|"menu",

"delay":int32, "repeat":int32}

Numberipodout_pushuibutton

The "delay" and "repeat" attributes inside the JSON

object are optional (default is 0).

Examples of iPod Out commands

echo 'msg::ipodout_enter\nid::15\ndat:json:{"name":"mpipodout",

"zone":"audio","mountpoint":"/fs/ipod0"}' >> /pps/services/mm-

control/control

echo 'msg::ipodout_exit\nid::15\ndat:json:{"name":"mpipodout"}'

>> /pps/services/mm-control/control

echo 'msg::ipodout_pushuibutton\nid::15\ndat:json:{"name":"mpipod

out", "direction":"left"}' >> /pps/services/mm-control/control

echo 'msg::ipodout_pushuibutton\nid::15\ndat:json:{"name":"mpipod

out", "direction":"right"}' >> /pps/services/mm-control/control

echo 'msg::ipodout_pushuibutton\nid::15\ndat:json:{"name":"mpipod

out", "direction":"up"}' >> /pps/services/mm-control/control

echo 'msg::ipodout_pushuibutton\nid::15\ndat:json:{"name":"mpipod

out", "direction":"down"}' >> /pps/services/mm-control/control

echo 'msg::ipodout_pushuibutton\nid::15\ndat:json:{"name":"mpipod

out", "direction":"select"}' >> /pps/services/mm-control/control

echo 'msg::ipodout_pushuibutton\nid::15\ndat:json:{"name":"mpipod

out", "direction":"menu"}' >> /pps/services/mm-control/control

166 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

http://www.qnx.com/company/contact/
http://www.qnx.com/company/contact/

iPod Out responses

errstr::err::dat:json:id::res::

as appropriateerrno_numbern/aNumberipodout_enter

as appropriateerrno_numbern/aNumberipodout_exit

as appropriateerrno_numbern/aNumberipodout_pushuibutton

© 2014, QNX Software Systems Limited 167

/pps/services/mm-control/control

/pps/services/mm-control/<playername>/status

Mediaplayer status object

Publishers

mm-control

Subscribers

Any app

Overview

Players are used to play back tracks from a tracksession. Players are created and

referenced by name so that the HMI can connect to players created or started before

the HMI is initialized.

For every player created, mm-control creates a PPS object called

/pps/services/mm-control/playername/status to publish the status

associated with that player.

Attributes published to /pps/services/mm-control/playername/status

These attributes are published to the status object:When this command is called:

player_create
• state::IDLE

• speed::1000

player_set_trksession
• trksession::trksession_name

• media_source::attribute name in

/pps/mm/status

• trkid:n:index_of_trk

• fid:n: (fid of the track inside the database;

stored inside the trksession as userdata)

• state::STOPPED

player_set_current
• trkid:n:index_of_trk

• fid:n: (fid of the track inside the database;

stored inside the trksession as userdata)

player_play
• trkid:n:index_of_trk

168 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

These attributes are published to the status object:When this command is called:

• fid:n: (fid of the track inside the database;

stored inside the trksession as userdata)

• state::PLAYING

• position:n: (current position of the track)

• duration:n: (for iPods only, duration of the

track)

If called when player is PLAYING or PAUSED:player_stop

• state::STOPPED

© 2014, QNX Software Systems Limited 169

/pps/services/mm-control/<playername>/status

/pps/services/mm-detect/status

The mm-detect service publishes device information to this object

Publishers

mm-detect

Subscribers

HMI Media Player; any app

Overview

The mm-detect service uses this status object to notify the HMI of mediastore

insertions and removals as well as synchronization events. During synchronization,

mm-detect publishes device information in JSON format to the status object.

To listen for mediastore insertions and removals, mm-detect subscribes to objects

in the /pps/qnx/mount/ directory.

Attributes

DescriptionAttribute

Path to the database (e.g., /dev/qdb/mme).dbpath

Type of storage device:device_type

• hdd

• ipod

• mtp

• usb

Filesystem type:fs_type

• cd

• dos (fat32)

• ipod

• iso9660

• joliet

• pfs (e.g., for MTP devices)

• qnx

• udf

• unknown

170 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionAttribute

The specific values for fs_type depend on the

relevant filesystem driver. For details about each

driver, see the fs-* entries in the OS Utilities

Reference.

Path to the mediastore's images.image_path

Filesystem mountpoint (e.g., /fs/usb0).mount

Name of the removable device (e.g., KINGSTON).name

Indicates whether the file information has been

synchronized.

synched

© 2014, QNX Software Systems Limited 171

/pps/services/mm-detect/status

/pps/services/multimedia/mediacontroller/control

The Now Playing service listens for commands on this control object

Publishers

Media controllers

Subscribers

Now Playing

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Message/response format

Commands sent to the

/pps/services/multimedia/mediacontroller/control object are of the

form:

msg::command_string\nid::ID_number\nparameter_data

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\nerror::error_description

The id field can be omitted if there's no need to get a response back for the

message.

Commands sent by the client

DescriptionData

type

ParametersCommand

Request that the active player be maximized.n/an/aapp_maximize

Notifies Now Playing of a button make event, intended only for the

hardware button driver. The bid_value parameter can be one of:

JSONbut

ton_id:bid_val

ue

b_down

• bid_forward

• bid_hookswitch

• bid_minus

• bid_next

172 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData

type

ParametersCommand

• bid_pause

• bid_play

• bid_playpause

• bid_plus

• bid_prev

• bid_rewind

• bid_stop

• bid_volume_down

• bid_volume_up

Notifies Now Playing of a button break event, intended only for the

hardware button driver. For the bid_value parameter, see the

description above for b_down.

JSONbut

ton_id:bid_val

ue

b_up

Set the volume level to the given vlevel (a number from 0 to 100).Stringvlevelv_set

Increase the volume level by one step. Media volume typically has

16 steps, voice has 10. Increasing the volume by one step has the

effect of a 6.25% increase.

n/an/av_up

Decrease the volume level by one step.n/an/av_down

Set the mute state to true or false.Booleanmutev_mute

Indicates that a volume or mute update was done to the audioman

service; the Now Playing service should reread it and display a toast

notification.

n/an/av_update

Direct the connected media player to play its content.n/an/am_play

Direct the connected media player to pause its content.Stringn/am_pause

Toggle the pause state and direct the connected media player to

play or pause its content accordingly.

Stringn/am_playpause

Direct the connected media player to stop its content.Stringn/am_stop

Direct the connected media player to jump to the start of the current

track or to the previous track.

Stringn/am_previous

Direct the connected media player to jump to the start of the next

track.

Stringn/am_next

Direct the connected media player to enter fast-forward mode.Stringn/am_fforward

Direct the connected media player to enter rewind mode.Stringn/am_rewind

© 2014, QNX Software Systems Limited 173

/pps/services/multimedia/mediacontroller/control

DescriptionData

type

ParametersCommand

Request that the caller subscribe to updates in metadata, track

change, and state for the currently playing content.

n/an/amd_subscribe

Request that the caller no longer subscribe to changes for the

currently playing content.

n/an/amd_unsubscribe

Messages sent by Now Playing

Besides returning the client's message and ID, the Now Playing service can also send

these responses:

DescriptionData typeParametersResponse

Provides the active music player's process ID. A value

of 0 indicates no active player.

Numberpidm_active_pid

Provides the process IDs of the backgrounded

(interrupted) players. A value of 0 indicates no

Number

(for the

pidm_background_player_pid

backgrounded players. The format for this message is as

follows:

number of

pids);

JSON (for

each pid)
msg::m_background_player_pid\nnumber:n:num

ber_of_pids\ndat:json:pid1, pid2, ...

Provides the backgrounded (interrupted) music player's

process ID. A value of 0 indicates no backgrounded

player.

Numberpidm_bg_pid

Provides the process ID of the preactive phone player.

This is intended to be used by the phone when screening

Numberpidm_preactive_pid

an incoming call. A value of 0 indicates no preactive

player.

This message is sent only to subscribing controllers.

Reflects the active player's state in the system. The state

parameter can be one of:

Stringstatem_state

• stopped

• paused

• playing

• trackchange

Note that trackchange only delimits tracks—it doesn't

indicate a state change (from stopped, paused, or

playing). The player is expected to send

msg::state\ndat::trackchange at every change of

174 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData typeParametersResponse

track to generate the trackchange message to the

controller.

This message is sent only to subscribing controllers.

Reflects the initial (or change in) metadata for the

JSONmd_at

tribute:val

ue

md_update

currently played track to each client controller listening

for metadata changes. Strictly speaking, the metadata

attributes are arbitrary because these PPS interfaces will

proxy any metadata information from the active media

player in the system to all subscribed controllers. Known

metadata attributes include:

• artist:name—string representing the name of the

artist being played

• album:name—string representing the name of the

album being played

• track:name—string representing the name of the

track being played

• position:track_pos—number representing the

track's current playback position (in milliseconds)

• duration:track_duration—number representing

the track's current duration (in milliseconds)

• albumArtwork:file_path—absolute path to an

image file representing the album's artwork

• nextEnabled:true|false—control from the player

to enable (true) or disable (false) the next button

on the volume toast (default is true)

• prevEnabled:true|false—control from the player

to enable (true) or disable (false) the prev button

on the volume toast (default is true)

The nextEnabled and prevEnabled attributes are

intended to be sent by media players that support and

enable the fancy overlay in the volume toast.

Examples

1. If we want to observe responses from the Now Playing service, we need to force

the shell to keep the file descriptor open (because this is a server object):

exec 3<> /pps/services/multimedia/mediacontroller/control

2. Now let's set the volume to 50%:

© 2014, QNX Software Systems Limited 175

/pps/services/multimedia/mediacontroller/control

echo "msg::v_set\nid::1\ndat::50" >&3; cat <&3

3. We can see the response from the server:

@control
res::v_set
id::1
error::ok

176 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/multimedia/mediaplayer/control

The Now Playing service listens for commands on this control object

Publishers

Media players

Subscribers

Now Playing

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Message/response format

Commands sent to the /pps/services/multimedia/mediaplayer/control

object are of the form:

msg::command_string\nid::ID_number\nparameter_data

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\nerror::error_description

Messages sent by the client

DescriptionData

type

ParametersCommand

The acquire command asks the system to establish the calling

player as the active media player in the system. If a currently active

n/an/aacquire

media player is at the same or lower priority as the calling player,

the active player will have its active state revoked.

Media players must send the acquire command before they begin

media playback so as to allow other players to stop playback. Players

should do this only on an explicit action by the user (e.g., the user

has pressed the play button or has just launched the player). If the

active status is revoked by a higher-priority player (such as VAD or

phone), the current player will be paused (not revoked) and will be

resumed (if it wasn't paused) and given active status again when the

higher-priority player releases. A player is released from being active

© 2014, QNX Software Systems Limited 177

/pps/services/multimedia/mediaplayer/control

DescriptionData

type

ParametersCommand

if it sends the release message, gets preempted by another acquiring

player, or disconnects from the PPS object.

The button_name parameter is of the form:JSONkey:button_namebutton

bn_button_button_length, where button is one of:

• forward

• hookswitch

• minus

• next

• pause

• play

• playpause

• plus

• prev

• rewind

• stop

• vdown

• vup

and length is one of:

• med (600ms)

• short (<600ms)

A time value is required. Registering both short and med

will request the button event as soon as the button goes

down. Adding the threshold option (nothresh) to a short

button registration will prevent the immediate action and

provide short or med events based on how long the button

is held.

The button_name parameter is designed to be flexible

enough to allow any hard button to be combined with a time

value and optionally with another button (for simultaneous

presses). If the med length is also registered, the action is

taken as soon as the button goes down.

178 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData

type

ParametersCommand

Setting for threshold support.JSONnothresh:true|false

(optional)

Forward button notifications to the registered app.JSONaction:forward

Updates the metadata for the currently played track. Strictly speaking,

the metadata attributes are arbitrary because these PPS interfaces

JSONproperty:valuemetadata

will proxy any metadata information from the active media player in

the system to all subscribed controllers. Known metadata attributes

include:

• artist:name—string representing the name of the artist being

played

• album:name—string representing the name of the album being

played

• track:name—string representing the name of the track being

played

• position:track_pos—number representing the track's current

playback position (in milliseconds)

• duration:track_duration—number representing the track's

current duration (in milliseconds)

• albumArtwork:file_path—absolute path to an image file

representing the album's artwork

• nextEnabled:true|false—control from the player to enable

(true) or disable (false) the next button on the volume toast

(default is true)

• prevEnabled:true|false—control from the player to enable

(true) or disable (false) the prev button on the volume toast

(default is true)

The nextEnabled and prevEnabled attributes are intended to be

sent by media players that support and enable the fancy overlay in

the volume toast.

The value for name is a descriptive string.JSONname:nameregister

One of low or high.JSONprio:priority

One of voice or general.JSONaudio

One of fancy (i.e., enable controls) or plain (i.e., disable controls).JSONoverlay (optional)

Handle used for the audio channel. This handle is required for correct

functionality of auto-resume when the media player is interrupted

JSONaudioman_han

dle:handle (optional)

© 2014, QNX Software Systems Limited 179

/pps/services/multimedia/mediaplayer/control

DescriptionData

type

ParametersCommand

by a higher-priority player. The correct functionality that requires

this handle is detecting a private-to-public switch. For example, if

the headset is unplugged during the interrupting player, the

backgrounded player won't resume automatically. The audioman_han

dle:handle parameter is required to determine this switch.

Generally, only the VAD, phone, or VoIP applications should

use voice or any priority but low. Media players should

register with low priority and general audio. When the

voice-activated dialing or phone applications need to send

an acquire command, Now Playing will pause the current

media player and resume it (if it wasn't already paused) after

the dialing operation or phone call.

One of true or false. Setting the recorder flag to true indicates

that this player is a capture device. This is currently intended to be

JSONrecorder (optional

flag)

used only for video recording that shouldn't be stopped by screening

of incoming calls.

You may use apppid instead of the connection PID when maximizing

the active player with msg::app_maximize (see the entry for

/pps/services/multimedia/mediacontroller/control).

JSONpid:apppid (optional)

Notifies Now Playing that the media player is relinquishing control.

If this is a higher-priority player (such as VAD or phone), any

n/an/arelease

previously active media player that was paused when this one sent

an acquire command will be resumed (if it wasn't paused) and will

be given active status.

Updates the player's play state to the given state string, one of:Stringdat::statestate

• stopped

• paused

• playing

• trackchange—a special string for players that support multiple

tracks. Players can send trackchange as a way to delimit tracks

when playback moves from one track to another.

Deregister a single button at the given length.JSONkey:button_nameunbutton

See the button command for the values for button_name.

180 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

Messages sent by Now Playing

Besides returning the client's message and ID, the Now Playing service can also send

the following:

DescriptionParametersMessage

Indicates that the player's state as the

active media player in the system is

n/arevoke

being revoked. The player should

immediately stop playback and free up

multimedia resources. This message will

be sent to a player to deny its request to

acquire active status if a higher-priority

player is currently active. The message

is also sent to the active player whenever

another player preempts it.

Asks the media player to handle the

given command string.

One of:track\ndat::command_string

• forward—enter fast-forward mode

• holdData—stop sending metadata

updates

• next—jump to the beginning of the

next track

• pause—pause playback of the

current track

• play—play the current track

• prev—jump to the beginning of the

current or previous track

• rewind—enter rewind mode

• sendData—start or resume sending

metadata updates

• stop—stop playback of the current

track

Notifies the player of the given button

press.

See the button command for the

values for button_name.

key\ndat::button_name

Command-line examples

1. If we want to observe responses from the Now Playing service, we need to force

the shell to keep the file descriptor open (because this is a server object):

exec 3<> /pps/services/multimedia/mediaplayer/control

© 2014, QNX Software Systems Limited 181

/pps/services/multimedia/mediaplayer/control

2. Notify Now Playing that we want to be the active media player:

echo "msg::acquire\nid::1" >&3; cat <&3

3. We can see the response from the server:

@control
res::acquire
id::1
error::ok

Button-registration examples

1. Register for both short and medium button lengths, which will cause Now Playing

to send one button event at button down:

msg::button\nid::1\ndat:json:{"key":"bn_vup_short","action":"for

ward"} >> /pps/services/multimedia/mediaplayer/control

msg::button\nid::1\ndat:json:{"key":"bn_vup_med","action":"for

ward"} >> /pps/services/multimedia/mediaplayer/control

2. Now we'll set the nothresh option for the short button registration. Now Playing

won't send the event at button down, but rather when the button goes up, as if you

registered for just one length:

msg::button\nid::1\ndat:json:{"key":"bn_vup_short","action":"for

ward", "nothresh":true} >> /pps/services/multimedia/mediaplay

er/control

msg::button\nid::1\ndat:json:{"key":"bn_vup_med","action":"for

ward"} >> /pps/services/multimedia/mediaplayer/control

Note that if nothresh is set and the button is held for less than 600ms, the event

will be sent at button up. If the button is held longer than 600ms, the event will

be sent at 600ms.

182 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/multimedia/mediaplayer/phone

The Now Playing service listens for commands on this control object

Publishers

Phone app

Subscribers

Now Playing

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Message/response format

Commands sent to the /pps/services/multimedia/mediaplayer/phone

object are of the form:

msg::command_string\nid::ID_number\nparameter_data

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\nparameter_data\n error::er

ror_description

Commands sent by the phone app

DescriptionData

type

ParametersCommand

The acquire command asks the system to establish the phone

app as the active media player in the system. Any currently active

n/an/aacquire

player will be paused (not revoked) and then resumed (if it wasn't

paused). When the phone releases, the paused player will be given

active status again.

The button_name parameter is of the form:JSONkey:button_namebutton

bn_button_button_length, where button is one of:

• forward

• hookswitch

• minus

© 2014, QNX Software Systems Limited 183

/pps/services/multimedia/mediaplayer/phone

DescriptionData

type

ParametersCommand

• next

• pause

• play

• playpause

• plus

• prev

• rewind

• stop

• vdown

• vup

and length is one of:

• med (600ms)

• short (<600ms)

A time value is required. Registering both short and med

will request the button event as soon as the button goes

down. Adding the threshold option (nothresh) to a short

button registration will prevent the immediate action and

provide short or med events based on how long the button

is held.

The button_name parameter is designed to be flexible

enough to allow any hard button to be combined with a

time value and optionally with another button (for

simultaneous presses). If the med length is also registered,

the action is taken as soon as the button goes down.

Setting for threshold support.JSONnothresh:true|false

(optional)

Forward button notifications to the registered app.JSONaction:forward

Updates the metadata for the currently played track. Strictly

speaking, the metadata attributes are arbitrary because these PPS

JSONproperty:valuemetadata

interfaces will proxy any metadata information from the active media

player in the system to all subscribed controllers. Known metadata

attributes include:

184 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData

type

ParametersCommand

• artist:name—string representing the name of the artist being

played

• album:name—string representing the name of the album being

played

• track:name—string representing the name of the track being

played

• position:track_pos—number representing the track's current

playback position (in milliseconds)

• duration:track_duration—number representing the track's

current duration (in milliseconds)

• albumArtwork:file_path—absolute path to an image file

representing the album's artwork

• nextEnabled:true|false—control from the player to enable

(true) or disable (false) the next button on the volume toast

(default is true)

• prevEnabled:true|false—control from the player to enable

(true) or disable (false) the prev button on the volume toast

(default is true)

The nextEnabled and prevEnabled attributes are intended to

be sent by media players that support and enable the fancy overlay

in the volume toast.

The value for name is a descriptive string.Stringname:namephonereg

The priority is set at phone (which is higher than low or

high for players). Generally, only the phone or VoIP

applications should use this interface.

Asks the system to establish the phone as the active media player.

If a recorder (a type of player flagged at registration time) is active,

n/an/apreacquire

the phone becomes preacquired alongside the recorder. The recorder

continues with no state changes. This state is intended to be used

by the phone for screening incoming calls. If the call is rejected,

the phone should release and any recorder should continue. If the

call is accepted, the phone should send the acquire message,

which will cause the recorder to be backgrounded. Any current

player (not flagged as a recorder) will be paused (not revoked) and

will be resumed (if it wasn't paused) and given active status again

© 2014, QNX Software Systems Limited 185

/pps/services/multimedia/mediaplayer/phone

DescriptionData

type

ParametersCommand

when the phone releases. A subsequent acquire before release

won't affect the state.

Notifies Now Playing that the phone app is relinquishing control.

Any previously active media player that was paused when the phone

n/an/arelease

sent an acquire command will be resumed (if it wasn't paused)

and will be given active status.

Deregister a single button at the given length.JSONkey:button_nameunbutton

See the button command for the values for button_name.

186 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/multimedia/mediaplayer/status

The Now Playing service publishes information about media players to this object

Publishers

Now Playing

Subscribers

Now Playing; any app

Attributes

DescriptionData typeAttribute

Registered name of the active player (none if there's no

registered name or player).

Stringactive_name

Process ID of the active player (0 if there's no active player).Numberactive_pid

Registered priority of the active player (none if there's no

registered priority or player). Values are low or high for media

players, but always phone if the phone app is active.

Stringactive_prio

Provides the registered names of the backgrounded (previously

active) players. The format of this message is as follows:

Number (for number

of names); string (for

names)

background_play

er_name

background_player_name:num

ber_of_names:name1,name2,...

The value for number_of_names is 0 if there are no backgrounded

players.

Provides the PIDs of the backgrounded (previously active) players.

The format of this message is as follows:

Number (for number

of PIDs); number (for

PID)

background_play

er_pid

background_player_pid:number_of_pids:pid1,pid2,...

The value for number_of_pids is 0 if there are no backgrounded

players.

Provides the registered priorities of the backgrounded (previously

active) players. The format of this message is as follows:

Number (for number

of players); string (for

priority)

background_play

er_prio

background_player_prio:number_of_play

ers:prio1,prio2,...

The value for number_of_players is 0 if there are no

backgrounded players.

© 2014, QNX Software Systems Limited 187

/pps/services/multimedia/mediaplayer/status

DescriptionData typeAttribute

Registered name of the previously active (backgrounded) player

(none if there's no registered name or backgrounded player).

Stringbg_name

(Deprecated—use back

ground_player_name

instead.)

Process ID of the previously active (backgrounded) player (0 if

there's no backgrounded player).

Numberbg_pid

Registered priority of the previously active (backgrounded) player

(none if there's no registered priority or backgrounded player).

Stringbg_prio

(Deprecated—use back

ground_player_prio

instead.)

Registered name of the preactive player (none if there's no

preactive player).

Stringpreactive__name

Process ID of the preactive player (0 if there's no preactive

player).

Numberpreactive__pid

Registered priority of the preactive player (none if there's no

registered priority or player).

Stringpreactive__prio

Sample status objects

No active player:

@status
active_name::none
active_pid:n:0
active_prio::none
background_player_name:0:
background_player_pid:0:
background_player_prio:0:
bg_name::none
bg_pid:n:0
bg_prio::none
preactive__name::none
preactive__pid:n:0
preactive__prio::none

One active player:

@status
active_name::NPC:lnu4ank1hq8
active_pid:n:18440228
active_prio::low
background_player_name:0:
background_player_pid:0:
background_player_prio:0:
bg_name::none

188 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

bg_pid:n:0
bg_prio::none
preactive__name::none
preactive__pid:n:0
preactive__prio::none

Phone has interrupted music:

@status
active_name::phone
active_pid:n:6267049
active_prio::phone
background_player_name:1:NPC:lnu4ank1hq8
background_player_pid:1:18440228
background_player_prio:1:low
bg_name::NPC:lnu4ank1hq8
bg_pid:n:18440228
bg_prio::low
preactive__name::none
preactive__pid:n:0
preactive__prio::none

Phone has interrupted video recording:

@status
active_name::camera
active_pid:n:18624535
active_prio::low
background_player_name:0:
background_player_pid:0:
background_player_prio:0:
bg_name::none
bg_pid:n:0
bg_prio::none
preactive__name::phone
preactive__pid:n:6267049
preactive__prio::phone

Five high-priority players are stacked, acquired in this order: hiprioplayer, plr01, plr02,

plr03, plr04:

@status
active_name::plr04
active_pid:n:18710747
active_prio::high
background_player_name:4:plr03,plr02,plr01,hiprioplayer
background_player_pid:4:18710732,18710728,18710564,18706455
background_player_prio:4:high,high,high,high
bg_name::plr03
bg_pid:n:18710732
bg_prio::high
preactive__name::none
preactive__pid:n:0
preactive__prio::none

© 2014, QNX Software Systems Limited 189

/pps/services/multimedia/mediaplayer/status

/pps/services/multimedia/renderer/component/

Directory for .all object and for dynamically loaded plugins

Publishers

mm-renderer

Subscribers

Any app

The .all object

This .all object contains supported file and MIME types.

Attributes

DescriptionAttribute

Comma-separated list of supported extensions for

file outputs (e.g., m4a,wav).

audioencodeextensions

Comma-separated list of allowed combinations of

playable MIME types (e.g., 3gpp,video).

mime

Other objects in the component directory

The component directory can also contain information about mm-renderer's

dynamically loaded plugins (mm-renderer has defined its own plugin interface for

modularization and extensibility):

• mmr-track-engine (engine plugin for playing tracks)

• mmr-playlist-engine (engine plugin for playing playlists)

• mmr-mmf-routing (routing plugin for handling the actual play tasks)

• mmr-mmfrip-routing (routing plugin for ripping)

190 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/<contextname>

Directory that the multimedia renderer uses for publishing context objects

Publishers

mm-renderer

Subscribers

Any app

Overview

Whenever a client calls mmr_context_create(), the mm-renderer manager creates a

directory under /pps/services/multimedia/renderer/context, using the

name given in the mmr_context_create() call. This contextname directory can contain

several PPS objects:

• /pps...<contextname>/param

• /pps...<contextname>/output#

• /pps...<contextname>/input

• /pps...<contextname>/metadata (created when an input is attached to the

context)

• /pps...<contextname>/p# (if input is a playlist, a p# object is created for

each playlist entry)

• /pps...<contextname>/play-queue (created if input is a playlist)

• /pps/services/multimedia/renderer/context/<contextname>/q#

• /pps...<contextname>/state

• /pps...<contextname>/status

© 2014, QNX Software Systems Limited 191

/pps/services/multimedia/renderer/context/<contextname>

/pps/services/multimedia/renderer/context/<contextname>/input

Holds input parameters for the specified context

The contextname is the name given in

mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Attributes

DescriptionAttribute

URL of the attached input.url

Values:type

• track (a sinlge track)

• playlist (a track sequence)

• autolist (a single track formatted as a

playlist)

Only for playlist and autolist, continuously

replay the input. Values:

repeat

• "none" (default)

• "track"

• "all"

192 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/<contextname>/metadata

Metadata object for inputs attached to a multimedia renderer context

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Sample object

[n]@metadata
md_title_album::Ballads In White Forest (2008)
md_title_artist::ALONE IN THE CHAOS
md_title_bitrate::188000
md_title_comment::http://www.jamendo.com/
md_title_duration::254066
md_title_mediatype::4
md_title_name::0000025
md_title_samplerate::44100
md_title_seekable::1
md_title_track::1
url::/accounts/1000/shared/music/set006/01 - 0000025.mp3

© 2014, QNX Software Systems Limited 193

/pps/services/multimedia/renderer/context/<contextname>/metadata

/pps/services/multimedia/renderer/context/<contextname>/output#

Holds output parameters for the specified context

The contextname is the name given in mmr_context_create(). The # is the

output ID returned by mmr_output_attach().

Publishers

mm-renderer

Subscribers

Any app

Attributes

DescriptionAttribute

Values:type

• audio (volume in the range of 0 to 100) and audio_type as

specified in audio_manager_get_name_from_type()

• video

• av

• file

Output parameters may vary, depending on how your system

is implemented. See mmr_output_parameters() for more

information and examples.

URL of the attached output.url

194 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/<contextname>/p#

Object for input URL and parameters for tracks

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Overview

When the input is a playlist, the p# object is created to hold the URL and parameters

for one track in the playlist. The # is the position of the track in the playlist (starting

from 1).

© 2014, QNX Software Systems Limited 195

/pps/services/multimedia/renderer/context/<contextname>/p#

/pps/services/multimedia/renderer/context/<contextname>/param

Contains the parameters set via mmr_context_parameters()

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Parameters

DescriptionParameter

Allows an application to request a

particular frequency in status updates

(default is 1000 ms).

updateinterval

Parameters that map to libcurl library

options:

• OPT_VERBOSE

• OPT_CONNECTTIMEOUT_MS

• OPT_LOW_SPEED_LIMIT

• OPT_LOW_SPEED_TIME

• OPT_USERAGENT

• OPT_USERNAME

• OPT_PASSWORD

• OPT_PROXYUSERNAME

• OPT_PROXYPASSWORD

• OPT_COOKIE

• OPT_COOKIEFILE

• OPT_COOKIEJAR

• OPT_COOKIESESSION

• OPT_CAINFO

• OPT_CAPATH

• OPT_SSL_VERIFYPEER

196 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionParameter

• OPT_SSL_VERIFYHOST

• OPT_PROXY

• OPT_NOPROXY

• OPT_HTTPPROXYTUNNEL

• OPT_PROXYPORT

• OPT_PROXYTYPE

• OPT_PROXYAUTH

• OPT_HTTPAUTH

• OPT_HTTPHEADER

• OPT_DNSCACHETIMEOUT

See getsockopt() in the Neutrino Library

Reference.

Parameters that map to socket options:

• OPT_SO_RCVBUF

• OPT_SO_SNDBUF

© 2014, QNX Software Systems Limited 197

/pps/services/multimedia/renderer/context/<contextname>/param

/pps/services/multimedia/renderer/context/<contextname>/play-queue

Object for the size of the playlist window

The contextname is the name given in

mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Overview

When the input is a playlist, mm-renderer creates a playlist window for the currently

playing item and the items in front of and behind it, using the following PPS objects

in the contextname directory:

• p#—contains the parameters for one track in the playlist

• play-queue—represents the size of the playlist window

• q#—contains the metadata for one track in the playlist

DescriptionAttribute

Index of the last p# item in the window.end

Index of the first p# item in the window.start

Total number of items in the playlist. This is set when a track is

first played.

total

198 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/<contextname>/q#

Object for metadata for tracks

The contextname is the name given in

mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Overview

When the input is a playlist, the q# object is created to hold the metadata for one

track in the playlist. The # is the position of the track in the playlist (starting from 1).

© 2014, QNX Software Systems Limited 199

/pps/services/multimedia/renderer/context/<contextname>/q#

/pps/services/multimedia/renderer/context/<contextname>/state

Holds the play state for the specified context

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

We recommend that you read this object in delta mode to ensure that you get

all the errors and warnings that may occur.

For more on delta mode, see “Subscribing” in the Persistent Publish/Subscribe

Developer's Guide.

Attributes

DescriptionAttribute

Most recent error code (deleted when playback is restarted).error

Play position when the error occurred.error_pos

Input URL (deleted when input is detached).input

Current set speed in units of 1/1000 of normal speedspeed

Can be one of these values:state

• idle

• playing

• stopped

Most recent warning (deleted when playback is stopped).warning

Play position when the warning occurred.warning_pos

200 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

How state, errors, and warnings are set

Other attributes set:The state attribute is set to:Condition:

noneidleNo input is attached

input is set to input's URLstopped (from idle)An input is attached

error and error_pos are

deleted

playing (from stopped)Playback begins

error is set to MMR_ER

ROR_NONE (note that no

stopped (from playing)End of media is reached

error code is set if playback

is stopped via a function

call)

warning and warning_pos

are set

playingWarning occurs (note that

warnings don't stop

playback)

warning and warning_pos

are deleted; error and

error_pos are set

stoppedError occurs (note that

errors will stop playback)

For error codes, see mm_error_code_t in the Multimedia Renderer

Developer's Guide.

© 2014, QNX Software Systems Limited 201

/pps/services/multimedia/renderer/context/<contextname>/state

/pps/services/multimedia/renderer/context/<contextname>/status

Status object for the multimedia renderer context

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Don't read this potentially high-bandwidth object in delta mode.

For more on delta mode, see “Subscribing” in the Persistent Publish/Subscribe

Developer's Guide.

Attributes

DescriptionAttribute

Two decimal numbers (in milliseconds): level/capacitybufferlevel

Play position compatible with mmr_seek() (value is

milliseconds for single tracks; tracknumber:milliseconds

for playlists)

position

202 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/multimedia/renderer/control

The mm-renderer service listens for commands from the HMI on this control object

Publishers

Any app

Subscribers

mm-renderer

Commands

The commands correspond to functions defined in renderer.h. For example,

the contextOpen command maps to mmr_context_open(). For more

information, see “Multimedia Renderer Client API” in the Multimedia Renderer

Developer's Guide.

ParametersCommand

commandSend
• ctxt (the context handle)

• cmd (command string)

ctxt (the context handle)contextClose

contextCreate
• name (the context name)

• flags (must be 0)

• mode (file permissions for the context directory)

ctxt (the context handle)contextDestroy

name (the context name)contextOpen

contextParameters
• ctxt (the context handle)

• parms (the dictionary object containing the parameters to set)

inputAttach
• ctxt (the context handle)

• url (the URL of the new input)

• type ("track", "playlist", or "autolist")

ctxt (the context handle)inputDetach

© 2014, QNX Software Systems Limited 203

/pps/services/multimedia/renderer/control

ParametersCommand

inputParameters
• ctxt (the context handle)

• parms (the dictionary object containing the parameters to set)

listChange
• ctxt (the context handle)

• url (the URL of the new playlist)

• delta (difference between position of the current track on the old and new

lists)

outputAttach
• ctxt (the context handle)

• url (the URL of the new input)

• type ("audio", "video", or "file")

outputDetach
• ctxt (the context handle)

• output_id (the output ID number)

outputParameters
• ctxt (the context handle)

• output_id (the output ID number)

• parms (the dictionary object containing the parameters to set)

ctxt (the context handle)play

seek
• ctxt (the context handle)

• position (the position to seek to)

speedSet
• ctxt (the context handle)

• speed (the new play speed)

ctxt (the context handle)stop

trackParameters
• ctxt (the context handle)

• index (an index within the current playlist windoow; 0 for default)

• params (the track parameters for the playlist; NULL to reset to default)

Examples

Attach an input to the specified context and play the track

/macqnx/RCPS_SuckerPunchTH_M2_TestFile.mpg:

204 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

echo 'msg::inputAttach\ndat:json:{"ctxt":0, "url":"/mac

qnx/RCPS_SuckerPunchTH_M2_TestFile.mpg", "type":"track"}' >>

/pps/services/multimedia/renderer/control

© 2014, QNX Software Systems Limited 205

/pps/services/multimedia/renderer/control

/pps/services/networking/all/interfaces/<interface>

Status object for network interfaces

Publishers

Network Manager

Subscribers

Any app

Overview

For every connected network interface, the Network Manager creates an object under

the /pps/services/networking/all/interfaces/ directory for publishing

status information. The name of each status object is the interface name as reported

by the ifconfig utility (e.g., en0).

Attributes

DescriptionData

type

Attribute

Indicates whether (true|false) the given interface is connected.Booleanconnected

FIB number.Numberfib

IP address of the HTTP proxy server.Stringhttpproxy

Indicates whether (true|false) the HTTP proxy requires login credentials.Booleanhttpproxyloginrequired

A yes here indicates whether IPv4 connectivity is available. Possible error strings:Stringip4_ok

• error_no_ip_addr

• error_no_ip_gateway

• error_no_nameserver

• error_not_configured

• error_not_connected

• error_not_up

Same as for ip4_ok, but for IPv6 connectivity.Stringip6_ok

Array of IP addresses assigned to this interface.JSONip_addresses

Interface's IP broadcast address (if it has one).Stringip_bcastaddr

Interface's IP destination address (if it has one).Stringip_dstaddr

206 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData

type

Attribute

Array of IP gateways.JSONip_gateway

General status attribute for IP connectivity.Stringip_ok

Link layer (MAC) address.Stringlink_address

Indicates whether (yes|no) manual or DHCP settings will be used.

If manual is yes, these settings apply:

Stringmanual

• ip_address=

• gateway=

• netmask=

• nameservers=

• searchdomains=

If manual is no, these settings apply:

• dhcp=on|off|auto

• dhcp6=on|off|auto

Indicates whether (on|off) IPv6 manual or DHCP settings will be used.Stringmanual6

MTU number for this interface.Numbermtu

Array of nameserver addresses.JSONnameservers

Array of strings to be used for DNS resolution.Stringsearchdomains

Type of interface. Possible values:Stringtype

• bb (any BlackBerry Bridge BIS-B/BES-B or BBIO HTTP proxy connection)

• bluetooth_dun (any Bluetooth tethering interface)

• cellular (any cellular network interface)

• usb (any direct USB cable to a PC or Mac)

• vpn (any VPN tunnel)

• wifi (any wireless network interface)

• wired (any wired Ethernet interface)

Indicates whether (true|false) the physical interface is up.Booleanup

© 2014, QNX Software Systems Limited 207

/pps/services/networking/all/interfaces/<interface>

/pps/services/networking/all/proxy

Status object for proxy information

Publishers

Network Manager

Subscribers

Any app

All of this information (except for httpproxylogin) is also published to the

/pps/services/networking/all/status_public object.

Attributes

DescriptionData

type

Attribute

HTTP proxy of the connected network.Stringftpproxy

IPv6 HTTP proxy of the connected network.Stringftpproxy6

HTTP proxy of the connected network.Stringhttpproxy

IPv6 HTTP proxy of the connected network.Stringhttpproxy6

User name and password (username:password).Stringhttpproxylogin

Indicates whether (true|false) the HTTP proxy requires login credentials.Booleanhttpproxyloginrequired

HTTP proxy of the connected network.Stringhttpsproxy

IPv6 HTTP proxy of the connected network.Stringhttpsproxy6

208 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/networking/all/status_public

Status object for the currently preferred network interface

This object contains status information for the currently preferred

network interface (i.e., the currently active interface when running in

station mode.) Further details about this particular interface are

available it its object in the

/pps/services/networking/all/interfaces/<interface>

directory.

Publishers

Network Manager

Subscribers

Any app

Attributes

DescriptionData

type

Attribute

Gateway address.JSONdefault_gateway

Network interface name from ifconfig (e.g., en0).Stringdefault_interface

IPv4 netowrk interface.Stringdefault_interface4

IPv6 netowrk interface.Stringdefault_interface6

FIB number.Numberfib

HTTP proxy of the connected network.Stringftpproxy

IPv6 HTTP proxy of the connected network.Stringftpproxy6

HTTP proxy of the connected network.Stringhttpproxy

IPv6 HTTP proxy of the connected network.Stringhttpproxy6

Indicates whether (true|false) the HTTP proxy requires login credentials.Booleanhttpproxyloginrequired

HTTP proxy of the connected network.Stringhttpsproxy

IPv6 HTTP proxy of the connected network.Stringhttpsproxy6

A yes here indicates whether IPv4 connectivity is available. Possible error strings:Stringip4_ok

• error_no_ip_addr

© 2014, QNX Software Systems Limited 209

/pps/services/networking/all/status_public

DescriptionData

type

Attribute

• error_no_ip_gateway

• error_no_nameserver

• error_not_configured

• error_not_connected

• error_not_up

Same as for ip4_ok, but for IPv6 connectivity.Stringip6_ok

General status attribute for IP connectivity.Stringip_ok

Array of nameserver addresses.JSONnameservers

Name of the currently preferred network interface.JSONpriority

Array of strings to be used for DNS resolution.Stringsearchdomains

Last line of output from msg::cmd.Stringcmd_output

210 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/networking/control

The Network Manager listens for commands on this control object

Publishers

Any app

Subscribers

Network Manager; any app

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Message/response format

Commands sent to the /pps/services/networking/control object are of the

form:

msg::command_string\nid::ID_number\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\ndat:json:{JSON_data}\nerr::er

ror_description

Commands

The control object accepts the following commands:

net_connected

Informs the Network Manager of a network link becoming available. Contains

the connected interface and specified networking parameters. The interface

is that given by the ifconfig utility.

net_disconnecting

Informs the Network Manager of an imminent shutdown of the specified

interface, allowing clients to clean up gracefully before the interface is torn

down.

The Network Manager will publish notice of the impending shutdown

to the

© 2014, QNX Software Systems Limited 211

/pps/services/networking/control

/pps/services/networking/all/interfaces/<interface>

object.

net_disconnected

The interface that was disconnected.

net_dyn

Supplies the Network Manager with dynamic configuration data. The response

will contain a simple err:: attribute on error, empty on success.

The following table shows the command format:

dat:json:id::msg::

["interface"{"parameter":"value", ...}] (see below)Numbernet_connected

interfaceNumbernet_disconnected

["interface" | "interface",{"deadline":milliseconds}]Numbernet_disconnecting

["interface",{"gateway":"addr","nameservers":["addr", "ad

dr"],"searchdomains":"domain"}]

Numbernet_dyn

Networking parameters

DescriptionParameter

IPv4 FTP proxy.ftpproxy

IPv6 FTP proxy.ftpproxy6

IPv4 HTTP proxy.htpproxy

IPv6 HTTP proxy.htpproxy6

IPv4 HTTPS proxy.httpsroxy

IPv6 HTTPS proxy.httpsproxy6

Possible values:manual

• yes—if set, these settings apply:

• ip_address=

• gateway=

• netmask=

• nameservers=

• searchdomains=

212 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionParameter

• no—if set, these settings apply:

• dhcp=on|off|auto

• dhcp6=on|off|auto

Possible values:manual6

• yes—if set, these settings apply:

• ip6_address=

• ip6_netmask=

The type of network interface. Possible values:type

• bb (any BlackBerry Bridge BIS-B/BES-B or BBIO HTTP proxy

connection)

• bluetooth_dun (any Bluetooth tethering interface)

• cellular (any cellular network interface)

• usb (any direct USB cable to a PC or Mac)

• vpn (any VPN tunnel)

• wifi (any wireless network interface)

• wired (any wired Ethernet interface)

Requesting a ping or traceroute

You can send ping or traceroute networking commands in the dat:: field. Reply

will contain a simple err:: attribute on error, empty on success.

For example, a client can write:

msg::cmd
id::5
dat::ping -n -c4 10.42.116.1

© 2014, QNX Software Systems Limited 213

/pps/services/networking/control

/pps/services/networking/proxy

Duplicate of /pps/services/networking/all/proxy

This is a duplicate of the /pps/services/networking/all/proxy

object.

214 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/networking/status

Duplicate of /pps/services/networking/all/status_public

This is a duplicate of the

/pps/services/networking/all/status_public

object.

© 2014, QNX Software Systems Limited 215

/pps/services/networking/status

/pps/services/networking/status_public

Duplicate of /pps/services/networking/all/status_public

This is a duplicate of the

/pps/services/networking/all/status_public

object.

216 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/tethering/control

The Tether Manager listens for commands on this object

Publishers

Any app

Subscribers

Tether Manager; any app

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Message/response format

Commands sent to the /pps/services/tethering/control object are of the

form:

msg::command_string\nid::ID_number\ndat::parameter_data

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\nerr::error_description

Messages sent by the client

The control object accepts the following commands:

Descriptiondat::msg::

Disconnect from the specified client.{"mac":MAC_address}disconnect_client

Bring tetherman out of the suspended state

while waiting for a confirmation from the

user.

n/aresume

Retrieve configuration values stored from

previous tethering sessions for the specified

"type":"lan" | "wan"retrieve_profile

interface type (lan | wan). If an error is in

the response, this means the tethering

session will have to be restarted. If the data

field is empty in the response, this means

© 2014, QNX Software Systems Limited 217

/pps/services/tethering/control

Descriptiondat::msg::

that no value was stored from the previous

session.

Start the tethering session using the specified

interface parameters.

The following fields are used:start

• "lantype":"lan_interface_type"

• "lancfg":"{lancfg}"

• "lanprofile":"{lanprofile}"

• "wantype":"wan_interface_type"

where:

lan_interface_type

wifiap (Wi-Fi access point)

lancfg

• gateway_address (IP address

of the device on the LAN side)

• gateway_subnet (subnet

mask of the device on the LAN

side)

• dhcp_lease_time (DHCP

server lease timer)

lanprofile

• ssid (e.g., car_Hotspot)

• security_type (e.g., wpa_mixed)

• passphrase (e.g., testtest)

• max_num_sta (e.g., 5)

wan_interface_type

bridge

Stop the tethering session.n/astop

Update the profile for the specified interface

type (lan | wan).

"type":"lan" | "wan"update_profile

218 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

Examples

If we want to observe responses from the tetherman service, we need to force the

shell to keep the file descriptor open (because this is a server object). Here's an

example start command:

(exec 3<>/pps/services/tethering/control && cat >&3 && sleep 1
&& cat <&3)<<END
msg::start
id::123
dat::{"lantype":"wlanap","lancfg":{"gateway_address":"192.168.0.15","gateway_subnet":"255.255.255.0",
 "dhcp_lease_time":120},"wantype":"bridge","lanprofile":{"ssid":"car_Hotspot","security_type":"wpa_mixed",
 "passphrase":"openseseme","max_num_sta":5,"privacy":true,"block_conn":false}}
END

© 2014, QNX Software Systems Limited 219

/pps/services/tethering/control

/pps/services/tethering/status

Status object for the Tether Manager

Publishers

Tether Manager; any app

Subscribers

Any app

Overview

The Tether Manager service (tetherman) publishes status information for tethering

sessions. Here's a sample object:

[n]@status
activation:b:false
max_num_client2:b:false
reason::TETHER_INIT_EVENT
state::INACTIVE

Attributes

DescriptionData typeAttribute

Indicates whether tethering has been activated.Booleanactivation

Indicates whether the maximum number of clients

has been reached.

Booleanmax_num_client2

Reason for entering the current state. Values:Stringreason

• LAN_FAILED_EVENT

• LAN_IP_NOT_BLOCKED_EVENT

• LAN_NOT_READY_EVENT

• LAN_READY_EVENT

• TETHER_INIT_EVENT

• TETHER_START_EVENT

• TETHER_STARTUP_CHECK_FAILED_EVENT

• TETHER_STOP_EVENT

• TETHER_USER_ACCEPT_EVENT

• TIMER_ACTIVATION_EXPIRED

• TIMER_SHUTDOWN_EXPIRED

• TIMER_STARTUP_EXPIRED

220 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData typeAttribute

• TIMER_SUSPEND_EXPIRED

• WAN_FAILED_EVENT

• WAN_HANDOVER_CLEAR_EVENT

• WAN_HANDOVER_ALLOWED_EVENT

• WAN_HANDOVER_NOT_ALLOWED_EVENT

• WAN_IP_BLOCKED_EVENT

• WAN_NOT_READY_EVENT

• WAN_OUT_OF_COVERAGE_EVENT

• WAN_READY_EVENT

Current state of the tetherman service. Values:Stringstate

• ACTIVE

• INACTIVE

• LAN_STARTING

• SHUTDOWN

• SHUTDOWN_WAIT_LAN

• SHUTDOWN_WAIT_WAN

• SUSPEND

• WAN_STARTING

© 2014, QNX Software Systems Limited 221

/pps/services/tethering/status

/pps/services/update/control

Software Update manager listens for messages on this control object

Publishers

Any app

Subscribers

Software Update — legacy HMI plugin (swud-legacy-hmi.so)

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Message format

Commands sent to the /pps/services/update/control object are of the form:

msg::command_string\nid::ID_number\ndat:json:{JSON_data}

The id::ID_number field is optional.

Attributes

DescriptionData typeAttribute

Values 1,2,3 specify the Update Manager's

behavior:

Numbercmd

• 1 = Reserved for future use.

• 2 = Start an update (has no effect if update is

unavailable).

• 3 = Cancel this update.

Miscellaneous data; depends on the command

used (for future use).

Stringdata

Event behavior

The Update Manager knows whether an update is available when the user inserts a

USB stick containing a valid update file.

222 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

The update must contain a delta file (.mld) as well as a .manifest file.

For details, see “Software Updates” in the System Services Reference.

When it determines whether an update is available (e.g., the user inserts a USB stick

with a valid update), the Update Manager sets updateAvailable to 1 on the

/pps/services/update/status object. The HMI prompts the user and then

writes the appropriate command to this control object (cmd:n:2 to install).

Example

Start an update:

echo "cmd:n:2" > /pps/services/update/control

© 2014, QNX Software Systems Limited 223

/pps/services/update/control

/pps/services/update/settings

Software Update manager reads this object for update settings

Publishers

Any app

Subscribers

Software Update — client configuration plugin (swud-client-config.so)

Attributes

DescriptionData typeAttribute

Determines whether local (e.g., USB) software updates

are enabled on the update client.

BooleanlocalUpdatesEnabled

The time (in seconds) after which an update will become

mandatory and cannot be deferred.

Number (range: 0 to

264−1)

updateGracePeriod

Maximum number of retries allowed per software update.Number (range: 0 to

232−1)

maxUpdateRetries

Sample settings object

@settings
localUpdatesEnabled:b:true
maxUpdateRetries:n:5
updateGracePeriod:n:604800

224 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/update/status

Software Update manager communicates to apps via this status object

Publishers

Software Update — legacy HMI plugin (swud-legacy-hmi.so)

Subscribers

Any app

Attributes

DescriptionData typeAttribute

Values 0 and 1 indicate update status:NumberupdateAvailable

• 0 = No update available

• 1 = Update available

Contains the following:JSONupdateDetails

• sourceVersion, a string indicating the version to update from

• targetVersion, a string indicating the version to update to

• details, a string giving a brief description of the update

• source, a number indicating where the update came from:

• 1 = USB

• n/a (all other values are reserved)

This attribute will be stored in an update object when an update

becomes available. If the current version number of the target system

String (up to 256

characters)

updateError

fails to match the sourceVersion attribute populated when the

update was discovered, the error description will indicate that the

two versions don't match and that the update is invalid.

Sample status objects

1. When no update is available, the status object looks like this:

[n]@status
updateAvailable:n:0

© 2014, QNX Software Systems Limited 225

/pps/services/update/status

2. When a valid update is available, the status object will look something like this:

[n]@status
updateAvailable:n:1
updateDetails:json:{"sourceVersion":"162","targetVersion":"9999","details":
"Geolocation Test","source":1}

3. The following status object indicates that an update has been discovered, but the

update is considered unavailable because the versions don't match:

[n]@status
updateAvailable:n:0
updateDetails:json:{"sourceVersion":"87","targetVersion":"9999","details":"
Geolocation Test","source":1}
updateError::Current version (162) does not match source version
 (87),
invalid update

The update must contain a delta file (.mld) as well as a .manifest file.

For details, see “Software Updates” in the System Services Reference.

When it determines whether an update is available (e.g., the user inserts a USB stick

with a valid update), the Update Manager sets updateAvailable to 1 on this status

object. The HMI prompts the user and then writes the appropriate command (cmd:n:2

to start the update) to the /pps/services/update/control object.

226 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/update/target

Holds attributes that identify the target to receive the update

Publishers

Any app

Subscribers

Software Update — self-update plugin (rb-self-update.so)

Attributes

DescriptionData typeAttribute

Unique hardware identifier for the target. This must match a corresponding

hardware ID in the manifest file for the software update.

String (up to 100

characters)

hardwareID

Serial number of the source version (e.g., 16250279).String (up to 100

characters)

serialNum

Unique vendor identifier for the target. This must match a corresponding

vendor ID in the manifest file for the software update.

String (up to 100

characters)

vendorID

Sample target object

@target
hardwareID::CAR2.1
serialNum::16250279
vendorID::QNX

© 2014, QNX Software Systems Limited 227

/pps/services/update/target

/pps/services/vnc/discovery/

Directory for USB devices that could be MirrorLink devices

Publishers

RealVNC

Subscribers

mlink-daemon; any app

The /pps/services/vnc/discovery/ directory contains a subdirectory (called

/usb/) for objects that are created for USB devices found by the RealVNC discovery

scripts. The RealVNC USB device provider, a dynamically loaded library that's used

by mlink-daemon, reads this directory for information on the discovered USB devices.

The name of each object under the /usb/ directory is the product ID in the latest

builds. Here's a sample object:

[n]@0x685d
bus::0
dev::4
pid::0x685d
type::USB
vid::0x4e8

Attributes

DescriptionData typeAttribute

Bus number.Stringbus

Device number.Stringdev

Product ID.Stringpid

Type of device, which is

always USB on the QNX

CAR platform.

Stringtype

Vendor ID.Stringvid

228 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/wifi/control

The WLAN service listens for commands on this object

Publishers

WLAN service; any app

Subscribers

Any app

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Message/response format

Commands sent to the /pps/services/wifi/control object are of the form:

msg::command_string\nid::ID_number\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID_number\ndat:json:{JSON_data}\nerr::er

ror_description

Commands

The control object accepts the following commands:

DescriptionValues for dat fieldCommand

Request a connection scan.

Note that scan results are

n/aScan

not returned immediately.

When the results are

available, they're updated

in the

/pps/services/wifi/status

object (or can be retrieved

with the scan_results

command).

© 2014, QNX Software Systems Limited 229

/pps/services/wifi/control

DescriptionValues for dat fieldCommand

Request the last available

scan results. This command

n/ascan_results

doesn't initiate a new scan.

See the

/pps/services/wifi/status

object for details.

Configure WLAN radio

power modes.

One of the following:wifi_power

• on (station power on)

• off (station power off)

• graceful_shutdown

(WLAN standby state)

• low_power (regular

WLAN operation mode)

• default (WLAN default

power mode)

Query for a saved profile

with specified network ID.

netIDWnet

Note that password-type

attributes are returned with

null entries for security

purposes.

Delete the specified profile.

If the profile is the

netIDwnet_delete

currently connected

network, the network will

be disconnected and the

profile deleted.

Disable the specified saved

profile. If the profile is the

netIDwnet_disable

currently connected

network, the network will

be disconnected.

Disable all saved profiles.n/awnet_disableall

Enable the specified saved

profile. This may trigger a

netIDwnet_enable

230 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionValues for dat fieldCommand

new connection to the

enabled profile.

Enable all saved profiles.n/awnet_enableall

Add a new profile to the list

of saved networks.

{JSON_profile_attributes}

(See “Profile attributes (p.

232)” below.)

wnet_new

Select the specified saved

profile for connection,

netIDwnet_select

enabling the specified

profile and disabling all

other profiles. If a different

profile is connected, it will

be disconnected from that

network.

Update the attributes (p.

232) of an existing network

netID{JSON_profile_at

tributes}

wnet_update

profile. If the profile is the

currently connected

network, the network will

be disconnected and the

profile updated.

Note that profile must be

pushed again in the dat

(can be first queried), even

for those attributes that

aren't modified. The

timestamp of the provided

profile must match the

existing profile being

updated to ensure it's the

same network that the

client wants updated

(otherwise, EINVAL is

returned).

To update a protected

attribute (i.e., password,

psk, or wep_key0),

precede the attribute name

with new. For example, to

© 2014, QNX Software Systems Limited 231

/pps/services/wifi/control

DescriptionValues for dat fieldCommand

change psk, send the field

newpsk.

The

wnet_update

doesn't affect

the _enable

attribute. To

change _en

able, use

wnet_enable

or

wnet_disable.

Profile attributes

DescriptionValuesAttribute

Specify whether to perform

handovers between access

0 | 1ap_handover

points. If set to 1, the

profile will use roaming.

Authentication type for a

WEP network.

OPENauth_alg

Indicates which band the

profile should connect on:

0 | 1 | 2band_select

• 0 = dual

• 1 = 2.4G only

• 2 = 5G only

Full path to the server

certificate.

file_pathca_cert

Full path to the certificate

store.

dir_pathca_path

Full path to the client

certificate.

file_pathclient_cert

Type of EAP used by this

network.

eap
• AKA (Authentication and

Key Agreement)

232 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionValuesAttribute

• FAST (Flexible

Authentication via

Secure Tunneling)

• PEAP (Protected

Extensible

Authentication Protocol)

• SIM (Subscriber Identity

Module)

• TLS (Transport Layer

Security)

• TTLS (Tunneled

Transport Layer

Security)

Controls whether the user

can edit the profile.

_editability
• editable

• credentials_only

• uneditable

Determines whether the

profile is enabled (1) or

0 | 1_enable

disabled and won't be used

(0).

Indicates whether this is an

enterprise profile

(EMA/BDS).

true | falseenterprise

An ID value used by

wpa_pps clients to identify

alphanumeric_idgroup_id

the group this profile

belongs to. This is not used

by wpa_pps itself.

Username for the EAP

session.

alphanumeric_ididentity

Security type used by the

network.

key_mgmt
• NONE

• WPA-EAP

• WPA-PSK

© 2014, QNX Software Systems Limited 233

/pps/services/wifi/control

DescriptionValuesAttribute

Arbitrary name of the

profile.

alphanumeric_name_name

Indicates which client owns

the profile. This field is

owner
• BRIDGE

• CARRIER_MNGR used to determine the
• EMA precedence for new profiles

added and for profile

priority.

• UI

• WPS

Path to the PAC file.file_pathpac_file

The password for the EAP

session. Note that this is a

protected attribute.

alphanumeric_passwordpassword

Authenticates using PAC

and sets up tunnel key.

FAST_PROVISIONING=1phase1

Authentication method for

the inner tunnel of an EAP

connection.

phase2
• MSCHAPV2 (Microsoft

Challenge Handshake

Authentication Protocol

version 2)

• GTC (Generic Token

Card)

PIN for the EAP-SIM or

EAP-AKA connection.

numberpin

Full path to the client

private key.

file_pathprivate_key

Password for the client

private key.

alphanumeric_passwordprivate_key_passwd

The WPA passkey. Note

that this is a protected

attribute.

alphanumeric_or_hexpsk

Controls how the UI

recognizes the profile:

0 | 1_saved

• 0 = UI won't display the

profile

234 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionValuesAttribute

• 1 = Profile is “saved”

and recognized by the

UI as valid

Controls whether WLAN will

do active scans to locate

the network:

0 | 1scan_ssid

• 0 = No active scans

• 1 = Active scans (profile

is marked “hidden”)

Name of the network to

connect to.

alphanumeric_namessid

Determines whether the

profile is enabled by the

0 | 1_user_enable

user (1) or is disabled and

won't be used (0).

Determines whether the

profile is visible to the user.

visible_visibility

WEP key used by this

network. Note that this is a

protected attribute.

hex_characterswep_key0

Examples

1. If we want to observe responses from the WLAN service, we need to force the shell

to keep the file descriptor open (because this is a server object). First we send a

wnet_new command to set up a new profile:

(exec 3<>/pps/services/wifi/control && cat >&3 && cat <&3)<<END
msg::wnet_new
id::123
dat:json:{"ssid":"wifi_test","key_mgmt":"NONE"}
END

The control object might now look like this:

@control
res::wnet_new
id::123
dat::3

© 2014, QNX Software Systems Limited 235

/pps/services/wifi/control

2. We can now use the netID that was returned (i.e., 3) in further commands, such

as wnet_select:

(exec 3<>/pps/services/wifi/control && cat >&3 && cat <&3)<<END
msg::wnet_select
id::124
dat::3
END

236 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/services/wifi/status

Status object for the WLAN service

Publishers

WLAN service; any app

Subscribers

Any app

Overview

The WLAN service publishes status information to this object. Here's a sample object:

[n]@status
ip_config:json:
 {"manual":"no","ip_addresses":["fe80:14::e2c7:9dff:fe4a:8e97/ffff:ffff:ffff:ffff::","192.168.99.135/255.255.255.0"],"gateway":
 ["10.222.96.1"],"nameservers":["10.222.146.10"],"searchdomains":["ott.qnx.com"]}
lan_tether_interface::tiw_sap0
lan_tether_power::off
lan_tether_state::not_ready
lan_tether_status:json:{"max_num_clients":8,"num_clients":0,"privacy":true,"block_conn":false,"mac":"e0:c7:9d:4a:8e:97"}
last_event::<3>CTRL-EVENT-BSS-REMOVED 327 e8:40:40:72:2a:5b
scan_results:json:[{"bssid":"20:aa:4b:85:5a:b8","frequency":"5785","signal_level":"-58","flags":["ESS"],"ssid":"car2-twonky"},
{"bssid":"00:0d:54:a0:18:29","frequency":"2412","signal_level":"-66","flags":["WPA-PSK-TKIP","ESS"],"ssid":"3Com-qa"},
{"bssid":"2c:36:f8:b8:cb:3c","frequency":"5200","signal_level":"-80","flags":["WPA2-EAP-TKIP+CCMP","ESS"],"ssid":"corpbb"},
{"bssid":"2c:36:f8:b8:cb:3f","frequency":"5200","signal_level":"-80","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"QNX-CORP"},
{"bssid":"2c:36:f8:b8:cb:3d","frequency":"5200","signal_level":"-80","flags":["WPA-EAP-TKIP","WPA2-EAP-CCMP","ESS"],"ssid":"corpwifi"},
{"bssid":"2c:36:f8:b8:cb:3e","frequency":"5200","signal_level":"-80","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"devel05"},
{"bssid":"00:08:30:e5:e3:2e","frequency":"5220","signal_level":"-82","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"devel05"},
{"bssid":"00:08:30:e5:e3:2d","frequency":"5220","signal_level":"-82","flags":["WPA-EAP-TKIP","WPA2-EAP-CCMP","ESS"],"ssid":"corpwifi"},
{"bssid":"00:08:30:e5:e3:2c","frequency":"5220","signal_level":"-82","flags":["WPA2-EAP-TKIP+CCMP","ESS"],"ssid":"corpbb"},
{"bssid":"00:08:30:e5:e3:2f","frequency":"5220","signal_level":"-82","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"QNX-CORP"},
{"bssid":"e8:40:40:72:2a:5d","frequency":"5745","signal_level":"-88","flags":["WPA-EAP-TKIP","WPA2-EAP-CCMP","ESS"],"ssid":"corpwifi"},
{"bssid":"e8:40:40:72:2a:5e","frequency":"5745","signal_level":"-87","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"devel05"},
{"bssid":"e8:40:40:72:2a:5f","frequency":"5745","signal_level":"-87","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"QNX-CORP"},
{"bssid":"e8:40:40:72:2a:5c","frequency":"5745","signal_level":"-88","flags":["WPA2-EAP-TKIP+CCMP","ESS"],"ssid":"corpbb"},
{"bssid":"20:aa:4b:85:5a:b6","frequency":"2412","signal_level":"-51","flags":["ESS"],"ssid":"car2-twonky2"},
{"bssid":"70:ca:9b:9a:c7:f1","frequency":"2462","signal_level":"-55","flags":["WPS","ESS"],"ssid":"hb-cisco"},
{"bssid":"76:ca:9b:9a:c7:f1","frequency":"2462","signal_level":"-54","flags":["ESS"],"ssid":"hb-cisco-2"},
{"bssid":"2c:36:f8:b8:cb:3b","frequency":"5200","signal_level":"-80","flags":["ESS"],"ssid":"QNX-GUEST"},
{"bssid":"00:08:30:e5:e3:2b","frequency":"5220","signal_level":"-83","flags":["ESS"],"ssid":"QNX-GUEST"},
{"bssid":"e8:40:40:72:2a:5b","frequency":"5745","signal_level":"-89","flags":["ESS"],"ssid":"QNX-GUEST"},
{"bssid":"b8:be:bf:ef:71:41","frequency":"2462","signal_level":"-79","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"devel05"},
{"bssid":"b8:be:bf:ef:71:43","frequency":"2462","signal_level":"-79","flags":["WPA2-EAP-TKIP+CCMP","ESS"],"ssid":"corpbb"},
{"bssid":"e8:40:40:72:22:2c","frequency":"5805","signal_level":"-91","flags":["WPA2-EAP-TKIP+CCMP","ESS"],"ssid":"corpbb"},
{"bssid":"b8:be:bf:ef:71:4d","frequency":"5180","signal_level":"-88","flags":["WPA-EAP-TKIP","WPA2-EAP-CCMP","ESS"],"ssid":"corpwifi"},
{"bssid":"b8:be:bf:ef:71:4c","frequency":"5180","signal_level":"-87","flags":["WPA2-EAP-TKIP+CCMP","ESS"],"ssid":"corpbb"},
{"bssid":"b8:be:bf:ef:71:42","frequency":"2462","signal_level":"-79","flags":["WPA-EAP-TKIP","WPA2-EAP-CCMP","ESS"],"ssid":"corpwifi"},
{"bssid":"b8:be:bf:ef:71:4e","frequency":"5180","signal_level":"-87","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"devel05"},
{"bssid":"e8:40:40:72:22:2e","frequency":"5805","signal_level":"-90","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"devel05"},
{"bssid":"02:1a:11:ff:c7:67","frequency":"2437","signal_level":"-76","flags":["ESS"],"ssid":""},
{"bssid":"e8:40:40:72:22:2d","frequency":"5805","signal_level":"-93","flags":["WPA-EAP-TKIP","WPA2-EAP-CCMP","ESS"],"ssid":"corpwifi"},
{"bssid":"02:1a:11:f6:a5:23","frequency":"2437","signal_level":"-81","flags":["ESS"],"ssid":"FBI Van6"},
{"bssid":"e8:40:40:72:22:2b","frequency":"5805","signal_level":"-92","flags":["ESS"],"ssid":"QNX-GUEST"},
{"bssid":"b8:be:bf:ef:71:40","frequency":"2462","signal_level":"-79","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"QNX-CORP"},
{"bssid":"e8:40:40:72:22:23","frequency":"2437","signal_level":"-75","flags":["WPA2-EAP-TKIP+CCMP","ESS"],"ssid":"corpbb"},
{"bssid":"e8:40:40:72:22:21","frequency":"2437","signal_level":"-75","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"devel05"},
{"bssid":"b8:be:bf:ef:71:4f","frequency":"5180","signal_level":"-88","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"QNX-CORP"},
{"bssid":"e8:40:40:72:22:2f","frequency":"5805","signal_level":"-91","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"QNX-CORP"},
{"bssid":"e8:40:40:72:22:20","frequency":"2437","signal_level":"-75","flags":["WPA2-EAP-CCMP","ESS"],"ssid":"QNX-CORP"},
{"bssid":"e8:40:40:72:22:22","frequency":"2437","signal_level":"-75","flags":["WPA-EAP-TKIP","WPA2-EAP-CCMP","ESS"],"ssid":"corpwifi"},
{"bssid":"e8:40:40:72:22:24","frequency":"2437","signal_level":"-76","flags":["ESS"],"ssid":"QNX-GUEST"},
{"bssid":"02:1c:50:0c:bd:ee","frequency":"2437","signal_level":"-76","flags":["ESS"],"ssid":"DIRECT-yDDMP-MST60"},
{"bssid":"b8:be:bf:ef:71:4b","frequency":"5180","signal_level":"-88","flags":["ESS"],"ssid":"QNX-GUEST"}]
wifi_ap_status:json:{"bssid":"e0:c7:9d:4a:8e:97","channel":6,"band":"bg","max_rate":54,"ssid":"ssid-qnxcar","pairwise_cipher":"TKIP CCMP",
 "group_cipher":"TKIP CCMP","key_mgmt":"WPA-PSK"}
wifi_connected:b:true
wifi_interface::tiw_sta0
wifi_macaddress::e0:c7:9d:4a:8e:97
wifi_power::on
wifi_role:json:{"interface":"tiw_sta0","role":"WIFI_ROLE_STA"}
wifi_status:json:{"bssid":"20:aa:4b:85:5a:b8","ssid":"car2-twonky","id":"2","mode":"station","pairwise_cipher":"NONE","group_cipher":"NONE",

© 2014, QNX Software Systems Limited 237

/pps/services/wifi/status

 "key_mgmt":"NONE","wpa_state":"COMPLETED","ip_address":"192.168.99.135","address":"e0:c7:9d:4a:8e:97"}
wnet_connected::2

Attributes

DescriptionData

type

Attribute

IP configuration:JSONip_config

• manual

• ip_addresses

• gateway

• nameservers

• searchdomains

Note that this is cleared when wifi_connected changes.

Interface used for tethering (e.g. tiw_sap0).Stringlan_tether_interface

Indicates whether the tether interface is on or off.Stringlan_tether_power

Indicates whether the interface is ready for tethering (e.g., not_ready).Stringlan_tether_state

Interface status:JSONlan_tether_status

• max_num_clients

• num_clients

• privacy

• block_conn

• mac

Last event message received by WLAN Manager from wpa_supplicant.Stringlast_event

Contains the latest scan results received by WLAN manager from the WLAN driver.

Results are unfiltered, showing hidden networks as well as multiple BSSIDs on the

same SSID network. Applies only when the interface is in station role.

JSONscan_results

Access point status:JSONwifi_ap_status

• band

• bssid

• channel

• group_cipher

• key_mgmt

• max_rate

• pairwise_cipher

• ssid

238 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

DescriptionData

type

Attribute

Indicates (true | false) whether the WLAN station is connected.Booleanwifi_connected

WLAN interface name (e.g., tiw_sta0).Stringwifi_interface

WLAN interface's MAC address.Stringwifi_macaddress

Indicates whether the WLAN interface is on or off. Applies only when the interface

is in station role.

Stringwifi_power

Indicates the active WLAN interface and its role (e.g., wifi_role:json:{"inter

face":"tiw_sta0","role":"sta"}). Possible roles are:

JSONwifi_role

• ap—access point

• sta—station

General WLAN status:JSONwifi_status

• address

• bssid

• group_cipher

• id

• ip_address

• key_mgmt

• mode

• pairwise_cipher

• ssid

• wpa_state

Network ID of the currently connected profile. Applies only when the interface is in

station role and when wifi_connected is true.

Stringwnet_connected

© 2014, QNX Software Systems Limited 239

/pps/services/wifi/status

/pps/system/keyboard/control

The Keyboard service listens for commands from the HMI on this control object

Publishers

Any app

Subscribers

Keyboard service

This type of object is known as a server object, a special PPS object designed

for point-to-point communication between a server and one or more clients.

For details, see “Server objects” in the Persistent Publish/Subscribe Developer's

Guide.

Message/response format

Commands sent to the /pps/system/keyboard/control object are of the form:

msg::command_string\nid::ID\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the

message, along with any errors:

res::command_string\nid::ID\ndat:json:{JSON_data}\n error::error_de

scription

Commands

dat:json:id::msg::

JSON data (payload) related

to the message.

The message's ID string

(usually a number, but can

be anything).

Messages to send to the

control object:

• show

• hide

Examples

Show the keyboard:

echo "msg::show\nid::1\ndat:json:{}" > /pps/system/keyboard/control

Hide the keyboard:

echo "msg::hide\nid::2\ndat:json:{}" > /pps/system/keyboard/control

240 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/system/keyboard/status

The Keyboard service uses this object to reflect the keyboard's current state

Publishers

Keyboard service

Subscribers

Any app

Attributes

DescriptionData typeAttribute

Specifies height of the keyboard in pixels (range is 1 to screen height; default is 190).Numbersize

Indicates whether keyboard is visible. The Keyboard service sets this attribute after receiving

a show or hide command from the /pps/system/keyboard/control object.

Booleanvisible

© 2014, QNX Software Systems Limited 241

/pps/system/keyboard/status

/pps/system/navigator/appdata

Holds app-specific data to be retrieved by the app on launch

Publishers

Applications Navigator

Subscribers

Any app

The Applications Navigator is a service that controls how applications appear

on the display. This is not to be confused with GPS turn-by-turn navigation

(see /pps/qnxcar/navigation/control).

Overview

As each app in the Apps Section screen is launched, the app's name is written to the

/pps/system/navigator/appdata object. For example, if the user taps the

Settings button as well as the BestParking button, the object will look like this:

@appdata
[n]BestParking::
[n]Settings::

Each app can then read this object and retrieve any data published here.

242 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/system/navigator/applications/applications

The Applications Navigator publishes a list of installed apps to this object

Publishers

Applications Navigator

Subscribers

Any app

The Applications Navigator is a service that controls how applications appear

on the display. This is not to be confused with GPS turn-by-turn navigation

(see /pps/qnxcar/navigation/control).

Overview

Each app installed on the system appears in the

/pps/system/navigator/applications/applications object:

@applications
AppSection.testDev_AppSection_2fc201a4::{86x86}native/default-icon.png,AppSection,,,auto,,
BestParking.testDev_BestParkinga4a73514::{48x48}native/appicon.png,BestParking,,,auto,,
Calendar.testDev_Calendar___f9395f5e::{86x86}native/icon.png,Calendar,bridge,,auto,,
Communication.testDev_mmunicationf1e9ffb6::{60x60}native/icon.png,Communication,,,auto,,
Contacts.testDev_Contacts___e207c473::{86x86}native/icon.png,Contacts,bridge,,auto,,
HelloWebWorks.testDev_lloWebWorks1fa80f60::native/icon.png,HelloWebWorks,,,,,
Home.testDev_Home_______2268ff__::{60x60}native/icon.png,Home,,,auto,,
Map.testDev_Map________12d3c___::{86x86}native/icon.png,Map,,,auto,,
MediaPlayer.testDev_MediaPlayer49ba23c5::{60x60}native/icon.png,MediaPlayer,,,auto,,
Memopad.testDev_Memopad____9bcd70f9::{86x86}native/icon.png,Memopad,bridge,,auto,,
Messages.testDev_Messages___e84f656c::{86x86}native/icon.png,Messages,bridge,,auto,,
Navigator.testDev_Navigator__a4514a37::{60x60}native/icon.png,Navigator,,,auto,,
Pandora.testDev_Pandora____33b5d5f7::{512x512}native/icon.png,Pandora,,,auto,,
PeaksAndValleys.testDev_sAndValleys6bb91d91::{86x86}native/icon.png,PeaksAndValleys,,,auto,,
Scout.testRel_Scout______4c04ede_::native/icon.png,Scout,sys,native/splash.png,landscape,,
Settings.testDev_Settings___595d2043::{86x86}native/icon.png,Settings,,,auto,,
Slacker.testDev_Slacker____e476201d::{90x90}native/icon.png,Slacker Radio,,,auto,,
Status.testDev_Status_____9432bc12::{60x60}native/icon.png,Status,,,auto,,
TuneIn.testDev_TuneIn_____95fb575d::{96x96}native/icon.png,TuneIn Radio,,,auto,,
Weather.testDev_Weather____ac24cfd4::{86x86}native/icon.png,Weather,,,auto,,
WeatherNetwork.testDev_therNetworke376bba_::{84x84}native/icon.png,WeatherNetwork,,,auto,,
carcontrol.testDev_carcontrol_21522f09::{86x86}native/default-icon.png,CarControl,,,auto,,
htmlgears.testDev_htmlgears__9202e3f9::{60x60}native/icon.png,HTMLGears,,,auto,,
navigation.testDev_navigation_6f060a14::{86x86}native/default-icon.png,Navigation,,,auto,,
sys.browser.new.testRel_browser_new77e89439::native/browserIcon.png,Browser,core.media,,auto,,
sys.keyboard.testRel_ys_keyboard5435fde8::icon.png,sys.keyboard,,,,,
tunneltilt.testDev_tunneltilt_84be6f25::{86x86}native/data/images/tunnelTiltIcon.png,TunnelTilt,,,auto,,

Each line in the object file can hold the following information:

• the directory where the app is installed (under /app)

• the size and location of the app's icon

• the app's name

© 2014, QNX Software Systems Limited 243

/pps/system/navigator/applications/applications

• the app's category in the App Launcher screen (ALL, VEHICLE, etc.)

• the app's splash screen

• the app's orientation (e.g., auto, landscape)

If MirrorLink devices are detected on the system, the mlink-daemon service

creates shortcuts for MirrorLink apps (in the /apps/ directory) and then

publishes the apps to this object. A line for a MirrorLink app looks like this:

[n]ml0app.shortcut100::native/icon.png,Nokia Drive,me

dia,,auto,,

244 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/system/navigator/command

Shows application tab actions

Publishers

Applications Navigator

Subscribers

Any app

The Applications Navigator is a service that controls how applications appear

on the display. This is not to be confused with GPS turn-by-turn navigation

(see /pps/qnxcar/navigation/control).

Overview

The /pps/system/navigator/command object shows the state of the application

tabs in the HMI. Here's a sample object:

@command
AppSection:json:{"action":"pause"}
Browser:json:{"action":"reselect"}
Communication:json:{"action":"pause"}
HTMLGears:json:{"action":"pause"}
HelloWebWorks:json:{"action":"reselect"}
Map:json:{"action":"reselect"}
MediaPlayer:json:{"action":"pause"}
Pandora:json:{"action":"reselect"}
PeaksAndValleys:json:{"action":"reselect"}
Scout:json:{"action":"resume"}
Settings:json:{"action":"reselect"}
TunnelTilt:json:{"action":"reselect"}
Weather:json:{"action":"reselect"}
WeatherNetwork:json:{"action":"pause"}
carcontrol:json:{"action":"pause"}
home:json:{"action":"pause"}
navigation:json:{"action":"pause"}
voicecontrol:json:{"action":"pause"}

Each line shows the application name, followed by the json data type, followed by

the "action":"value" pair. The values for "action" can be:

• pause—the app is being told it's in the background, so it should stop CPU-intensive

display tasks (e.g., drawing navigation maps)

• reselect—the app is being told of a special request, so it should go to its home

screen

© 2014, QNX Software Systems Limited 245

/pps/system/navigator/command

• resume—the app is being told it's in the foreground, so it can resume what it was

doing before it paused (e.g., start drawing navigation maps again)

246 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/system/navigator/status/mobile_hotspot

The WIFI HOTSPOT feature publishes status information to this object

Publishers

WIFI HOTSPOT (in Settings app); any app

Subscribers

Any app

Overview

When the WIFI HOTSPOT control in the Settings app is used to set up a mobile hotspot,

this object reports the various states (on | off | connected) involved. Here's a sample

object:

@mobile_hotspot
[n]dat:json:{"mobile_hotspot":{"state":"connected"}}

© 2014, QNX Software Systems Limited 247

/pps/system/navigator/status/mobile_hotspot

/pps/system/navigator/status/tethering

Status object for tethering sessions

Publishers

Tether Manager

Subscribers

Any app

Overview

When a tethering session has been started or stopped, this object simply reports the

state (on or off). Here's a sample object:

@tethering
[n]dat:json:{"tethering":{"state":"off"}}

For more information on tethering, see the following objects:

• /pps/services/tethering/control

• /pps/services/tethering/status

248 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

/pps/system/navigator/windowgroup

Publishes window group identifiers for the main HMI apps

Publishers

Any app

Subscribers

Applications Navigator

The Applications Navigator is a service that controls how applications appear

on the display. This is not to be confused with GPS turn-by-turn navigation

(see /pps/qnxcar/navigation/control).

Overview

The /pps/system/navigator/windowgroup object shows the window groups

for the main apps in the HMI. Here's a sample object:

@windowgroup
[n]AppSection::736053855-360457-13-bb-wk-win-group
[n]Communication::3155946061-360457-12-bb-wk-win-group
[n]MediaPlayer_mmplayer::666425069-360457-10-bb-wk-win-group
[n]carcontrol::3181133917-360457-11-bb-wk-win-group
[n]navigation::1707991092-360457-9-bb-wk-win-group

© 2014, QNX Software Systems Limited 249

/pps/system/navigator/windowgroup

/pps/system/navigator/windowparams

Shows height, width, and other window parameters for apps

Publishers

Any app

Subscribers

Applications Navigator

The Applications Navigator is a service that controls how applications appear

on the display. This is not to be confused with GPS turn-by-turn navigation

(see /pps/qnxcar/navigation/control).

Overview

The /pps/system/navigator/windowparams object shows various window

parameters for applications. Here's a sample object:

@windowparams
MediaPlayer:json:{"x":0, "y":0, "h":480, "w":800, "zorder":0}

DescriptionWindow parameter

Height (in pixels).h

Width (in pixels).w

The x dimension from the top left (in pixels).x

The y dimension from the top left (in pixels).y

The z order of the window.zorder

250 © 2014, QNX Software Systems Limited

PPS Objects Reference Pages

Chapter 4
List of Objects Used Internally

For this release of the QNX CAR platform, the objects listed below are used

internally by various system processes. Third-party applications won't need to

read from or write to these objects. Note that this list may change with future

releases.

PPS directories and objects used internally

• /pps/applications/appremote

• /pps/servicedata/schedule

• /pps/services/audio/stats

• /pps/services/authentication/

• /pps/services/apkruntime/

• /pps/services/certmgr/

• /pps/services/confstr/

• /pps/services/deviceproperties

• /pps/services/dlna/dmcclient/dmr/networkstate/<dmr_uuid>

• /pps/services/dlna/dmcclient/dmr/playstate/<dmr_uuid>

• /pps/services/dlna/dmcclient/dms/networkstate/<dms_uuid>

• /pps/services/dmc/

• /pps/services/dmr/control

• /pps/services/dmr/rendererCtrl

• /pps/services/dmr/rendererStatus

• /pps/services/dmr/status

• /pps/services/input/context/<contextname>

• /pps/services/input/control

• /pps/services/mediaserver/settings

• /pps/services/mm-player/

• /pps/services/multimedia/mediacontroller/notifications

• /pps/services/multimedia/sound/

• /pps/services/multimedia/sync/

• /pps/services/network-time/status

• /pps/services/notification/

© 2014, QNX Software Systems Limited 251

• /pps/services/power/shutdown/control

• /pps/services/private/deviceproperties

• /pps/services/samba/control

• /pps/services/samba/smb

• /pps/services/slogger2/notify

• /pps/services/slogger2/verbose

• /pps/services/system_info/control

• /pps/services/tztrans/control

• /pps/services/vpn/

• /pps/system/authorization/control

• /pps/system/bookmarks/

• /pps/system/development/control

• /pps/system/development/devmode

• /pps/system/installer/coreos/

• /pps/system/installer/hmi/lastupdate

• /pps/system/installer/registeredapps/

• /pps/system/installer/removedapps/

• /pps/system/installer/stagedapps/

• /pps/system/installer/upd/current

• /pps/system/installer/upd/deferred

• /pps/system/launcher_priority

• /pps/system/navigator/status/app-timestamps

• /pps/system/nvram/deviceinfo

• /pps/system/power/dev/bus

• /pps/system/power/funcstatus/user_activity

• /pps/system/sapphire/

252 © 2014, QNX Software Systems Limited

List of Objects Used Internally

Index

[n] (nonpersistence qualifier) 22
@ sign (appears at start of every object) 22

A

accounts directory 34
appinst-mgr 82, 84
applications launcher 152
Applications Navigator 80, 152, 242, 243, 245, 249, 250
ASR 86
Audio Control 108
audio devices 104
Audio Manager 89, 97, 104, 111, 113

audio types 111
commands 97
devices 104
library 97
routing commands 89
voice settings 113

audio types 111
audio_router_control object 89
avatar attribute (Personalization) 65

B

Bluetooth 114, 118, 119, 121, 123, 124, 125, 126, 127,
129, 134

commands 114
control object 114
events 134
MAP 121, 123, 124
paired devices 125
PBAP 126, 127
profiles 114, 129
status object 134

Bluetooth stack information 130

C

Climate Control 53, 66
clock 138, 140
config/ directory 50
context input parameters 192
contextname (mm-renderer) 191, 192, 193, 194, 195, 196,
198, 200, 202

D

database 50, 52
configuration objects 50
status objects 52

dbnotify directory 38
dbs object 38
delta subscription mode 18
demo-commands object 37

device driver object 45
device publishers 39, 42, 45, 47
devices 104, 113

audio 104, 113
voice settings 113

devices (Bluetooth) 125, 129
driver/ directory 45

F

full subscription mode 18

G

gears.h 27
gears.js 30
Geolocation service 144

H

handsfree 118, 119
HMI 69

application displays 69
HMI Notification Manager 147, 150, 151
HTMLGears 30
HVAC settings 53

I

io-asr manager 86

J

JavaScript 32

K

keyboard 240

L

latitude 37
launching applications 152
libpps 25
locale 55
longitude 37

M

MAP (Message Access Profile) 121, 123, 124
media database 38
mediaplayer 158
mediaplayer object 35

© 2014, QNX Software Systems Limited 253

PPS Objects Reference

messages 22
format 22

messages (Bluetooth) 121, 123, 124
metadata object for multimedia inputs 193
Midnight Blue theme 71
MirrorLink 228
mixer object 108
mlink-daemon 228
mm-control 158
mm-renderer 158, 190, 191, 192, 193, 194, 195, 196,

198, 200, 202
plugins 190

mmr_context_parameters() 196
mount/ directory 47
mounted devices 48

attributes 48
multimedia 35

playback 35
multimedia renderer context 202

status object 202
mutexes (used in "gears" demo) 26

N

nonpersistence qualifier (22
navigation 56, 60, 61, 62

control object 56
geolocation object 60
options 61
status object 62

navigator/appdata object 242
navigator/applications/applications object 243
Network Manager 211
networking 206, 208, 209

proxy 208
status object 206, 208

Now Playing 172, 177, 183, 187
commands 172, 177, 183, 187

O

O_CREAT 25
objects 17, 21, 25, 32

.all 17

.notify 17
control 17
creating 25
creating in JavaScript 32
defined 17
format 21
server 25
status 17
using open() 25

open() 25
OpenGL ES 2.0 "gears" 26

control and status objects for 26
OpenGL ES 2.0 Gears demo 141, 143
options 18, 20

pathname 20
pps command-line 18

output parameters for multimedia context 194
overcurrent condition (USB) 40

P

p# (object for input URL and parameters for tracks) 195
PandoraLink 131
pathname open options 20
PBAP (Phone Book Access Profile) 126, 127
persistence directory 23

changing 23
Personalization 64, 65
Personalization app 71
phonebooks (Bluetooth) 126, 127
play-queue (playlist window object) 198
playlist 195, 198

window 198
plugins (mm-renderer) 190
pps 18, 23

-t option recommended 23
command-line options 18

PPS 17, 25, 251
encoding/decoding data for 25
guidelines for working with 25
key concepts 17
objects used internally 251

pps_decoder_*() 26
pps_encoder_*() 26
pps_init() 29
pps-spp 131
pps.c 29
ppsUtils.js 31
profile/theme object 64
profile/user object 65
publishers 17

multiple for one object 17
publishing 17

is asynchronous 17
uses open() and write() 17

Q

q# (playlist window object) 198
QDB 50, 52
QNX App Portal 82
qnx/device/_ctrl object 42
qnxcar/hvac object 53
qnxcar/sensors object 66

R

radio 73, 74, 78
control object 73
status object 74
tuners object 78

rb-self-update.so 227
RealVNC 228
responses 22

format 22

S

server objects 25
servicedata/schedule object (Virtual Mechanic) 79

254 © 2014, QNX Software Systems Limited

Index

services/app-launcher object (Applications Navigator) 80
services/audio/control object 97
services/audio/devices directory 104
services/audio/types directory 111
services/audio/voice_status object 113
services/bluetooth/handsfree/control object 118
services/bluetooth/handsfree/status object 119
services/bluetooth/services object 129
services/bluetooth/settings object 130
services/bluetooth/spp/spp object 131
services/clock/control object 138
services/clock/status object 140
services/gears/control object 141
services/gears/status object 143
services/geolocation/control object 144
services/hmi-notification/control object 147
services/hmi-notification/Messaging object 150
services/hmi-notification/Status object 151
services/launcher/control object 152
services/mm-control/control object 158
services/multimedia/mediacontroller/control object 172
services/multimedia/mediaplayer/control object 177
services/multimedia/mediaplayer/phone object 183
services/multimedia/mediaplayer/status object 187
services/multimedia/renderer/component/ directory 190
services/multimedia/renderer/control object 203
services/networking/all/status_public object 209
services/networking/control object 211
services/tethering/control object 217
services/update/control object 222
services/update/settings object 224
services/update/status object 225
services/update/target object 227
services/wifi/control object 229
settings object (for HMI application displays) 69
software build information 68
Software Update 222, 224, 225, 227
speech session 88
status/ directory 52
strobe commands 86
subscribers 18

multiple for one object 18
subscribing 18

uses open() and read() 18
swud-client-config.so 224
swud-legacy-hmi.so 222, 225
SYNC_START (Bluetooth phonebook command) 126

system/info object 68
system/keyboard/control object 240

T

Technical support 15
Tether Manager 220
Tether Manager (tetherman) 217, 248
The Weather Network 37

changing location 37
theme attribute (Personalization) 64
themes (Personalization) 71
themes object 71
Titanium theme 71
tracksessions 158
Typographical conventions 13

U

update delta file 222
USB 39, 40, 42, 47

control object 42
status object 39, 40

attributes 40
stick 47

sample object 47
usblauncher 39, 42, 45, 47

V

vendor subdirectory 34
Virtual Mechanic 66, 79
voice settings (for audio devices) 113

W

weathernetwork object 37
WIFI HOTSPOT (Settings app) 247
WLAN service (wpa_pps) 229, 237

Z

Zone Link feature 53
zones 158

© 2014, QNX Software Systems Limited 255

PPS Objects Reference

256 © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Reference
	Typographical conventions
	Technical support

	Overview of the PPS Service
	Setting Up Your Own Objects
	PPS Objects Reference Pages
	/pps/accounts/
	/pps/applications/mediaplayer
	/pps/applications/weathernetwork/
	/pps/qnx/dbnotify/dbs
	/pps/qnx/device/<device>
	/pps/qnx/device/<device>_ctrl
	/pps/qnx/driver/<pid>
	/pps/qnx/mount/<device>
	/pps/qnx/qdb/config/<dbname>
	/pps/qnx/qdb/status/<dbname>
	/pps/qnxcar/hvac
	/pps/qnxcar/locale
	/pps/qnxcar/navigation/control
	/pps/qnxcar/navigation/geolocation
	/pps/qnxcar/navigation/options
	/pps/qnxcar/navigation/status
	/pps/qnxcar/profile/theme
	/pps/qnxcar/profile/user
	/pps/qnxcar/sensors
	/pps/qnxcar/system/info
	/pps/qnxcar/system/settings
	/pps/qnxcar/themes
	/pps/radio/command
	/pps/radio/status
	/pps/radio/ti_control
	/pps/radio/ti_rds
	/pps/radio/ti_status
	/pps/radio/tuners
	/pps/servicedata/schedule
	/pps/services/app-launcher
	/pps/services/appinst-mgr/control
	/pps/services/appinst-mgr/status
	/pps/services/asr/control
	/pps/services/audio/audio_router_control
	/pps/services/audio/audio_router_status
	/pps/services/audio/control
	/pps/services/audio/devices/
	/pps/services/audio/mixer
	/pps/services/audio/status
	/pps/services/audio/types/
	/pps/services/audio/voice_status
	/pps/services/bluetooth/control
	/pps/services/bluetooth/handsfree/control
	/pps/services/bluetooth/handsfree/status
	/pps/services/bluetooth/messages/control
	/pps/services/bluetooth/messages/notification
	/pps/services/bluetooth/messages/status
	/pps/services/bluetooth/paired_devices/<mac_addr>
	/pps/services/bluetooth/phonebook/control
	/pps/services/bluetooth/phonebook/status
	/pps/services/bluetooth/remote_devices/<mac_addr>
	/pps/services/bluetooth/services
	/pps/services/bluetooth/settings
	/pps/services/bluetooth/spp/spp
	/pps/services/bluetooth/status
	/pps/services/bootmgr/
	/pps/services/clock/control
	/pps/services/clock/status
	/pps/services/gears/control
	/pps/services/gears/status
	/pps/services/geolocation/control
	/pps/services/geolocation/status
	/pps/services/hmi-notification/control
	/pps/services/hmi-notification/Messaging
	/pps/services/hmi-notification/Status
	/pps/services/launcher/control
	/pps/services/mirrorlink/applications
	/pps/services/mirrorlink/entities
	/pps/services/mirrorlink/rtp
	/pps/services/mm-control/control
	/pps/services/mm-control/<playername>/status
	/pps/services/mm-detect/status
	/pps/services/multimedia/mediacontroller/control
	/pps/services/multimedia/mediaplayer/control
	/pps/services/multimedia/mediaplayer/phone
	/pps/services/multimedia/mediaplayer/status
	/pps/services/multimedia/renderer/component/
	/pps/services/multimedia/renderer/context/<contextname>
	/pps/services/multimedia/renderer/context/<contextname>/input
	/pps/services/multimedia/renderer/context/<contextname>/metadata
	/pps/services/multimedia/renderer/context/<contextname>/output#
	/pps/services/multimedia/renderer/context/<contextname>/p#
	/pps/services/multimedia/renderer/context/<contextname>/param
	/pps/services/multimedia/renderer/context/<contextname>/play-queue
	/pps/services/multimedia/renderer/context/<contextname>/q#
	/pps/services/multimedia/renderer/context/<contextname>/state
	/pps/services/multimedia/renderer/context/<contextname>/status
	/pps/services/multimedia/renderer/control
	/pps/services/networking/all/interfaces/<interface>
	/pps/services/networking/all/proxy
	/pps/services/networking/all/status_public
	/pps/services/networking/control
	/pps/services/networking/proxy
	/pps/services/networking/status
	/pps/services/networking/status_public
	/pps/services/tethering/control
	/pps/services/tethering/status
	/pps/services/update/control
	/pps/services/update/settings
	/pps/services/update/status
	/pps/services/update/target
	/pps/services/vnc/discovery/
	/pps/services/wifi/control
	/pps/services/wifi/status
	/pps/system/keyboard/control
	/pps/system/keyboard/status
	/pps/system/navigator/appdata
	/pps/system/navigator/applications/applications
	/pps/system/navigator/command
	/pps/system/navigator/status/mobile_hotspot
	/pps/system/navigator/status/tethering
	/pps/system/navigator/windowgroup
	/pps/system/navigator/windowparams

	List of Objects Used Internally
	Index

