
HTML5 Developer's Guide

QNX® SDK for Apps and Media 1.1

©2012–2015, QNX Software Systems Limited, a subsidiary of BlackBerry
Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: March 30, 2015

Contents
About This Guide..5

Typographical conventions..6

Technical support...8

Chapter 1: HTML5 SDK Overview...9

Chapter 2: The HTML5 Development Environment...13
Install CSS development tools...16

Chapter 3: HTML5 Application Samples..17
Building and deploying the Cordova PPS Demo...18

Chapter 4: Web Sandbox Model..21

Chapter 5: Browser Engine...23
Browser engine components and technology support..24

Chapter 6: Developing HTML5 Apps...27
Creating an HTML5 project...30

Working with the configuration file...32

<access>..33

<author>..34

<config-file>...35

<content>..36

<description>...37

<feature>...37

<icon>...38

<name>...39

<rim:permissions>..40

<rim:permit>..41

<widget>..42

Packaging an HTML5 app...45

Example: Hello World!..47

Example: Adding a permission to access a PPS object...50

Debugging Web Apps..53

Enabling Web Inspector...53

Launching Web Inspector...54

Debugging and profiling using Web Inspector...54

Optimizing layout and style..55

Analyzing page resources...58

Analyzing network usage..59

HTML5 Developer's Guide

Debugging scripts...61

Analyzing loading, script execution, and rendering times...63

Analyzing memory usage and processing demands..65

Auditing your webpage...68

Improving HTML5 app performance...70

Chapter 7: Creating Custom Cordova Plugins...71
The cordova.exec() function..73

Example: Using the PPS interface...74

Chapter 8: WebLauncher's JavaScript APIs..81
WebLauncher application API..82

WebLauncher webinspector API..83

WebLauncher webview API..84

Index...91

Contents

About This Guide

This guide explains how to develop user interfaces for apps created with the QNX SDK for

Apps and Media using HTML5.

This table may help you find what you need in this guide:

Go to:To find out about:

Overview of the QNX SDK for HTML5 (p. 9)An overview of using the HTML5 SDK to develop apps

for QNX SDK for App and Media

The QNX SDK for HTML5 and where to

download it (p. 13)

The HTML5 Development environment for QNX SDK

for App and Media

HTML5 support in the Browser Engine (p. 23)What's supported for HTML5, such as the HTML5

elements (audio, video, etc.) support, CSS3 support,

etc.

Web Sandbox Model (p. 21)How applications (or apps) run in complete isolation

from each other using a sandbox

Developing HTML5 Apps (p. 27)The process for creating, installing, and running an

HTML5 app

Creating Custom Cordova Plugins (p. 71)Creating custom Cordova Plugins

Example: Using the PPS interface (p. 74)

Example: Adding a permission to access a PPS

object (p. 50)

Using PPS in an HTML5 app

Creating Custom Cordova Plugins (p. 71)Creating plugins to extend your app's functionality

HTML5 Application Samples (p. 17)HTML5 Reference samples

Enhancing Performance (p. 70)Best practices for optimal performance

Copyright © 2015, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In

general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have unwanted or

undesirable side effects.

WARNING: Warnings tell you about commands or procedures that could be dangerous to your

files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited6

About This Guide

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those

pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited 7

About This Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qnx.com).

You'll find a wide range of support options, including community forums.

Copyright © 2015, QNX Software Systems Limited8

About This Guide

http://www.qnx.com

Chapter 1
HTML5 SDK Overview

The QNX SDK for HTML5 (called the HTML5 SDK in this document) provides a framework for developing

and executing web-compatible applications, specifically using technologies such as HTML5, CSS3,

and JNext.

You install the QNX SDK for HTML5 package (p. 13) to develop HTML5 apps. The HTML5 SDK is

based on Apache Cordova 3.6.0. Apache Cordova is a framework used to develop apps for mobile

devices. The HTML5 SDK exposes the aspects of Cordova most useful for building the user interface

and for building plugins to access native functionality for the QNX SDK for Apps and Media. The

HTML5 SDK is necessary for you to develop apps that run on target images running

QNX SDK for Apps and Media. You don't need to install the QNX SDK for Apps and Media unless you

want to build a target image, or develop your own native service and expose it to HTML5.

Before you use this guide, you should be familiar with developing Cordova apps, in particular, the

Platform-centered workflows. For more information about developing Cordova apps, see the Cordova

documentation.

HTML5 apps and plugin development

You can write your HTML5 apps and plugins using Cordova APIs for Apps and Media. Cordova JavaScript

Plugins and Webplatform APIs are provided as part of the HTML5 SDK to help you with development.

The following diagram maps the various APIs that are available to you. Use it as a roadmap to choose

what to use when you develop your HTML5 app.

Copyright © 2015, QNX Software Systems Limited 9

http://cordova.apache.org/docs/en/3.6.0/index.html
http://cordova.apache.org/docs/en/3.6.0/index.html

HTML5 Applications
(HTML5 and JavaScript)

Cordova JavaScript Plugins
from the QNX SDK for HTML5
(cordova-qnxcar-plugins)

Native calls

Cordova runtime from the
QNX SDK for HTML5
(runtime, tools, and

packager)

(Optional)
webplatform.js
(linked in by the
Cordova packager)

QNX Neutrino RTOS

Browser Engine

Figure 1: APIs available with the QNX SDK for HTML5

Typically, HTML5 and JavaScript with the provided Cordova JavaScript Plugins are sufficient for most

development requirements. In some situations, however, you may find it useful to write your own

custom plugin to access native functionality that the HTML5 SDK doesn't expose. If you determine

that you require custom plugins to access native functionality on the platform, you have the option to

use the Webplatform APIs. The Webplatform APIs are useful to access the WebView and simplify

working with Persistent Publish/Subscribe (PPS) objects on the platform. In rare situations, you may

also find the WebLauncher APIs (p. 81) useful for accessing functionality that you require.

Overview of components to develop HTML5 apps

There are several components available as part of the HTML5 SDK. You can use some or all the

components for development, according to your requirements:

Apache Cordova (HTML5, JavaScript, and CSS)

Apache Cordova is a framework for application development that allows you to use web

technologies such as HTML5, JavaScript and CSS to create apps for mobile devices. You

can develop HTML5 apps, and with the tools provided in the HTML5 SDK, you can:

Copyright © 2015, QNX Software Systems Limited10

HTML5 SDK Overview

http://cordova.apache.org/

• package an HTML5 app to deploy it to the target hardware

• create JavaScript APIs (Cordova Plugin) to access native services on the platform

• use webserver emulation so that your app can run without actually running a webserver

on the target hardware

• provide security features to your app

HTML5 is useful for building responsive interfaces because it allows you to modify CSS

files to easily customize the look and feel of your apps. You can use various tools, such as

Compass and Sass to modify your CSS. For information about Compass and Sass, see “Install

CSS development tools (p. 16)”.

HTML5 apps can use JavaScript plugins to interact with underlying services. JavaScript

APIs provide interfaces to various feature components. The Netscape Plugin Application

Program Interface (NPAPI) provides extensions to the HTML5 engine through a dynamically

linked library. PPS, SQL, and the UI core APIs are implemented through a NPAPI interface.

These APIs provide access to native DLLs that give apps access to services such as the

composition manager and the launcher. If more such services are required, you can add

additional plugins to extend your apps.

Cordova JavaScript Plugins and Cordova Runtime

The HTML5 SDK contains the Apache Cordova runtime, custom tools, and plugins to build

apps for Apps and Media. You can also use the HTML5 SDK as an example to create custom

plugins for your apps that follow the Cordova plugin specifications.

Included as part of the HTML5 SDK are Cordova JavaScript Plugins that you can use to

build your apps. These plugins expose functionality that's available on Apps and Media. The

version of the Cordova runtime included with the HTML5 SDK provides the development

environment you need to create, build, and run HTML5 apps on Apps and Media.

Webplatform (webplatform.js), an optional API included with the runtime, makes it easy to

work with WebViews and PPS.

Persistent Publish/Subscribe (PPS) API

The PPS service provides a simple, filesystem-based API for client applications. PPS is used

to share information between processes and apps on a target. There are various PPS objects

available that you may find useful for accessing data for your HTML5 apps. For more

information about PPS objects, see the Persistent Publish/Subscribe Developer's Guide and

PPS Object Reference.

Node.js

Node.js is a platform built on Chrome's JavaScript runtime for building fast, scalable network

apps. Node.js (available from http://nodejs.org/) is required—you installed Node.js when you

installed the HTML5 SDK. You can use Node.js to install Plugman, which is a required tool

to manage plugins in your Cordova project.

Web Graphics Library (WebGL)

This graphics library is integrated into the browser engine (p. 23), so you don't need to

download and install any binaries to use it. Based on OpenGL ES 2.0, WebGL is a

cross-platform JavaScript API. As a Document Object Model (DOM) API, it runs in the

HTML5 canvas element to render interactive 3D graphics in compatible browsers.

Copyright © 2015, QNX Software Systems Limited 11

HTML5 SDK Overview

http://cordova.apache.org/
http://nodejs.org/

Chapter 2
The HTML5 Development Environment

The HTML5 SDK is required to build and package HTML5 apps to .bar files. These .bar files can be

built or installed into a system built with the QNX SDK for Apps and Media. image.

The HTML5 SDK contains the Cordova framework, runtime, tools, and APIs that you can use to create

plugins and HTML5 apps. The HTML5 SDK packages HTML5 apps as .bar files. You, or another

developer, can then integrate these .bar files into a target image so your apps are available by default.

You can also use these .bar files to install your apps on the target at a later time.

You can download the QNX SDK for HTML5 (.zip file) from the QNX Download Center. To install the

package, follow the installation notes for the QNX SDK for HTML5 corresponding to this release.

Managing plugins

To manage plugins, use Plugman. Plugman was installed into your environment using the Node.js
package manager (npm) when you installed the HTML5 SDK (i.e., npm install -g plugman).

You use plugman to manage Cordova plugins from within your HTML5 projects. If you want multiple

apps to use a plugin, you must run the plugman command for each app that needs to use the plugin.

The plugman command is on a per project (or app) basis.

To add a plugin from your project, use the following command:

plugman install --platform blackberry10 --project folder to project

--plugin id|path|url [--variable NAME=name]

For example, from within your Cordova project directory, you can use the plugman command to add

the demo plugin from the HTML5 SDK:

• On Windows:

plugman install --platform blackberry10 --project .

--plugin HTML5 SDK install location\html5sdk\demo\com.qnx.demo

• On Linux:

plugman install --platform blackberry10 --project .

--plugin HTML5 SDK install location/html5sdk/demo/com.qnx.demo

To remove a plugin from, your project, use the following command:

plugman uninstall --platform blackberry10

--project folder to project --plugin id

To list installed plugins for your project:

plugman ls

For information about Plugman, see Using Plugman to Manage Plugins in the Cordova Documentation.

Copyright © 2015, QNX Software Systems Limited 13

http://cordova.apache.org/
http://www.qnx.com/download/
https://cordova.apache.org/docs/en/3.6.0/plugin_ref_plugman.md.html

HTML5 SDK files overview

After you unarchived the ZIP file, the following folders appear under the Path you installed the QNX SDK

for HTML5 /html5sdk:

cordova

Contains the library of plugins developed for Cordova, as well as the QNX Cordova runtime

and packager. These are the common tools that you require:

create

Creates a new HTML5 project. The project includes a skeleton project and the

required tools for building and packaging an HTML5 app. For more information

about the create command, see “Creating an HTML5 project (p. 30)”

whereis.cmd

Returns the path of the file you specify as a parameter based on a search of the

directories in your PATH variable. This command is available only for Windows.

For example:

whereis.cmd index.html

templates

Contains the folder structure and file templates for new projects. The default

template creates a Cordova app that handles the deviceready event and

displays the Cordova logo on the screen.

demo

A sample app that you can build and deploy to your image. You can see more sample HTML5

apps in the QNX SDK for Apps and Media. Ensure that you use the tools from this HTML5

SDK to build and package the tools. The tools are located in the tools folder.

tools

The tools used by the Cordova runtime to create and build Cordova projects for a target.

To use the tools, you add the path to either the Windows or Linux version of the tools to

your PATH variable on your host computer where installation path is the location you extracte

the HTML5 SDK.

For Windows, the path is:

HTML5 SDK install location\html5sdk\tools\packaging\win32\bin

For Linux, the path is:

HTML5 SDK install location/html5sdk/tools/packaging/linux/bin

You don't use these tools directly, but the Cordova tools have a dependency on these tools:

blackberry-nativepackager

Packages your compiled binaries for your app as a .bar file.

Copyright © 2015, QNX Software Systems Limited14

The HTML5 Development Environment

blackberry-debugtokenrequest

Creates debug tokens on your computer. Debug tokens are not necessary for

packaging your apps.

blackberry-signer

Signs the app if signing keys are provided. This version of the

QNX SDK for Apps and Media doesn't support signed apps. Even though the tools

support signing, it isn't necessary to sign your app or provide signing keys in this

release.

blackberry-deploy

Deploys the package created for your app.

Other tools

You can edit files using your favorite HTML5 development tools. Here are some tools that can help

you with HTML5 development:

• For CSS development, use Compass and Sass. For more information, see “Install CSS development

tools (p. 16).”

• For debugging your apps, install a Webkit-based browser (such as Google Chrome), which work

with Web Inspector. For more information about Web Inspector, see “Debugging Web Apps (p. 53)”

in this guide.

Copyright © 2015, QNX Software Systems Limited 15

The HTML5 Development Environment

Install CSS development tools

(Optional) In addition to installing and setting up the QNX SDK for HTML5, consider downloading

Compass and Sass, which are useful tools for CSS modification and development.

You can modify existing or create CSS files (.scss) that reside on your target using these tools:

• Compass — an open-source CSS authoring framework

• Sass — a CSS extension language, which gets installed when you install Compass

Before you install Compass or Sass, you must have Ruby installed on your host computer. On Linux,

you can use rbenv and RVM to install Ruby. But, if you are using a Windows host, you can use

RubyInstaller or pik.

To install Compass and Sass and create Compass project files:

1. Type one of the following commands to install Compass and Sass:

• On Windows, type gem install compass.

• On Linux, type sudo gem install compass.

2. To verify that compass was installed, type compass version. If your installation was successful,

a version number is returned.

3. Navigate to your project or working directory. You can add Compass project files to your working

directory by typing compass init.

After you complete the steps above, you should see a file called config.rb in your working directory.

You can use the config.rb file to configure the output for your project. For more information about

configuring Compass, see the Compass Configuration Reference.

You may also find the following information useful for learning more about Compass and Sass:

• Compass tutorials that cover configuration, commands, best practices, and more.

• The Sass site, which has a comprehensive documentation covering variables, mixins, and so on.

• Syntactically Awesome Stylesheets: Using Compass in Sass

Copyright © 2015, QNX Software Systems Limited16

The HTML5 Development Environment

http://compass-style.org/
http://sass-lang.com/
https://www.ruby-lang.org/en/downloads/
http://compass-style.org/help/documentation/configuration-reference/
http://compass-style.org/help/tutorials/
http://www.sass-lang.com/documentation/
http://www.hongkiat.com/blog/saas-compass/

Chapter 3
HTML5 Application Samples

These are the HTML5 samples that are available:

• AudioDemo

• Browser Lite

• CordovaPPSDemo

• PeaksAndValleys

• Shutdown

• VideoDemo

• VideoDemo480 (same as the VideoDemo sample, but configured for targets that use 480p resolution)

The HTML5 samples are described in the User's Guide and included as part of the

QNX SDK for Apps and Media.

The source code for the samples is also available:

• The sample code for the PPS demo is located at Path you installed the QNX SDK

for HTML5 /html5sdk/demo.

• All the other samples are found in an archive file located at

base_directory /qnx660/source/appsmedia_html_source_v1_1.zip where base_directory represents

where you installed the QNX SDK for Apps and Media. You can extract the contents into a separate

directory to work with.

To build and deploy the samples, use the HTML5 SDK. For example, you can build the Cordova PPS

Demo app that's included with the HTML5 SDK. You can also modify the project to further understand

how to build an HTML5 app or use it as a basis for your own apps. For information about how to build

the Cordova PPS Demo app, see Building and deploying the Cordova PPS Demo (p. 18).

Copyright © 2015, QNX Software Systems Limited 17

Building and deploying the Cordova PPS Demo

The Cordova PPS demo is delivered as a separate Cordova component. You can build the demo to learn

how to create a project, install a plugin, and use Persistent Publish/Subscribe(PPS) objects with an

HTML5 app.

About the Cordova PPS demo

If you are using a QNX SDK for Apps and Media image, the steps regarding configuring the sys.acl,
sys.res, and pps.conf files are already completed for you. In fact, the image contains the Cordova PPS

Demo app installed. If you choose, you can recreate the application and deploy it onto the image.

Before you deploy the app you build, it's a good idea to remove the previous version of the Cordova

PPS Demo using the bar-uninstall command.

To run this demo, ensure that you have installed both the QNX SDK for Apps and Media, and

the HTML5 SDK. The code for the HTML5 SDK is located at: HTML5 SDK install

location /html5sdk/demo.

For more information, see The HTML5 Development Environment (p. 13).

The instructions below describe how to create, deploy, and launch the Cordova PPS Demo app. After

you have completed these tasks, you can use the instructions you followed as a model for other HTML5

projects.

Host system

On your host system, use the files in the demo folder as a template to create the demo app:

1. In a command-line window, navigate to the directory where you installed the HTML5 SDK:

• On Windows:

cd HTML5 SDK install location \html5sdk

• On Linux:

cd HTML5 SDK install location /html5sdk

2. Create the app template using the create command:

• On Windows:

cordova\cordova-qnxcar\bin\create CordovaPPSdemo

• On Linux:

./cordova/cordova-qnxcar/bin/create CordovaPPSdemo

3. Copy all the files from the www/ directory into the newly created app's www directory:

Copyright © 2015, QNX Software Systems Limited18

HTML5 Application Samples

On Windows:

xcopy /E demo\www CordovaPPSdemo\www

•

• On Linux:

cp -R ./demo/www/* CordovaPPSdemo/www

4. Add the required plugins using the plugman install command:

• On Windows:

plugman install --platform blackberry10 --project ./CordovaPPSdemo

--plugin ./demo/com.qnx.demo

• On Linux:

plugman install --platform blackberry10 --project ./CordovaPPSdemo

--plugin ./demo/com.qnx.demo

5. Build and package the app using the build command with the debug option.

• On Windows:

.\CordovaPPSdemo\cordova\build debug

• On Linux:

./CordovaPPSdemo/cordova/build debug

The generated BAR file is located at .\CordovaPPSdemo\build\device\qnxcarapp.bar (on

Windows) and ./CordovaPPSdemo/build/device/qnxcarapp.bar (on Linux).

The .bar file is called qnxcarapp by default. If you manage multiple projects, consider

renaming the .bar file to match your app name . For more information, see Packaging an

HTML5 app (p. 45).

Target system

On your target system:

1. Deploy the app on the target using one of the following options:

• You can use a USB stick to deploy the .bar file to the target. Copy the qnxcarapp.bar file from

the previous step to your USB stick, and insert the stick into your target. Then, on your target,

run the following command to deploy from your USB stick:

/scripts/bar-install /fs/usb0/qnxcarapp.bar

Copyright © 2015, QNX Software Systems Limited 19

HTML5 Application Samples

• If your target and host are on the same network, use a tool such as FTP or SCP to transfer the

qnxcarapp.bar file to the \tmp directory on the target. Then, run the bar-install command

as follows:

/scripts/bar-install /tmp/qnxcarapp.bar

When the bar-install command is finished, it will display output like the following:

>> Added PPS entry

CordovaPPSdemo.testDev_dovaPPSdemod339185a::native/default-icon.png,

Cordova PPS Demo,,,auto,,

Make sure you record the filename (in this example:

CordovaPPSdemo.testDev_dovaPPSdemod339185a). You will need it when you specify the

access (p. 20).

2. Add the following entries to the /base/etc/pps.conf file to initialize the PPS object:

qnx/demo

0:0:0660:O_CREAT

user::rw

group::rw

other::rw

mask::rw

3. Set up the Authorization Manager (authman) configuration. To do this, in the /etc/authman/sys.acl
file declare the access_demo capability, and the permissions to the relevant PPS objects:

access_demo

ACL opt rwx:rw /pps/qnx/

ACL opt rwx:rw /pps/qnx/demo

4. Add the following entry to specify the access for the capability you declared in the previous step

in the /etc/authman/sys.res file. Use the filename you recorded in Step 1 above (p. 19):

access_demo

deny *

allow CordovaPPSdemo.testDev_dovaPPSdemod339185a

5. After you finish modifying the pps.conf, sys.acl, and sys.res files, reset your target. For more

information about Authorization Manager, see Authorization Manager (authman) in the System

Services Reference.

6. On your target, start and run the app. If you have an HMI running, tap Cordova PPS demo; otherwise

type the following command at the command prompt of the target:

launch CordovaPPSdemo

For information about using the Cordova PPS App, see “Cordova PPS Demo” in the User's Guide.

Copyright © 2015, QNX Software Systems Limited20

HTML5 Application Samples

Chapter 4
Web Sandbox Model

The QNX SDK for Apps and Media uses sandboxing. Sandboxing allows you to runs apps in their own,

separate instances of the HTML5 engine. It lets you isolate apps so that incorrect behavior in one app

won't affect other apps. For example, without sandboxing, a blocked or stalled JavaScript thread in

one app could prevent other HTML5 apps from running.

You can use sandboxing to separate your core, trusted apps from all the other apps. With this

architecture, multiple WebViews (equivalent to a tab in a desktop browser or window) can either share

a common engine instance (core apps) or run in their own engine instances (other apps). While the

sandbox model does increase the system's memory footprint, the ability to isolate untrusted apps in

their own HTML5 engine instances increases your system's dependability.

Copyright © 2015, QNX Software Systems Limited 21

Chapter 5
Browser Engine

The browser engine is based on the WebKit and supports features such as canvas, WebSocket, Document

Object Model (DOM) improvements, session storage, offline apps, worker threads, and WebGL.

About the browser engine

The browser engine provides support for HTML5, associated technologies (including CSS3 and

JavaScript), and standards, such as AJAX, JavaScript Object Notation (JSON), and XML. The browser

engine is based on the WebKit (www.webkit.org) open-source web browser engine. The browser engine

has also been extended and optimized for embedded systems in the following ways:

• improved user interaction (complex touch event handling, smooth zooming/scrolling, fat-finger

touch target detection, etc.)

• improved performance and battery life for mobile devices

• enhanced user operations such as fast scrolling and zoom (e.g., zooming in on a webpage) to reduce

RAM utilization

• enhanced JavaScript execution that improves performance and reduces CPU utilization

• reduced power consumption (e.g., by throttling background threads) and reduced battery drain

• added support for multimodal input (e.g., trackpad, keyboard, and virtual keyboard)

• improved overall speed (e.g., by selective image down-sampling)

By default, the browser engine implements the most basic browser functionality: the ability to follow

links and to download and display content. You can use the engine's functionality at the most basic

level to display web content in your app, or you can use Webplatform APIs to create your own

full-featured, customized, web-based app.

The great variety of content and encoding types used on the Internet makes the simple tasks of browsing

and downloading content from the web a daunting task for a browser—and the browser designer. The

SDK's browser engine handles different content types transparently. It creates and manages the objects

necessary to render the incoming content, and provides the view classes used to display content. Each

view class (called a WebView) contains frames (called WebFrames); each frame implements its own

scroll bar. You don't need to implement custom views or custom frames to display content in your app.

Sandboxing permits each app runs in its own instance of the browser engine, so that bad behavior in

one app doesn't affect all other apps. For more information about sandboxing, see Web Sandbox

Model (p. 21).

Sample Browser apps

The QNX SDK for Apps and Media includes two reference apps (Browser and Browser Lite). Both

reference apps are browsers that utilize the browser engine. The Browser Lite app provides a sample

that shows you how to build a web browser. The app is implemented with HTML5, CSS3, and JavaScript.

The Browser Lite app provides basic components, such as a URL address entry, back and forward

buttons, while the Browser app provides components (bookmarks, toolbars, etc.) that you would expect

from a desktop browser. A browser without these components is called a chromeless browser. You can

customize or replace the Browser Lite app because the source code is available to you. For more

information about reference apps, see “ Browser” and “Browser Lite” in the User's Guide.

Copyright © 2015, QNX Software Systems Limited 23

http://www.webkit.org

Browser engine components and technology support

The browser engine includes components such as native and JavaScript plugins, and supports

technologies such as the HTML5 application framework, CSS, and standard APIs.

HTML5 apps

The HTML5 application framework provides the additions the browser engine needs to support

full-fledged apps. This environment allows you to create and deploy apps built from web technologies

(HTML5, CSS3, and JavaScript) with plugins that provide access to the underlying device hardware

and native services, just like native C/C++ apps.

Native plugins

The browser engine includes, through a dynamically-linked library, plugins based on the Netscape

Plugin API (NPAPI). These native plugins provide access to PPS (Persistent Publish/Subscribe), SQL,

and Screen services. You can add more plugins as required. For example, you can add the native SQLite

3 plugin, which provides SQLite database access, including a complete API for opening, querying, and

modifying a database.

JavaScript plugins

JavaScript Cordova plugins use the browser engine plugins to provide HTML5 apps with access to

middleware-layer services. The reference image for the SDK for Apps and Media includes the browser

and power plugins. For example, the Browser Lite app uses the browser plugin to build a simple web

browser.

Web Inspector tool

Included as part of WebKit , Web Inspector is a useful debugging and profiling development tool for

web content. You can use this tool to troubleshoot and optimize your web content for your apps. The

tool includes features and capabilities such as inspection, profiling, and console integration. For details,

see “Debugging Web Apps (p. 53)” in this guide.

CSS support

The browser engine supports CSS3 properties. You can modify CSS files to customize the appearance

of your app. Consider using Sass and Compass to help you customize CSS files. For a complete list of

supported CSS3 properties for WebKit-based browsers, see the CSS3 Browser Support Reference at

the following W3Schools site:

www.w3schools.com/cssref/css3_browsersupport.asp

HTML5 elements

The HTML5 SDK supports the use of HTML5 elements in your apps. The table below describes some

of the more common elements used to develop HTML5 apps. For more information about these elements,

see the corresonding W3Schools references:

Copyright © 2015, QNX Software Systems Limited24

Browser Engine

http://www.w3schools.com/cssref/css3_browsersupport.asp

DescriptionElement

Represents a sound or audio stream.HTML5 Audio

Provides a container for JavaScript to draw graphics on a webpage.HTML5 Canvas

Scripts use this object to programmatically determine the location

information associated with the hosting device.

HTML5 Geolocation

Provides functions to access a list of key/value pairs for local storage

objects (i.e., objects that persist after a browser session has ended).

HTML5 Web Storage

(localStorage)

Lets you save a large amount of key/value pairs and text for session

storage objects (i.e., objects that are valid only for the current browser

session).

HTML5 Web Storage

(sessionStorage)

Represents a video or video stream.HTML5 Video

Allows JavaScript code to be executed in a background thread.HTML5 Web Workers

Browser API and offline support

HTML5 includes several features that address the challenge of building web apps that work offline.

These features include SQL, offline app-caching APIs, online/offline events, status, and the

localStorage API. For more information about creating web apps that work offline, see the W3C

document Offline Web Applications.

The browser engine supports various standard APIs. For information about these APIs, see the following

W3C resources:

DescriptionAPI Support

A set of APIs for manipulating client-side databases using SQL.Web SQL Database

An API that allows webpages to use the WebSocket protocol. This

protocol enables web apps to maintain bi-directional communications

with a remote host.

WebSocket API

An API that allows authors of web apps to spawn background workers

running scripts in parallel to their main page. This process allows for

Web Workers

thread-like operation with message passing as the coordination

mechanism.

An API that provides scripted access to geographical location

information associated with the hosting device.

Geolocation API Specification

Copyright © 2015, QNX Software Systems Limited 25

Browser Engine

http://www.w3schools.com/html/html5_audio.asp
http://www.w3schools.com/html/html5_canvas.asp
http://www.w3schools.com/html/html5_geolocation.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_webstorage.asp
http://www.w3schools.com/html/html5_video.asp
http://www.w3schools.com/html/html5_webworkers.asp
http://dev.w3.org/html5/offline-webapps/
http://www.w3.org/TR/webdatabase/
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/workers/
http://dev.w3.org/geo/api/spec-source.html

Chapter 6
Developing HTML5 Apps

The HTML5 app environment lets you create and deploy apps built from web technologies (HTML5,

CSS3, and JavaScript) with Cordova plugins. These plugins can access the underlying device hardware

and native services, just like native C/C++ apps.

Overview

An HTML5 app created with the Apache Cordova framework can be targeted to run on different devices,

or ported from a different OS, such as iOS, BlackBerry 10, or Android.

You can take advantage of the available mobile web frameworks, such as Sencha Touch and jQuery

Mobile. In addition to the Apache Cordova plugins and the plugins provided in the HTML5 SDK, these

mobile frameworks provide APIs are useful for creating HTML5 apps. There is one caveat about using

mobile frameworks: you may find that some frameworks or features don't function on the QNX SDK

for Apps and Media, because the target board doesn't support the feature. For example, the Vibrate

API used on many phones won't work on your target unless the hardware supports vibration.

The process for creating an HTML5 app is similar to mobile development. You can use an iterative

development approach to add functionality, testing as you go along. The following diagram shows the

main development workflow:

Create Cordova
project

Modify & add files
(images, HTML, plugins,
JavaScript, resources)

Test & debug
app locally Package app Install and test app

on target system

Figure 2: The HTML5 app development workflow

For a walkthrough of the entire process, consider looking at “Example: Hello World! (p. 47).”

Creating a Cordova project

To start a Cordova project, use the create (p. 14) command to create a skeleton HTML5 project. For

more information about the create command and the folder structure that it creates, see Creating

an HTML5 project (p. 30).

Copyright © 2015, QNX Software Systems Limited 27

http://cordova.apache.org/

Modifying and adding files

After you create a Cordova project, you modify and add files to your project. You might add images,

HTML files, plugins, and JavaScript.

Here are a few guidelines to follow during the development of your app:

• To ensure that apps function correctly, verify that the Cordova project has the proper permissions,

and disable pinch and zoom. For more information about these tasks, see “Creating an HTML5

project (p. 30).”

• You can use Cordova plugins and plugins provided in the HTML5 SDK to incorporate functionality

as required for your app. To manage any plugins that you want to use in your project, use Plugman.

After you add a plugin to your project, it's bundled into the .bar file during the build process. For

more information about managing plugins, see “Managing plugins (p. 13).”

• If you need to access native functionality, you may find it useful to create your own custom plugin.

For more information about creating custom plugins, see Creating Custom Cordova Plugins (p. 71).

If you require access to PPS objects or want to limit permissions, look at the example code in the

“Example: Adding a permission to access a PPS object (p. 50).”

• Modify the config.xml configuration file to tell the framework which HTML file to launch your app

with, configure your app's behavior, and list plugins you have added to the Cordova project. For

more information about modifying the config.xml file, see “Working with the configuration

file (p. 32).”

• As you develop and test your app, ensure that your app performs and functions well. If you find

that you need to improve performance, follow the guidelines at Improving HTML5 app

performance (p. 70).

Testing and debugging locally

The HTML5 standard ensures compatibility between browsers, making the environment compatible

with mobile, desktop, and web environments. Therefore, you can test an HTML5 app locally using a

web browser. If you are using a WebKit-based browser, you can debug your app using Web Inspector.

For more information about using Web Inspector and debugging apps, see Debugging Web Apps (p. 53).

The testing you do is useful to test interactions and transitions in your app. You can test functionality

that you incorporate from JavaScript libraries (provided your browser supports the plugin). To run an

app, select the starting HTML file for your app and run it in a web browser on your host computer. It's

important to recognize that some functionality may not work because:

• it is native functionality that's only available on the target

• it requires interaction with PPS objects

• the functionality is hardware-specific (e.g. camera)

For example, any functionality that requires communication with PPS objects or calls to Cordova

JavaScript Plugins won't work in your local browser because these require a target that runs Apps and

Media. For this reason, your final testing should be on a target or VMware image running Apps and

Media.

Copyright © 2015, QNX Software Systems Limited28

Developing HTML5 Apps

Packaging the app

To fully test functionality (especially native functionality that your HTML5 app uses), use the build

command to package your HTML5 app into an archive called a .bar file. For more information about

packaging a Cordova app, see Packaging an HTML5 app (p. 45).

Installing and testing app on target system

After you build a .bar file, transfer the .bar file to your target to install, launch, and test your app. You

should ensure that you do final testing on a target board or VMware running Apps and Media—especially

if you need to test native functionality or functionality specific to Apps and Media.

For more information about installing, launching, stopping, and uninstalling apps, see the Application

and Window Management guide.

If you need to debug your application, you can use a WebKit-based browser and connect to your target.

For more information about debugging an app on a target board, see Debugging Web Apps (p. 53).

Copyright © 2015, QNX Software Systems Limited 29

Developing HTML5 Apps

Creating an HTML5 project

You create an HTML5 app through an HTML5 project. When you create an HTML5 project, you first

create a skeleton project, then look after the configuration to ensure that your HTML5 app will work

correctly on your target system.

The process for creating HTML5 apps is similar to the process for creating Cordova apps. You create

the project with the default folders and files, then add and modify files for your scripts, HTML5, images,

etc., and modify the config.xml file to configure the app's behavior.

To create an HTML5 project, use the create (p. 14) command. This command creates a skeleton

project and pre-populates the files required to run an HTML5 app on the platform. If you build the

app without modifications, by default, the app is set up to handle the deviceready event, and

displays the index.html page with the Cordova logo.

An HTML5 application created with Apache Cordova is a standalone app, which means you aren't

required to point to a remote server to load a webpage. The app runs on the target and can run in a

standalone fashion.

Configuring apps for QNX SDK for Apps and Media

Your HTML5 app doesn't run on a mobile device, such as a tablet or a smartphone. Instead, it runs in

an HMI on your target board. Therefore, you must make the following changes to your app so that it

functions correctly:

• Disable pinch and zoom on the HTML5 app. This incorrect resizing can cause your app to behave

incorrectly. In the index.html file (or other starting page for your app), set the height and width

to match your screen dimensions, and set the user-scaleable to no as shown here:

<meta name="viewport" content="width=800, height=480,

initial-scale=1.0, user-scalable=no"/>

• Whitelist any required URIs, such as URLs or network locations, that aren't local to the app. To

whitelist a URI, use the <access> (p. 33) element in the config.xml file. For example:

<access subdomains="true" origin="www.qnx.com" >

<access subdomains="true" origin="file:///SDCard" />

For improved security, it's best to whitelist only the locations you require and use HTTPS for sensitive

information. For more information about whitelisting, see the Whitelist Guide in the Cordova

Documentation.

Running Cordova create

To run the Cordova create command, navigate to the [location you installed HTML5

SDK]/html5sdk/cordova/cordova-qnxcar/bin folder on your host computer. You run the command with

the following parameters:

create project_path package_name app_ID

Copyright © 2015, QNX Software Systems Limited30

Developing HTML5 Apps

where:

• project_path — The location of an empty directory.

• package_name — (Optional) A reverse domain name, such as com.company.appname.

• app_ID — (Optional) A unique name. The name should be unique on the target system.

For example:

create hello com.example.hello helloWorld

Attention The package_name and app_ID must be alphanumeric characters and can't be

more than 50 characters long.

Project folders

The create command creates the following subfolders in the folder you specified as the project_path:

www

This folder contains all your project resources, including the index.html file, which is the

starting page for your app. It also contains subfolders for various resources, including CSS

and JavaScript files, as well as any other resources you might add.

When you start to add code and resources to your app, save any project resource

files used by the app in the /www folder (or in the relevant subfolder within /www).

native

The location where plugins native to the platform exist. Each HTML5 project includes plugins

required for target boards and VMware images.

lib

The Cordova Framework JavaScript libraries required to run on the target.

cordova

The tools to build and work with the project:

build

Interprets your HTML5 and JavaScript code, builds the binaries, and packages

the web assets to a .bar file. For more details, see “Test and package (p. 28).”

clean

Removes any files, such .bar files, that the build command created.

version

Returns the version of the Cordova that's being used for your HTML5 app.

whereis.cmd

Searches the directories in your PATH environment to locate the file that you

typed. This command is available only for Windows.

Copyright © 2015, QNX Software Systems Limited 31

Developing HTML5 Apps

Working with the configuration file

The configuration file is a platform-agnostic XML file that contains information about your HTML5

app.

The configuration (config.xml) file is located in your HTML5 project's www folder. This file is used to

control many aspects of an app's behavior. The config.xml file is based on the Cordova's config.xml,
but the HTML5 SDK provides additional elements to support specific app behavior. If you are familiar

with working with BlackBerry Webworks, you may notice some of the element names look familiar, but

it isn't a one-to-one mapping and functionality differs slightly in the HTML5 SDK.

During the build process, the contents of the config.xml are used to generate the bar-descriptor.xml
file. It's common to modify the config.xml to add permissions for an app. There are default permissions

available you can use, but you can also create your own custom permission. A custom permission

allows you to control access to resources and Persistent Publish/Subscribe(PPS) objects that you create.

For more information about creating custom permissions, see Example: Adding a permission to access

a PPS object (p. 50).

The following table lists the elements that are applicable for config.xml when you use the HTML5 SDK.

DescriptionElement

Specifies that the app can access external network resources. If you

do not specify an <access> element, the app can access only local

<access> (p. 33)

resources. Local access includes the resources packaged with the app

in the .bar file.

Specifies the name (typically the company or developer name).<author> (p. 34)

Specifies configuration settings to add to a configuration file.<config-file> (p. 35)

Specifies the start page that the Cordova app uses when it runs. The

start page can contain the web address of a file that is located outside

of the application archive.

<content> (p. 36)

Specifies a human-readable description for the Cordova app.<description> (p. 37)

Specifies the plugins to use with your app.<feature> (p. 37)

Specifies a human-readable name for the Cordova app.<name> (p. 39)

Specifies that image that appears on the screen. The image should

be 86x86 pixels.

<icon> (p. 38)

Specifies permission access to various features.<rim:permissions> (p. 40)

Specifies permission access to various features. The list of features

is available in the sys.acl and sys.res files on your target system. For

<rim:permit> (p. 41)

more information, see “Authorization Manager” in the System Services

Reference.

The top-level parent component and follows the Cordova specification.

See Project Settings in the Cordova Documentation

<widget> (p. 42)

Copyright © 2015, QNX Software Systems Limited32

Developing HTML5 Apps

https://developer.blackberry.com/html5/
http://cordova.apache.org/docs/en/3.6.0/guide_project-settings_index.md.html

<access>

Specifies the network resources that the application can access. Use this element to specify

cross-domain URIs which your application requires but which are not local.

Syntax:

<access origin="string" subdomains=["true" | "false"] />

Description:

The <access> element specifies that a Cordova app can access external network resources. By default,

if you do not specify an <access> element, an app has access to local resources only. Local resources

include all resources packaged in the app's .bar file.

When you specify more than one <access> element, the most specific definition is used. For example,

if you use http://somedomain.com and http://specific.somedomain.com, the <access>

element that uses the first definition (and any features defined under it) is ignored.

As a good practice, use HTTPS to expose sensitive APIs and to protect your communication channel.

For more information about whitelisting, see the Whitelist Guide in the Cordova Documentation.

Occurrences:

Zero or more.

Parent elements:

<widget> (p. 42)

Child elements:

None.

Content:

None.

Attributes:

You can define the following attributes for this element:

DescriptionAttribute

Optional. The origin attribute defines the web address for the access

request.

origin

For domains that access data through XMLHttpRequest, explicitly specify

the domain for the origin attribute. For domains that don't access content

through XMLHttpRequest, you can specify a wildcard (*) for the origin

attribute to whitelist any domain.

Copyright © 2015, QNX Software Systems Limited 33

Developing HTML5 Apps

http://cordova.apache.org/docs/en/3.6.0/guide_appdev_whitelist_index.md.html#Whitelist%20Guide

DescriptionAttribute

Deprecated. Instead, use the origin attribute. The uri attribute defines

the web address for the access request. This attribute is supported only for

backwards compatibility.

uri

Optional. The subdomains attribute is a Boolean value that specifies

whether the host component in the access request applies to subdomains

of the domain specified by the origin attribute.

subdomains

By default, if you don't specify the value of the subdomains attribute, the

value is set to false and no access to subdomains is requested.

Examples:

The following example shows how to white-list an external resource, in this case, the domain

somedomain, as well as any subdomains it might have.

<access origin="https://somedomain.com" subdomains="true"/>

The following example shows how to white-list a URI to mountpoint named SDCard:

<access subdomains="true" origin="file:///SDCard" />

<author>

Specifies the name of the creator of the app.

Syntax:

<author>

string

</author>

Description:

The <author> element specifies the name of the app's creator (typically a developer or a company).

Occurrences:

One.

Parent elements:

<widget> (p. 42)

Child elements:

None.

Copyright © 2015, QNX Software Systems Limited34

Developing HTML5 Apps

Content:

A string value representing the name of the person or organization that created the app.

Example:

<author>My Corp</author>

<config-file>

The <config-file> specifies where child elements should be placed.

Syntax:

<config-file target="bar-descriptor.xml" parent="/qnx">

<category>media</category>

</config-file>

Description:

The <config-file> specifies the configuration file and XPath where child elements should be

placed.

Add the <config-file> element's child elements to the specified configuration file. The location

where elements should be added is specified using an XPath value, such as the first node of the file.

For example, in the configuration file called bar-descriptor.xml, the first node is called qnx.

Occurrences:

Zero or more.

Parent elements:

<widget> (p. 42)

Child elements:

Any elements that you want to add after the specified parent node.

Content:

None.

Attributes:

You can define the following attributes for this element:

DescriptionAttribute

The name of the configuration file.target

Copyright © 2015, QNX Software Systems Limited 35

Developing HTML5 Apps

DescriptionAttribute

The parent node where to put the configuration specified by child elements.

You can specify the location using XPath.

parent

Examples:

The following example shows how to add a category element to the qnx node in the bar-descriptor.xml

file.

<config-file target="bar-descriptor.xml" parent="/qnx">

<category>media</category>

</config-file>

<content>

Specifies the first page to load when the app starts.

Syntax:

<content src="string" />

Description:

The <content> element specifies the first page the HTML5 app displays when it runs. The start page

can contain the web address of a file that is located outside of the application archive.

Occurrences:

One.

Parent elements:

<widget> (p. 42)

Child elements:

None.

Content:

None.

Attributes:

You can define the following attributes for this element:

DescriptionAttribute

Required. The src attribute specifies the source HTML file in the

application archive.

src

Copyright © 2015, QNX Software Systems Limited36

Developing HTML5 Apps

Example:

The following example shows how to specify a start page called startpage.html.

<content src="index.html" />

<description>

A human-readable description of the HTML5 application.

Syntax:

<description>string</description>

Description:

The <description> element specifies a human-readable description for an HTML5 app.

Occurrences:

One.

Parent elements:

<widget> (p. 42)

Child elements:

None.

Content:

A string value representing a human-readable description of the app.

Example:

<description>

This app displays "Hello World" on the screen.

</description>

<feature>

The names of the plugins to be included with the HTML5 app.

Syntax:

<feature name="string" value="string"/>

Copyright © 2015, QNX Software Systems Limited 37

Developing HTML5 Apps

Description:

The <feature> element specifies the names of the plugins to include with the HTML5 app.

Occurrences:

Zero or more.

Parent elements:

<widget> (p. 42)

Child elements:

None.

Content:

A string value.

Attributes:

You can define the following attributes for this element:

DescriptionAttribute

The name of the feature.name

The plugin ID, as defined in its plug.xml file.value

Example:

<feature name="com.qnx.demo" value="com.qnx.demo" />

<icon>

Specify a custom icon for an HTML5 app.

Syntax:

<icon src="string" />

Description:

The icon specified by the <icon> element's src attribute identifies your app on the Home screen of

your target system.

The specified icon must meet the requirements for custom or default icons. The icon image should be

24-bit PNG format with an alpha channel. If you use the icon on the HMI (Home Screen), it should

be 86x86 pixels in size. If you don't specify an icon for your app, the app appears with only the text

specified by its <name> element.

Copyright © 2015, QNX Software Systems Limited38

Developing HTML5 Apps

Occurrences:

Zero or more.

Parent elements:

<widget> (p. 42)

Child elements:

None.

Content:

None.

Attributes:

You can define the following attributes for this element:

DescriptionAttribute

Specifies the path for an image file packaged in the .bar file.src

This attribute is required.

Example:

In the config.xml file, we include the following entries:

<icon src="icon-86x86.png" />

<name>

The human-readable name of the HTML5 application.

Syntax:

<name>string</name>

Description:

The <name> element specifies a human-readable name for an HTML5 app. You can use this name

in, for example, an application menu.

If you don't specify a name element, the app is not valid. The name must be 25 characters or less.

Occurrences:

One.

Copyright © 2015, QNX Software Systems Limited 39

Developing HTML5 Apps

Parent elements:

<widget> (p. 42)

Child elements:

None.

Content:

A string value representing a human-readable name for the HTML5 app.

Example:

<name>Hello World! app</name>

<rim:permissions>

This element is a container element for <rim:permit> element, which specifies the permissions for

HTML5 app features.

Syntax:

<rim:permissions>

<rim:permit>permission_string</rim:permit>

</rim:permissions>

Description:

The <rim:permissions> element is a container element for the <rim:permit> element, which

specifies the permissions for various features in an HTML5 app.

See the <rim:permit> (p. 41) element for information about permission features.

To use the <rim:permissions> element, you must include the following namespace

declaration in the parent <widget> element:

xmlns:rim="http://www.blackberry.com/ns/widgets">

Occurrences:

One or none.

Parent elements:

<widget> (p. 42)

Child elements:

<rim:permit> (p. 41)

Copyright © 2015, QNX Software Systems Limited40

Developing HTML5 Apps

Content:

None.

Attributes:

None.

Example:

The following example demonstrates how to set a custom permission called access_demo.

<widget xmlns:rim="http://www.blackberry.com/ns/widgets">

...

...

<rim:permissions>

<rim:permit>access_demo</rim:permit>

</rim:permissions>

</platform>

<widget>

<rim:permit>

Specifies the permission for specific HTML5 app features.

Syntax:

<rim:permissions>

<rim:permit>permission_string</rim:permit>

</rim:permissions>

Description:

The <rim:permit> element specifies permission access to various features in a HTML5 app.

Occurrences:

One or more.

Parent elements:

<rim:permissions> (p. 40)

Child elements:

None.

Content:

A string value representing a valid permission value. For a list of permissions and their descriptions,

see Authorization Manager.

Copyright © 2015, QNX Software Systems Limited 41

Developing HTML5 Apps

Attributes:

None.

Permissions:

The permissions (or capabilities) you can use are defined using the Authorization Manager (authman).

For information about the available permissions, see Authorization Manager in the System Services

Reference.

Example:

The following example shows how to give an app access to geolocation.

<widget xmlns:rim="http://www.blackberry.com/ns/widgets">

...

...

<rim:permissions>

<rim:permit>read_geolocation</rim:permit>

</rim:permissions>

...

...

<widget>

<widget>

Specifies the root element for the config.xml file.

Syntax:

<widget xmlns="http://www.w3.org/ns/widgets"

xmlns:rim="http://www.blackberry.com/ns/widgets"

version="string"

id="string"

xml:lang="string"

rim:header="string"

rim:userAgent="string">

</widget>

Description:

The <widget> element is the root element of the config.xml file. The config.xml file must contain a

single instance of <widget>.

Occurrences:

One.

Copyright © 2015, QNX Software Systems Limited42

Developing HTML5 Apps

Parent elements:

None.

Child elements:

OccurrencesName

zero or more<access> (p. 33)

one<author> (p. 34)

zero or more<config-file> (p. 35)

one<content> (p. 36)

zero or more<description> (p. 37)

zero or more<feature> (p. 37)

one<icon> (p. 38)

one<name> (p. 39)

zero or more<rim:permissions> (p. 40)

zero or more<rim:permit> (p. 41)

Content:

None.

Attributes:

You can define the following attributes for this element:

DescriptionAttribute

Required. Defines the namespace for the HTML5 app. The value must be

xmlns="http://www.w3.org/ns/widgets". If this namespace is

missing, the .bar file isn't valid.

xmlns

Required. Defines the namespace for the Cordova extensions (that is, those

elements with the rim: prefix). The value must be

xmlns:rim="http://www.blackberry.com/ns/widgets".

xmlns:rim

Required. Specifies a valid version for the app in one of the following

formats:

version

• X.X.X

• X.X.X.X

If you specify a version number that's not valid, the .bar file isn't valid.

Copyright © 2015, QNX Software Systems Limited 43

Developing HTML5 Apps

DescriptionAttribute

Required. Specifies a unique identifier for the app.id

Unless you are repackaging an app from another platform, use a reverse

DNS format (e.g., id="com.somedomain.HelloWorld").

Optional. Specifies the language that is used in the element. For more

information about this attribute, visit

www.w3.org/TR/html401/struct/dirlang.html.

xml:lang

Example:

<widget xmlns="http://www.w3.org/ns/widgets"

xmlns:rim="http://www.blackberry.com/ns/widgets"

version="1.0.0.1"

id="com.sample.HelloWorld">

</widget>

Copyright © 2015, QNX Software Systems Limited44

Developing HTML5 Apps

http://www.w3.org/TR/html401/struct/dirlang.html

Packaging an HTML5 app

To run an HTML5 app on a target running QNX Neutrino, you must package it as a .bar file.

Build options

The build command interprets your HTML5 and JavaScript code, builds the binaries, and packages

the web assets into a .bar file.

You can use the following options with the build command:

--debug

Build in debug mode. This option allows Web Inspector to connect to your application on

the target for debugging purposes and console logs to appear.

--release

Build in release mode and signs the app if signing keys are provided. This version of the

QNX SDK for Apps and Media doesn't support signing. Even though the tools support signing,

it isn't necessary to sign your app or provide signing keys for apps running on this release.

--web-inspector

Enables web-inspector for debugging apps on the target. This option is included when you

use the --debug option.

It's a good idea to use the debug option when you are testing, because it allows you to run

Web Inspector.

Building the app

To create a .bar file for an HTML5 app, run the build command in your HTML5 project folder. The

.bar file can be deployed to your target using these steps:

1. Navigate to the folder where your HTML5 project was created when you ran the create command.

2. Ensure that all the resources and permissions your application needs are specified in the config.xml
file.

The create command produces a basic config.xml file that defines the app's properties,

features and functionality, and behavior. You may need to edit this file depending on the

features or permissions required by your app. For more information, see “Working with the

configuration file (p. 32).”

3. Navigate to the cordova folder.

4. Run the build command:

build --debug

Copyright © 2015, QNX Software Systems Limited 45

Developing HTML5 Apps

5. The default name of the .bar file is qnxcarapp.bar. If you will work with multiple .bar files on a

target system, rename the file to a unique name.

The output from an HTML5 app build looks like the following. The warnings about not having a debug

token when you build is expected because debug tokens aren't used for apps on this platform:

[WARN] Using legacy signing keys

[INFO] Populating application source

[INFO] Parsing config.xml

[INFO] Generating output files

[WARN] Failed to find debug token. If you have an existing debug token,

please copy it to C:\Users\qnxuser\.cordova\blackberry10debugtoken.bar.

To generate a new debug token, execute the 'run' command.

[INFO] Package created:

C:\AppsMedia_html5sdk_141022_1646\html5sdk\CordovaPPSdemo\build\simulator\qnxcarapp.bar

[WARN] Failed to find debug token. If you have an existing debug token, please

copy it to C:\Users\qnxuser\.cordova\blackberry10debugtoken.bar.

To generate a new debug token, execute the 'run' command.

[INFO] Package created:

C:\AppsMedia_html5sdk_141022_1646\html5sdk\CordovaPPSdemo\build\device\qnxcarapp.bar

[INFO] BAR packaging complete

After the build command is finished, the .bar file is found in the following folders:

• location of your HTML5 project /build/device

• location of your HTML5 project /build/simulator

You can use copy the file to a USB stick and mount it to your target board or use a tool to transfer the

file to the target. If you choose the latter, your target must be connected to the same network as your

computer. You must get your file to the target to deploy it.

For information about creating a simple HTML5 app using Cordova, see “Creating an HTML5

project (p. 30).” For information about installing the app on your target, see “Installing packaged apps

on the target” in Application and Window Management.

Copyright © 2015, QNX Software Systems Limited46

Developing HTML5 Apps

Example: Hello World!

This example walks you through the end-to-end process you follow when using the HTML5 SDK tools

to create, edit, and package and application, then install and run it on a target.

To create a basic HTML5 app template:

1. In a command prompt, navigate to the [location where you installed the HTML5

SDK]/html5sdk/cordova/cordova-qnxcar/bin directory.

2. Run the Cordova create command to create an HTML5 project. For more information about using

the create command, see Creating an HTML5 project (p. 30). For example, on a Windows machine,

type the following in the command-line prompt.

On Windows:

create [directory to put your project]\myfirstapp myfirstapp com.mycompany.myfirstapp

Linux:

create [directory to put your project]/myfirstapp myfirstapp com.mycompany.myfirstapp

3. Navigate to your project directory specified in the previous step, edit the app's start page, and

change the existing <meta name="viewport"...> line to the following line to prevent pinch

and zoom on the app. Usually the start page is the www/index.html file.

<meta name="viewport" content="width=800, height=480,

initial-scale=1.0, user-scalable=no"/>

4. Below the <title>Hello Word</title> line, add an event to display simple text on the

onReady() event occurs. For example, add the following code:

<script type="text/javascript">

function onReady() {

document.body.innerHTML = "HELLO AWESOME HTML5 WORLD!";

}

window.addEventListener("load", function (e) {

if (window.cordova) {

document.addEventListener("deviceready", onReady);

}

}, false);

</script>

5. (Optional) Navigate to the parent directory of your project folder and add any additional Cordova

plugins to your project using the plugman install command for any features you want. The

Plugman command is required to manage plugins for your project. For more information, see

“Managing plugins (p. 13).” For example, add the provided demo project plugin.

Copyright © 2015, QNX Software Systems Limited 47

Developing HTML5 Apps

On Windows:

plugman install --platform blackberry10

--project .\myfirstapp --plugin .\demo\com.qnx.demo

On Linux:

plugman install --platform blackberry10

--project ./myfirstapp --plugin ./demo/com.qnx.demo

6. Modify the config.xml to configure app behavior and add access permissions. In the config.xml
file, add the following text. You can also put a human-readable string (e.g., myfirstapp) for the

<name> element. The string that you provided is what is shown on the screen when the HMI loads

your app. If you added the plugin above, the plugin should be added as a <feature> entry in

your config.xml:

<name>myfirstapp</name>

...

<access subdomains="true" origin="www.qnx.com" >

<access subdomains="true" origin="file:///SDCard" />

7. As you code and modify your project, you can build your project. To build, run the build command

from the cordova folder in your project. Optionally, when you build use the debug option:

To build using debug command: build debug

To build without the debug command: build.

The generated .bar file for a target is located at:

On Windows:

[location of project]\build\device\qnxcarapp.bar

On Linux:

[location of project]/build/device/qnxcarapp.bar

To find .bar files to install on VMware images, look in the [location of

project]/build/simulator directory .

8. Transfer the .bar file to your target and install it using one of these options:

• You can use a USB stick to deploy the file to target. Copy the .bar file from the previous step

to your USB stick, and insert it into the target. Then, on your target, run the following command

to deploy from your USB stick:

#bar-install /fs/usb0/qnxcarapp.bar.

Copyright © 2015, QNX Software Systems Limited48

Developing HTML5 Apps

• Use a tool to transfer the .bar file to the \tmp folder on the target. You can use FTP or SCP if

your target is connected to same network as your host computer. Then, on your target, run the

following command:

bar-install /tmp/qnxcarapp.bar

9. If your target has an HMI, then you should see the app appear. To run it, tap the icon representing

your app. Otherwise, you can launch the app from command line using the launch command:

launch myfirstapp

Figure 3: A screen showing the text output by the HTML5 “Hello World!” program

The create command generates the folder structure for your project at the specified location (for the

example above, the hello directory). For more information about the create command, see Creating

an HTML5 project (p. 30).

Tip

The app is essentially an arrangement of web assets that are packaged into a container. You

can use a browser to view your app.

If you find that you require functionality not available, such as accessing a PPS object you

created, you can build a custom Cordova plugin. For information about creating a simple

Cordova plugin that uses PPS, see “Creating Custom Cordova Plugins (p. 71).”

Copyright © 2015, QNX Software Systems Limited 49

Developing HTML5 Apps

Example: Adding a permission to access a PPS object

You can use Authorization Manager (authman) to restrict access to Persistent Publish/Subscribe (PPS)

objects.

Permissions and capabilities

As well as letting you persist information across device restarts, PPS is useful for sharing information

between apps in a secure manner. You can use the Authorization Manager (authman) to restrict access

to a PPS object and to limit the data one more multiple apps can access.

To create a permission, you edit the pps.conf file to create a capability. You can then configure access

and restrictions to the resources and services for that new capability in the /etc/authman/sys.acl and

/etc/authman/sys.res files.

After you have created a capability, use the <rim:permit> to specify the name of the capability in

the config.xml in your HTML5 project. The <rim:permit> element in the config.xml file grants the

HTML5 app access to the resources and services defined by the capability.

Before you begin, you should have a good understanding of authman, of PPS, and how to use

PPS with an HTML5 app.

• For information about authman, see Authorization Manager in the System Services

Reference.

• For more information about the pps.conf file, see “ACL configuration file format” in the

Persistent Publish/Subscribe Developer's Guide.

• For information about using PPS with HTML5, you can look at the Cordova PPS Demo

sample code and see “Using the PPS interface (p. 74)”.

Setting a PPS object capability

The instructions below show you how to:

• use authman to create and configure access to a capability called access_demo

• configure the system to define a new PPS object

• grant access to your HTML5 project to use the new the capability

To perform these tasks:

1. Modify the config.xml in your HTML5 project to grant access to a new permission called

access_demo. To do this, add the <rim:permit> element beneath a <rim:permissions>

element. The capability access_demo is defined in the next step. Here's how your config.xml

might look after you have made this addition (shown in bold):

<?xml version='1.0' encoding='utf-8'?>

<widget id="CordovaPPSdemo" version="1.0.0.0"

xmlns="http://www.w3.org/ns/widgets"

xmlns:rim="http://www.blackberry.com/ns/widgets">

<name>Cordova PPS Demo</name>

Copyright © 2015, QNX Software Systems Limited50

Developing HTML5 Apps

<author>QNX</author>

<description>Cordova PPS Demo</description>

<content src="index.html" />

<rim:permissions>

<rim:permit>access_shared</rim:permit>

<rim:permit>access_internet</rim:permit>

<rim:permit>run_native</rim:permit>

<rim:permit>access_demo</rim:permit>

</rim:permissions>

<feature name="com.qnx.demo" />

<feature name="com.qnx.demo" value="com.qnx.demo" />

</widget>

2. On the target system, define the PPS object to the /etc/pps.conf file. This file lists the PPS objects

to create. For example, to create a PPS object called qnx/demo and provide read-write access for

everybody to the object, you add the following entries to the pps.conf file:

qnx/demo

0:0:0660:O_CREAT

user::rw

group::rw

other::rw

mask::rw

3. On your target, create the capability. For example, to create the access_demo capability, add the

name of the capability, and then list the PPS objects that are accessible in the /etc/authman/sys.acl
file.

access_demo

ACL opt rwx:rw /pps/qnx/

ACL opt rwx:rw /pps/qnx/demo

4. On your target, configure the restrictions for the new capability in the /etc/authman/sys.res file. In

this scenario, one app called CordovaPPSdemo is configured to access the PPS object. To restrict

other apps from accessing the PPS object, but allow the CordovaPPSdemo app to access the PPS

object, add the name of the capability, deny *, and allow [name of app] entries to the

/etc/authman/sys.res file. For example:

access_demo

deny *

allow CordovaPPSdemo.testDev_dovaPPSdemod339185a

The string “CordovaPPSdemo.testDev_dovaPPSdemod339185a” is determined when you

build your app using the build debug command. The name is a combination of the

package name and the package identifier. There are two ways to determine the string to

use.

Copyright © 2015, QNX Software Systems Limited 51

Developing HTML5 Apps

• You can see the string that appears in the message after you use the bar-install

command to install your .bar file.

• You can unarchive the .bar file, then determine the string that's used from the

META-INF/MANIFEST.MF file based on this algorithm:

Package-Name+ '.' + Package-Id

For example, based on the following MANIFEST.MF file, the name would be

CordovaPPSDemo.testDev_dovaPPSdemod339185a:

Archive-Manifest-Version: 1.5

Archive-Created-By: BlackBerry WebKit BAR Packager 1.10

Package-Type: application

Package-Author: QNX

Package-Author-Id: testUU5YICAgICAgICAgICAgICA

Package-Name: CordovaPPSdemo

Package-Id: testDev_dovaPPSdemod339185a

Package-Version: 1.0.0.0

Package-Version-Id: testMS4wLjAuMCAgICAgICAgICA

...

...

After the CordovaPPSdemo app is deployed, no other app may access the PPS object named qnx/demo.
If you want another app to access this PPS object, add the generated name of the app to

/etc/authman.sys using another allow entry as described above.

Copyright © 2015, QNX Software Systems Limited52

Developing HTML5 Apps

Debugging Web Apps

Included as part of WebKit, Web Inspector is a useful debugging and profiling tool for web content.

You can use Web Inspector to troubleshoot and optimize your web content for your apps. This tool

includes various features and capabilities, such as inspection, profiling, and console integration.

WebKit-enabled browsers use a client-server architecture to make Web Inspector functionality available.

They act as webservers, so you can inspect content remotely on a browser. You can inspect your app's

code by using any WebKit-based browser on the same Wi-Fi network as your app. Simply launch Web

Inspector and navigate to the IP address and port number used by the browser.

Enabling Web Inspector

Web Inspector functionality is disabled. You can enable it when you compile your HTML5 app.

To use Web Inspector in the browser, you enable it in the browser options. For a Cordova or an HTML5

application, you enable Web Inspector by specifying a command-line flag at compile time.

To begin debugging your app, you can install the Google Chrome browser or another WebKit browser

for your platform. Once Web Inspector is enabled, you can access it using a supported device with the

browser.

To enable Web Inspector for your app:

1. Navigate to your cordova apps directory.

2. Run the following command:

build debug

To launch your compiled app, you need to know the port number your app is running on. You can

use netstat -a on your target to see the open ports. The listening port numbers start at 1337.

For example:

netstat -a

Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address State

tcp 0 0 *.1337 *.* LISTEN

tcp 0 0 *.ssh *.* LISTEN

tcp 0 0 *.telnet *.* LISTEN

tcp 0 0 *.8000 *.* LISTEN

udp 0 0 *.* *.*

udp 0 0 *.bootpc *.*

Active Internet6 connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address (state)

tcp6 0 0 *.ssh *.* LISTEN

Active UNIX domain sockets

Address Type Recv-Q Send-Q Inode Conn Refs Nextref Addr

81556d8 stream 0 0 0 8155680 0 0

8155680 stream 0 0 0 81556d8 0 0

Copyright © 2015, QNX Software Systems Limited 53

Developing HTML5 Apps

Launching Web Inspector

To use Web Inspector, you must launch and manually connect it.

Before you begin to use Web Inspector, verify that:

• your computer is connected to your target board via Ethernet

• your computer has a WebKit-based desktop browser (e.g. Google Chrome or Apple Safari)

• you have launched your application on the target (e.g. by manually starting weblauncher, or by

sending a command to the launcher's PPS object via a command console).

After you've launched the app you want to inspect, you'll need to manually connect Web Inspector.

To launch Web Inspector to begin inspecting web content:

1. On your host computer, open your WebKit-based browser.

2. In the address bar, type the IP address of the device, specifying the port number used by the

application serving the content. Note that different instances of the browser will be at different

ports.

After you complete this step, you will be prompted with a list of page titles for content that Web

Inspector has loaded into memory (e.g. browser content or an HTML5 app).

3. Click any of the page titles to begin using Web Inspector to debug and profile your web content.

Web Inspector opens and displays the Elements panel.

In the Sources view, after you enable debugging, to ensure that you have the latest source files in the

list you can use the shortcut key (CTRL+R) to refresh the current page.

In the Console view, you can browse objects, test extensions, and test APIs without having to build

and deploy your app.

Debugging and profiling using Web Inspector

Web Inspector contains a number of panels that provide different functionality you can use to help

improve the appearance and performance of your webpage.

Using the WebKit-based browser on your desktop, you can navigate to the IP address and port number

used by the server application and begin inspecting the code. You can use Web Inspector to manipulate

the Document Object Model (DOM), edit and debug JavaScript code, analyze resource requests, and

audit the performance of web content and web apps in near real time.

You can work from different panels, depending on what you need to do:

DescriptionPanel

Inspect the DOM of the current webpage and adjust settings for

attributes and CSS properties. Changes you make are reflected in the

browser.

Elements (p. 55)

Display information about all the resources used by the current

webpage.

Resources (p. 58)

Display information about each HTTP request made as resources are

requested, received, and displayed in the browser or in your HTML5

app.

Network (p. 59)

Copyright © 2015, QNX Software Systems Limited54

Developing HTML5 Apps

DescriptionPanel

Debug JavaScript code. You can set breakpoints and step through your

code to locate and correct issues.

Sources (p. 61)

View how much time it takes for the browser to load and render the

webpage and its resources.

Timeline (p. 63)

Examine how your JavaScript code utilizes memory. With the Profiles

panel, you can pinpoint programmatic inefficiencies.

Profiles (p. 65)

Examine the network utilization and webpage performance. The tool

suggests ways to improve performance.

Audits (p. 68)

A command-line utility that lets you debug JavaScript or HTML parsing

errors.

Console

Optimizing layout and style

The Elements panel can be a very useful tool when you need to find the optimal layout for small screens.

The Elements panel allows you to view the DOM and trace style values for an element. By tracing style

values, you can control where they are applied, how they have been inherited, and where they have

been superseded. You can then adjust style settings to tweak the appearance of the webpage components

to achieve the desired result.

The changes you make to the webpage are applied in near real time in the browser, so you can see

how your changes affect the appearance of the content. Once you achieve the results you want, you

can propagate the updated values into the source file.

The Elements panel

You can click the Elements icon on the toolbar to display the Elements panel. This panel is divided

into two sections. On the left is the document pane, which displays the DOM tree of the HTML source

document. On the right is a set of collapsible panes that display various pieces of information related

to the element currently selected in the document pane.

Copyright © 2015, QNX Software Systems Limited 55

Developing HTML5 Apps

Figure 4: The Web Inspector Elements panel

Left pane

The pane of the Elements panel displays the DOM tree of the HTML source document. Each element

is displayed as a separate node. You can expand the nodes of the DOM tree to view the children of a

container element.

The document pane is a good tool to use to view the source of a page. Since the panel displays the

page as a tree, the document is easy to view and to navigate, even when the original webpage is

minified, or poorly formatted and difficult to read. Within the document pane, you can edit aspects of

the DOM, such as attribute values or text.

Right pane

The right side of the Elements panel is a set of collapsible panes that display various pieces of

information related to the element currently selected in the document pane. Some of these panes,

such as Computed Style and Event Listeners, are informative; you use them simply to track information

about the element. Other panes are editable and let you change the styles or properties associated

with the selected element. You can edit content in the following panes:

• Styles: A pane that's divided into sections to show each matched CSS rule and the associated style

declarations. It also shows style values that have been inherited. Inherited values that have been

overwritten by other style declarations are shown with strikethough text.

• Metrics: A visual representation of the box model, which you can edit to optimize the layout of a

container element on the screen. The box model refers to the amount of space a container element

occupies in a rendered webpage. You can apply styles, such as margins, borders, and padding to

an element to adjust the size of the content block and improve the page layout.

• Properties: Provides a pane that allows you to view the page as a collection of DOM objects with

associated property values. Although some of the property values are editable, in most cases it's

easier to edit style values in the Styles pane.

Copyright © 2015, QNX Software Systems Limited56

Developing HTML5 Apps

Inspect and modify element styles
Use the Web Inspector Styles pane to inspect and modify styles.

To inspect and modify styles:

1. Click the Elements icon on the toolbar to display the Elements panel.

2. In the document pane, locate and select the element with the style you want to modify.

3. In the data sidebar, expand the Styles pane to display the style declarations applied to the selected

element.

4. Perform any of the following actions:

• To change the value for a style declaration, double-click the value in the Styles pane to make

the value editable, then type the new value. You can use the Tab key to cycle through the

declarations within a selector to modify more than one value.

• To disable a style declaration, deselect the adjacent check box.

• To add a new style declaration for a selector, double-click the white space below the last style

declaration, then type the new declaration.

• To modify the selector, double-click the selector, then type the new selector value.

5. When you're done, propagate your changes to the source document.

Inspect and modify the DOM
Inspect and modify the DOM from the the Web Inspector Document pane.

To inspect and modify the DOM:

1. Click the Elements icon on the toolbar to display the Elements panel.

2. In the Document pane, navigate to the node that you want to view or change.

3. Perform any of the following actions:

• To change the value of an attribute, double-click the value in the document pane to make the

value editable, then type the new value. To modify more than one value, use the Tab key to

cycle through each of the element's attributes.

• To change an attribute name, double-click the attribute name and type the new value.

4. When you're done, propagate the changes to the source document.

Modify the box model for an element
Use the Web Inspector Metrics pane to inspect and the box model.

To inspect and modify the box model for an element:

1. Click the Elements icon on the toolbar to display the Elements panel.

2. In the Elements panel, expand the Metrics pane to display the box model associated with the

selected element.

3. Click any of the top, bottom, left, or right values, then type the new value. The changed value is

propagated to the associated style declaration in the Styles pane.

4. When you're done, propagate the changes to the source document.

Copyright © 2015, QNX Software Systems Limited 57

Developing HTML5 Apps

Analyzing page resources

The Resources panel allows you to view the complete set of resources that are loaded by a webpage.

You can use the Web Inspector Resources panel to view and interact with resources such as CSS and

JavaScript, to check image content and information, and to view which font sets are used on the page.

You can also view and interact with any client-side resources created by your page, including cookies,

databases, storage objects, and application cache.

The Resources panel

You can click the Resources icon on the toolbar to display the Resources panel.

Figure 5: The Web Inspector Resources panel

The Resources panel shows a complete list of the resources that the WebKit engine must request and

load to render the webpage, as well as any client-side resources created and used by the webpage.

You can also use the Resources panel to view the content of any resource file. Resources are organized

in the panel as follows:

• Frames: Contains the resources for each frame displayed in the content, including images, fonts,

scripts, style sheets, and other content resources (e.g. embedded video or Flash files). Subframes

within the main window are displayed as subfolders beneath the main Frames folder.

• Databases: Contains all the database tables that are associated with your content or app.

• Local Storage: Contains all Local Storage objects; that is, storage objects that persist after a browser

session has ended.

• Session Storage: Contains all Session Storage objects; that is, storage objects that are valid only

for the current browser session.

• Cookies: Contains all the cookies associated with the webpage or app.

Copyright © 2015, QNX Software Systems Limited58

Developing HTML5 Apps

• Application Cache: Contains the resources included in the manifest of an offline web application.

View resource content
Use the Resources panel to view the contents of page resources.

1. Click the Resources icon on the toolbar to display the Resources panel.

2. In the list in the left pane of the Resources panel, double-click a category to show the resources

and subgroups. Continue to drill down until you locate the resource you want to view.

3. Double-click the resource in the left pane. The right pane shows the contents of that resource. For

example, selecting an image resource displays the image itself, along with the file size and URL

of the image file. Selecting a script or style sheet shows the content of that script or style sheet.

View resource network information
Use the Network panel to view resource information such as file size and transfer rate.

You can quickly see additional information about a specific resource by viewing the resource in the

Network panel, which displays information such as file size and transfer rate information.

To view this information:

1. In the list in the left pane of the Resources panel, double-click a category to show the resources

and subgroups. Continue to drill down until you locate the resource you're interested in.

2. Right-click the resource and click Reveal in Network Panel. Web Inspector opens the Network panel

and briefly highlights the selected resource.

Analyzing network usage

The Network panel can show the time used to load resources.

The Network panel allows you to determine the network efficiency of your content. The panel displays

information about each HTTP request made as the browser engine requests and downloads resources.

The Network panel

Click the Network icon in the toolbar to display the Network panel. Initially, the panel shows no

information; you must reload the content on the device or simulator to allow Web Inspector to track

the HTTP requests. When loading is complete, the Network panel displays a table.

Copyright © 2015, QNX Software Systems Limited 59

Developing HTML5 Apps

Figure 6: The Network panel

By default, the table lists each of the requested resources in their requested order, and then charts

the network activity as a waterfall timeline, with resources color-coded by type.

The waterfall timeline plots resources by the total time required to load the resource, from the initial

request to the completion of the download. The pale segment of the resource bar in the chart represents

the total latency; that is, the time the browser engine must wait from the moment it initially makes

the request to the moment it receives the first packet of data for the resource. Two vertical lines on

the chart show key page-load milestones:

• The blue line indicates the time when parsing of the content is complete and the DOMContent

event fires.

• The red line indicates the time when all the resources have been loaded and the load event fires.

You can customize how the content is displayed in the Network panel by filtering based on type, or by

sorting by any of the table headings. You can also reformat the chart to highlight different time measures.

Apply a filter to display a specific resource type
You can filter the resources Web Inspector displays.

By default, the Networks panel displays all resource requests in the table. The status bar at the bottom

of the panel contains buttons that allow you to filter the resources displayed based on the resource

type.

To filter the resources displayed:

1. Click the Network icon on the toolbar to display the Network panel.

2. If you haven't already done so, on the device or simulator, reload the page to allow Web Inspector

to track and record network activity.

3. In the status bar at the bottom of the Network panel, choose the type of resource you want to

display.

Copyright © 2015, QNX Software Systems Limited60

Developing HTML5 Apps

Change which time measure is displayed
You can reformat the network activity chart to highlight different time measures.

By default, when you measure the network activity, Web Inspector charts the network activity in a

waterfall timeline. You can change this default through the Network panel:

1. Click the Network icon on the toolbar to display the Network panel.

2. If you haven't already done so, on the device or simulator, reload the page to allow Web Inspector

to track and record network activity.

3. In the dropdown list above the chart, select one of the following:

• Timeline: Displays the network activity in a waterfall timeline.

• Start time: Highlights the time when each resource was requested.

• Response time: Highlights the time when the resource is initially received.

• End time: Highlights the time when the resource is completely loaded.

• Duration: Displays the total length of time it takes to load the resource.

• Latency: Displays the amount of delay between the start time value and the response time

value.

Reorder the list of resources
Use the Network panel to reorder the resource list.

To reorder the resources list:

1. Click the Networks icon on the toolbar to display the Networks panel.

2. If you haven't already done so, on the device or simulator, reload the page to allow Web Inspector

to track and record network activity.

3. Click a column heading to reorder the list based on the column data.

Debugging scripts

The Sources panel allows you to debug the JavaScript code used by your webpage.

Web Inspector lets you set breakpoints and step through your code, which can help to locate and

correct problems in your code. When you determine that the script is functioning as intended, you can

copy the changes back into the source file.

To use the Sources panel, you must first enable debugging. When you first view the Sources panel,

Web Inspector prompts you to enable debugging for just the current session or for all sessions.

The Sources panel

You can click the Sources icon in the toolbar to display the Sources panel.

Copyright © 2015, QNX Software Systems Limited 61

Developing HTML5 Apps

Figure 7: The Web Inspector Sources panel

The Sources panel is divided into two sections. On the left is the document pane, which allows you to

view and debug JavaScript. On the right is a set of collapsible panes that display information related

to the displayed script.

A toolbar at the top of the Sources panel allows you to choose the script file you want to inspect and

to cycle between open scripts. It also provides a set of controls that allow you to step through the script

displayed in the document pane.

Set and use breakpoints
Use the Sources panel to set breakpoints.

1. Click the Sources icon on the toolbar to show the Sources panel.

2. In the line gutter of the document pane, click the line where you want to set a breakpoint. A

breakpoint marker appears in the line gutter and the new breakpoint is added to the Breakpoints
pane, identified by the script filename and line number. The execution of the script pauses at the

specified breakpoint.

3. Perform any of the following actions:

• To continue the execution of the script beyond the current breakpoint, click the Continue button

in the Sources panel toolbar.

• To show the line of code associated with the breakpoint in the documents pane, click the

breakpoint entry in the Breakpoints pane. The document pane shows and highlights the

associated line.

• To disable a single breakpoint without removing it, in the Breakpoints pane, uncheck the

breakpoint. The execution of the script no longer pauses at the disabled breakpoint.

• To deactivate or activate all the breakpoints listed in the Breakpoints pane without removing

them, toggle the breakpoint activation switch at the right side of the Scripts panel toolbar.

• To remove a breakpoint, locate and click the breakpoint marker in the line gutter of the document

pane. The marker no longer appears in the line gutter and the breakpoint is removed from the

Breakpoints pane.

Copyright © 2015, QNX Software Systems Limited62

Developing HTML5 Apps

Pause script execution
You can pause the script at any time to get a snapshot of the call stack and variable values.

To pause a script:

1. Click the Sources icon on the toolbar to display the Sources panel.

2. In the Sources panel toolbar, click the Pause button.

When the script pauses, the last line of JavaScript to be executed is highlighted. The call stack and

the current in-scope variable values appear in the appropriate panes at the right of the panel.

Pause script execution on exceptions
You can configure Web Inspector to pause the execution of scripts whenever exceptions are thrown.

A tri-state toggle allows you to specify whether to pause for all exceptions, for only uncaught exceptions,

or for no exceptions. To configure Web Inspector to pause script execution on exceptions:

1. Click the Sources icon on the toolbar to display the Sources panel.

2. Use the Exceptions button in the status bar at the bottom to choose one of the following behaviors:

• To pause on all exceptions, click the Exceptions button until the icon turns blue.

• To pause only on uncaught exceptions, click the Exceptions button until the icon turns red.

• To not pause on any exceptions, click the Exceptions button until the icon turns gray.

Analyzing loading, script execution, and rendering times

The Timeline panel can be used to gather information that helps you analyze browser activity and

webpage loading times.

You can use the Timeline panel to analyze the time it takes to complete the different activities that

the browser engine must perform to completely load and render your webpage. You can also contrain

the view of the timeline and also filter events to better analyze your app's performance.

The Timeline panel

Initially, the panel displays no information, so you must click the Record button in the status bar to

allow Web Inspector to record the browser engine activity.

As it records browser engine activity, the Record button turns red and Web Inspector adds data to the

Timeline panel.

Copyright © 2015, QNX Software Systems Limited 63

Developing HTML5 Apps

Figure 8: The Web Inspector Timeline panel

Note that all browser engine activity pauses when the device is locked or the browser or HTML5

application is minimized. In order for Web Inspector to record any activity, the browser or HTML5

application must be the active application and the device or simulator screen mustn't be locked.

The Timeline panel is divided into two panes:

• In the top pane, the Timeline panel allows you to select which timeline view you want to show. You

can choose three views:

• Events: Shows the time it takes for the browser engine to complete each of the events required

to completely load the content.

• Frames: Shows the browser engine activity for each screen refresh.

• Memory: Shows memory consumption over time.

• In the lower pane, the Timeline panel shows a waterfall timeline for the timespan that was selected

in the top pane. The data in the timeline is determined by the mode you select in the top pane of

the timeline's panel.

Constrain view to a specific time span

You can constrain the time span shown in the timeline. In the top pane of the Timeline panel, the

portion of time displayed in the lower pane is represented by a white background. Two gray slider

handles at the top left and right edges of this white background allow you to increase or decrease the

selected timespan displayed in the timeline.

1. Click the Timeline icon on the toolbar to display the Timeline panel.

2. If necessary, record the browser engine activity to generate timeline data.

3. In the top pane of the Timeline panel, click and drag a gray slider handle to increase or decrease

the time span.

Copyright © 2015, QNX Software Systems Limited64

Developing HTML5 Apps

Figure 9: Changing the timespan on the Timeline panel

Filter the timeline events

By default, the Timeline panel shows all events in the table. The status bar at the bottom of the panel

contains check boxes that allow you to show and hide events based on type.

1. If necessary, record the browser engine activity to generate timeline data.

2. In the status bar at the bottom of the Timeline panel, deselect the event types you want to remove

from the timeline.

Analyzing memory usage and processing demands

The Profiles panel allows you to analyze the memory usage and processing demands of your content.

You can use the Profiles panel to create a performance profile for your JavaScript and CSS files:

• For JavaScript files, Web Inspector examines and reports on the CPU usage for each function. You

can view the CPU usage for a particular function and for the number of times that function was

called.

• For CSS files, Web Inspector examines the processing demands for each selector. Web Inspector

records the amount of time it took to search for matches for a particular selector and for the total

number of matches for that selector.

To use the Profiles panel, you must first enable profiling. When you first view the Profiles panel, Web

Inspector prompts you to enable profiling for just the current session or for all sessions.

If you haven't already enabled profiling, Web Inspector prompts you to do so.

Copyright © 2015, QNX Software Systems Limited 65

Developing HTML5 Apps

Figure 10: The Web Inspector Profiles panel

Profile the memory usage of your scripts
Use the Profiles panel to profile your scripts' memory usage.

To profile memory usage:

1. Click the Profiles icon on the toolbar to display the Profiles panel.

2. On the Profiles panel, select Collect JavaScript CPU Profile.

3. To start profiling your memory usage, click Start. The button turns red as the Web Inspector is

recording the memory usage.

4. To stop recording, click Stop. When you stop recording, the new profile is added under the CPU

Profiles section in the left pane and the profile's contents are displayed in the right pane:

Figure 11: Profile results: function execution times

Copyright © 2015, QNX Software Systems Limited66

Developing HTML5 Apps

The results indicate the amount of time the browser engine spent executing each function during

the recording process, along with the number of times each function was called. An excessive

amount of time spent in any one function can indicate a problem with the code.

5. To sort the data, perform any of the following actions:

• To sort by values in any column, double-click the column heading.

• To display calls based on greatest impact on all exceptions or where they occurred in the call

stack, in the status bar at the bottom of the panel, toggle between Heavy (Bottom Up) and Tree
(Top Down).

• To specify whether values are presented as a time value or as a percentage of the total CPU

usage required to process all the functions, toggle the percent button on or off.

• To view a single function, select the call in the table and then click the focus button.

• To exclude a single function from the data, select the function in the table and then click the

exclude button.

• To reload the original profile after focusing on or excluding a function, click the reload button.

Profile the performance of your CSS selectors
Use the Profiles panel to profile your scripts' memory usage.

To profile memory usage:

1. On the Profiles panel, select Collect CSS Selector Profile.

2. To start profiling your memory usage, click Start. The button turns red as Web Inspector records

the memory usage.

3. To stop recording, click Stop. When you stop recording, the new profile is added under the CSS
Selector Profiles section in the left pane and the profile's contents are displayed in the right pane:

Figure 12: Profile results: selector-style sheet matching times

The profile results indicate the amount of time the browser engine spent matching each selector

in the associated style sheets, along with the total number of times the browser engine found a

match for the selector.

Copyright © 2015, QNX Software Systems Limited 67

Developing HTML5 Apps

4. To specify whether the value of the Total column is presented as a time value or as a percentage

of the total time required to process the CSS, toggle the percent button on or off.

Auditing your webpage

Web Inspector can audit your webpage for inefficiencies and, based on a set of best practices for web

design, suggest changes you can make that can help improve network utilization and performance.

The Audits panel provides a list of perceived inefficiencies in your webpage design. For example, Web

Inspector can analyze your resources and determine where you might consider combining script files

or style sheets. The Audits panel can also inform you where you've needlessly downloaded styles that

aren't used, specify resources where you haven't set cache-control directives, and suggest other

optimizations.

The Audits panel can be especially helpful when you design pages for mobile browsers. On mobile

browsers, network latency can extend download times; constrained processing power tends to increase

rendering time and to slow webpage performance. As a result, eliminating inefficiencies in your webpage

design can have an significant positive effect.

Figure 13: The Web Inspector Audits panel

The Audits panel lets you choose to:

• audit network utilization or page performance (or both)

• run the audit against the static page

• reload the page and run the audit as it loads.

Once you've run an audit, Web Inspector adds the report to the list at the left of the panel and shows

the results in the main pane. The results suggest improvements you can make to your webpage to

increase efficiencies.

Copyright © 2015, QNX Software Systems Limited68

Developing HTML5 Apps

Figure 14: An example of a Web Inspector audit report

Copyright © 2015, QNX Software Systems Limited 69

Developing HTML5 Apps

Improving HTML5 app performance

These best practices can help you to develop more efficient and more responsive HTML5 apps.

1. Avoid Canvas.

Canvas and SVG elements aren't optimal for use on mobile and embedded platforms, because

proper hardware acceleration for these elements hasn't yet been finalized.

2. Avoid 2D transformations.

Use 3D instead. For example, instead of translateX(x) use translate3d(x,y,z). This

practice forces hardware acceleration of the translation. You can use similar methods for most

other transformations. Avoid animating with JavaScript libraries!

3. Avoid opacity, rounded corners, and gradients.

These are a significant drain on performance when they're redrawn often. If used sparingly and

mostly on static objects, they shouldn't impede performance, but if you mix these elements with

animations, buttons, or anything that gets redrawn often, performance suffers. Consider using

images instead of heavy CSS.

4. Remove elements from the DOM when modifying them.

This technique is especially helpful when you're updating several DOM fields at once. For example,

if you're scrolling through a list of 100 contacts and you want to refresh them, updating them one

by one causes the list to be redrawn 100 times. But if you remove the entire list, update the contacts

in memory, and then add the list again, this does only two redraws.

5. Hide elements you don't need.

For instance, adding display:none to elements that don't need to be displayed prevents them

from being rendered.

6. Avoid libraries intended for desktop use.

Some JavaScript libraries are designed for use on a desktop browser with a powerful CPU. Try to

limit the number of third-party JavaScript libraries included in your app or try to seek out versions

optimized for mobile use.

7. Use image sprites.

These are useful for preloading active element states (e.g., buttons with a “pressed” state).

Copyright © 2015, QNX Software Systems Limited70

Developing HTML5 Apps

Chapter 7
Creating Custom Cordova Plugins

Although HTML5 offers a wide range of functionality, that functionality is limited to what's provided

by the SDK. There are a number of plugins available, but many of them are meant to be used on a

mobile device, such as phone. You might find it useful to create your own plugins—especially if you

want to access native platform functionality.

In addition to the Cordova JavaScript Plugins that are available with the HTML5 SDK, take a

look at the Apache Cordova Plugins Registry to see if there's a plugin available for the

functionality you require.

An app is implemented as a webpage (named index.html by default) that references whatever CSS,

JavaScript, images, media files, or other resources are necessary for it to run. The app executes as a

WebView within the native application framework. For the web app to interact with various device

features the way native apps do, it must also reference a cordova.js file, which provides API bindings.

If you want to access other features not provided by the HTML5 SDK, you have to write a plugin. A

plugin is a bridge between the WebView the app is running in and the native layer of the platform.

Plugins provide a mechanism to call into native APIs that aren't provided with the SDK.

It's presumed you know how to create Cordova plugins. For information about creating Cordova plugins,

see the Apache Cordova Documentation.

Many of the services available with Apps and Media can be accessed through a PPS interface. In the

sections that follow, a simple plugin (com.qnx.demo) creates a Persistent Publish/Subscribe(PPS)

object and writes to it. You can use the same principles to manipulate other PPS objects.

Structure of a plugin

You can place the artifacts of the plugin in any directory structure, as long as you specify the file

locations in the plugin.xml file. Here's a typical structure (plugin_name, www, src, and blackberry10
are directory names):

• plugin_name

• plugin.xml

• www

• client.js

• src

• blackberry10

• index.js

• plugin_name.js

• other JavaScript or native files, as required (*.js, *.cpp, *.hpp)

The JavaScript part of a plugin must contain, at a minimum, the following resources:

Copyright © 2015, QNX Software Systems Limited 71

http://plugins.cordova.io/#/
http://cordova.apache.org/docs/en/3.6.0/index.html

plugin.xml

The plugin.xml file is an XML document in the plugins namespace,

http://apache.org/cordova/ns/plugins/1.0. The plugin.xml file contains a top-level plugin

element that defines the plugin itself and child elements that define the file structure of

the plugin.

You must name this file plugin.xml.

client.js

Considered the client side, this file exports APIs that a Cordova application can call. The

APIs in client.js make calls to index.js. The APIs in client.js also connect callback functions

to the events that fire the callbacks.

You must name this file client.js.

index.js

Cordova loads index.js and makes it accessible through the cordova.exec() bridge. The

client.js file makes calls to the APIs in the index.js file, which in turn makes calls to JNEXT

to communicate with the native side.

If your plugin needs to include events, make sure to define these events in index.js. Events

are defined inside the _actionMap variable.

You must name this file index.js.

In our example, we need a file to deal with the PPS activities of the plugin. In this example, the file

is named demo.js to reflect the name of the plugin. However, you can name this file whatever you

want, but using the plugin name is a standard practice.

Depending on what your plugin needs to do, you might need to create other JavaScript files.

In addition, if the native functionality you require isn't available through an existing interface

(such as a PPS object or another plugin), you must write the C/C++ code to provide JavaScript

access to that functionality.

Copyright © 2015, QNX Software Systems Limited72

Creating Custom Cordova Plugins

The cordova.exec() function

You can structure your plugin's JavaScript according to your preference. However, you must use the

cordova.exec() function to communicate between the Cordova JavaScript and the native environment.

The cordova.exec() function is defined in the cordova.js file and has the following signature:

exec (successFunction, failFunction, service, action, [args]);

The parameters are:

successFunction

Success function callback. Assuming your exec() call completes successfully, this function

is invoked (optionally with any parameters you pass back to it).

failFunction

Error function callback. If the operation doesn't complete successfully, this function is

invoked (optionally with an error parameter).

service

The name of the service to call into on the native side. This is mapped to a native class.

action

The name of the action to call into. This parameter is used by the native class receiving the

cordova.exec() call, and essentially maps to a class's method.

args

Arguments to pass into the native environment.

The cordova.exec() function is the key to your plugin—it provides the link between the JavaScript and

the native APIs. For more information about cordova.exec(), see the Apache Cordova documentation.

Copyright © 2015, QNX Software Systems Limited 73

Creating Custom Cordova Plugins

http://cordova.apache.org/docs/en/3.6.0/index.html

Example: Using the PPS interface

In the example, called com.qnx.demo, a plugin is built that provides methods and events for creating,

updating, and watching a simple Persistent Publish/Subscribe (PPS) object. The source code for this

project is available in the demo folder where you installed the HTML5 SDK.

In the example, called com.qnx.demo, a plugin is created that provide methods and events for

creating, updating, and watching a simple PPS object. The example links to the PPS utilities file,

ppsUtils.js, which is included as part of the webplatform.js file that's linked in by the Cordova packager

(build command). The namespace for ppsUtils.js is qnx.webplatform.pps. The files in the demo

follow the structure described in the “Structure of a plugin (p. 71)” section.

Files in the example

This example includes the following files:

• plugin.xml in the com.qnx.demo directory. This file declares the namespace of the plugin, and

describes the file structure.

• demo.js and index.js in the com.qnx.demo/src/blacberry10 directory. The demo.js file initializes

the extension and defines functions for handling events and returning PPS data. The index.js file

sets up the events that are triggered.

• client.js in the com.qnx.demo/www directory. This file defines the externally visible methods that

apps can use.

Here's more information about these files.

demo.js

The demo.js file provides the core functionality of the plugin. First, you link to the

qnx.webplatform.pps namespace to access PPS functionality and then declare some variables

that are used later:

var _pps = qnx.webplatform.pps,

_readerPPS,

_writerPPS,

_triggerUpdate;

Now, you can create the demo PPS object. The PPS object specified by /pps/qnx/demo is the

location of the file where the PPS objects are stored on the target. There's more code that handles

errors and so on, but for simplification, just create the PPS object:

_readerPPS = _pps.create("/pps/qnx/demo", _pps.PPSMode.DELTA);

_readerPPS.onNewData = function(event) {

if (_triggerUpdate && event && event.data) {

_triggerUpdate(event.data);

...

_writerPPS = _pps.create("/pps/qnx/demo", _pps.PPSMode.DELTA);

...

Copyright © 2015, QNX Software Systems Limited74

Creating Custom Cordova Plugins

The preceding code creates a PPS object (/pps/qnx/demo) with two handles: one for reading

(_readerPPS) and one for writing (_writerPPS). These handles provide access to the JavaScript

APIs in qnx.webplatform.pps used for manipulating the PPS data. The _triggerUpdate method

is used for handling events. Here, the method defines the action to take when new data is available

in the PPS object.

The demo.js file also defines the functions for handling the event trigger (setTriggerUpdate()) and for

getting (get()) and setting (set()) the PPS data. These functions are exported so that they can be called

from the index.js file:

/**

* Sets the trigger function to call when an event is triggered

* @param trigger {Function} The trigger function to call when an event is fired

*/

setTriggerUpdate: function(trigger) {

_triggerUpdate = trigger;

},

/**

* Returns the demo object

* @returns {Object} The demo object

*/

get: function(settings) {

return _readerPPS.data.demo;

},

/**

* Set a demo object field

* @param {String} key The data key

* @param {Mixed} value The data value

*/

set: function(key, value) {

var data = {};

data[key] = value;

_writerPPS.write(data);

}

index.js

In the index.js file, the functions that are defined are made available to the clients through the client.js
file:

/**

* Starts triggering events

* @param {Function} success Function to call if the operation is a success

* @param {Function} fail Function to call if the operation fails

* @param {Object} args The arguments supplied

* @param {Object} env Environment variables

Copyright © 2015, QNX Software Systems Limited 75

Creating Custom Cordova Plugins

*/

startEvents: function(success, fail, args, env) {

_eventResult = new PluginResult(args, env)

try {

_demo.setTriggerUpdate(function (data) {

_eventResult.callbackOk(data, true);

});

_eventResult.noResult(true);

} catch (e) {

_eventResult.error("error in startEvents: " + JSON.stringify(e), false);

}

},

/**

* Stops triggering events

* @param {Function} success Function to call if the operation is a success

* @param {Function} fail Function to call if the operation fails

* @param {Object} args The arguments supplied

* @param {Object} env Environment variables

*/

stopEvents: function(success, fail, args, env) {

var result = new PluginResult(args, env);

try {

//disable the event trigger

_demo.setTriggerUpdate(null);

result.ok(undefined, false);

//cleanup

_eventResult.noResult(false);

delete _eventResult;

} catch (e) {

result.error("error in stopEvents: " + JSON.stringify(e), false);

}

},

/**

* Returns system settings

* @param success {Function} Function to call if the operation is a success

* @param fail {Function} Function to call if the operation fails

* @param args {Object} The arguments supplied

* @param env {Object} Environment variables

*/

get: function(success, fail, args, env) {

var result = new PluginResult(args, env)

try {

var fixedArgs = _wwfix.parseArgs(args);

var data = _demo.get();

Copyright © 2015, QNX Software Systems Limited76

Creating Custom Cordova Plugins

result.ok(data, false);

} catch (e) {

result.error(JSON.stringify(e), false);

}

},

/**

* Sets one or more system settings

* @param success {Function} Function to call if the operation is a success

* @param fail {Function} Function to call if the operation fails

* @param args {Object} The arguments supplied

* @param env {Object} Environment variables

*/

set: function(success, fail, args, env) {

var result = new PluginResult(args, env)

try {

var fixedArgs = _wwfix.parseArgs(args);

_demo.set(fixedArgs.key, fixedArgs.value);

result.ok(undefined, false);

} catch (e) {

result.error(JSON.stringify(e), false);

}

}

In the preceding code, these functions are defined:

• startEvents() and stopEvents(), which use the setTriggerUpdate() function that was defined in

index.js. This function is referenced as _demo.setTriggerUpdate().

• get(), which uses the get() function that was defined in index.js (referenced here as _demo.get()).

• set(), which uses the set() function that was defined in index.js (referenced here as _demo.set()).

client.js

The client.js file defines the public-facing interface, or client side, for the plugin. This file specifies

where the cordova.exec() function is used to call the PPS functions that were previously defined in

server-side files.

First, variables are declared. The variable _ID is used for calls to cordova.exec():

var _self = {},

_ID = "com.qnx.demo",

_utils = cordova.require('cordova/utils'),

_watches = {};

Next, a function is created to handle PPS update events. This function is also passed to cordova.exec(),

but isn't accessible to other applications:

/**

* Handles update events for this plugin

Copyright © 2015, QNX Software Systems Limited 77

Creating Custom Cordova Plugins

* @param data {Array} The updated data provided by the event

* @private

*/

function onUpdate(data) {

var keys = Object.keys(_watches);

for (var i=0; i<keys.length; i++) {

setTimeout(_watches[keys[i]](data), 0);

}

}

Finally, public-facing functions are declared and then and exported. For each function, cordova.exec()

is called. The cordova.exec() function is passed the name of the function to call from index.js:

/**

* Watch for PPS object changes

* @param {Function} callback The function to call when a change is detected.

* @return {String} An ID for the added watch.

* @example

*

* //define a callback function

* function myCallback(myData) {

* //just send data to log

* console.log("Changed data: " , myData);

* }

* }

*

* var watchId = car.demo.watchDemo(myCallback);

*/

_self.watchDemo = function (callback) {

var watchId = _utils.createUUID();

_watches[watchId] = callback;

if (Object.keys(_watches).length === 1) {

window.cordova.exec(onUpdate, null, _ID, 'startEvents', null, false);

}

return watchId;

}

/**

* Stop watching for PPS changes

* @param {Number} watchId The watch ID as returned by car.demo.watchDemo().

* @example

*

* car.sensors.cancelWatch(watchId);

*/

_self.cancelWatch = function (watchId) {

Copyright © 2015, QNX Software Systems Limited78

Creating Custom Cordova Plugins

if (_watches[watchId]) {

delete _watches[watchId];

if (Object.keys(_watches).length === 0) {

window.cordova.exec(null, null, _ID, 'stopEvents', null, false);

}

}

}

/**

* Get the value of the demo PPS object

* @returns {Object} The demo object contents.

*/

_self.get = function () {

var value = null,

success = function (data, response) {

value = data;

},

fail = function (data, response) {

throw data;

};

try {

window.cordova.exec(success, fail, _ID, 'get', null);

} catch (e) {

console.error(e);

}

return value;

}

/**

* Set a demo object field

* @param {String} key The data key

* @param {Mixed} value The data value

*/

_self.set = function (key, value) {

window.cordova.exec(null, null, _ID, 'set', { key: key, value: value });

}

module.exports = _self;

Applications that use this plugin must define a callback function for Cordova to call when watchDemo()

is successful.

Copyright © 2015, QNX Software Systems Limited 79

Creating Custom Cordova Plugins

Chapter 8
WebLauncher's JavaScript APIs

You can use a variety of different APIs to develop your apps.

You can use the Cordova framework and the Browser Chrome APIs to customize the Browser Chrome.

For most applications, the functionality exposed by this API isn't required. For HTML5 app development,

the functionality you require is available in the Cordova JavaScript Plugins, public JavaScript libraries,

or HTML5. For more information, see “HTML5 SDK Overview (p. 9).”

The following WebLauncher API categories are available for development work:

• application (p. 82)—functions and properties for the current app

• webinspector (p. 83)—functions related to the Web Inspector tool

• webview (p. 84)—functions to manage your webviews

Copyright © 2015, QNX Software Systems Limited 81

WebLauncher application API

The application framework provides functionality to the browser engine to allow it to support apps.

This environment lets you create and deploy apps built from web technologies (HTML5, CSS3, and

JavaScript) with plugins that provide access to the underlying device hardware and native services,

just like native C/C++ apps.

The following WebLauncher application API is available for you to implement your own browser

chrome:

• application.adduri

• application.bindToNetworkDevice

• application.coverSize

• application.extendTerminate

• application.getenv

• application.isDeviceLocked

• application.isForeground

• application.lockRotation

• application.minimizeWindow

• application.newWallpaper

• application.notifyRotateComplete

• application.realpath

• application.requestExit

• application.rotate

• application.setKeyboardTracking

• application.setPooled

• application.setSwipeStart

• application.setenv

• application.systemFontFamily

• application.systemFontSize

• application.systemRegion

• application.unlockRotation

• application.unsetenv

• application.updateCover

• applicationWindow.flushContext

• applicationWindow.setSize

• applicationWindow.setVisible

Copyright © 2015, QNX Software Systems Limited82

WebLauncher's JavaScript APIs

WebLauncher webinspector API

Use the webinspector tool to troubleshoot and optimize your web content for your apps.

Web Inspector is a useful debugging and profiling development tool for web content. It includes various

features and capabilities, including inspection, profiling, console integration, and more.

The following WebLauncher webinspector APIs are available for you to implement your own browser

chrome:

• webInspector.enabled

• webInspector.enabledForWebView

• webInspector.port

• webInspector.setEnabled

• webInspector.setEnabledForWebView

Copyright © 2015, QNX Software Systems Limited 83

WebLauncher's JavaScript APIs

WebLauncher webview API

You can use the WebLauncher webview API to implement your own browser chrome.

Every HTML5 app has its own WebView. A WebView is a view that's rendered by the web engine to

display an app. The browser engine provides a set of core classes that you can use to display web

content in a window. By default, the browser engine implements the most basic functionality of a

browser, such as the ability to follow links and to download and display content. You can use the

engine's functionality at the most basic level to display web content in your app or you can use APIs

to create your own full-featured, customized, web-based app.

The QNX SDK for Apps and Media provides a multiprocess architecture that allows multiple WebViews

to share a common engine instance or each to run in its own engine instance. Trusted apps are run in

process, sharing a web engine instance. Other apps are run out of process, protected from each other

by process boundaries, each with its own web engine instance. You can implement each WebView with

a separate JavaScript application framework, such as jQuery or Sencha Touch.

The following WebLauncher webview APIs are available for you to implement your own browser chrome:

• webview.addKnownSSLCertificate

• webview.addKnownSSLCertificates

• webview.addOriginAccessWhitelistEntry

• webview.applicationSwipeInEvent

• webview.applicationWindowGroup

• webview.arguments

• webview.assignFocus

• webview.autofillTextField

• webview.automationLog

• webview.backgroundColor

• webview.bitmapZoom

• webview.canGoBack

• webview.canGoForward

• webview.cancelVibration

• webview.captureContents

• webview.certificateInfo

• webview.cleanupSSLCertificateDetails

• webview.clearAutofillData

• webview.clearBackForwardList

• webview.clearBrowsingData

• webview.clearCache

• webview.clearCookies

• webview.clearCredentials

• webview.clearDatabases

• webview.clearFocus

• webview.clearHistory

• webview.clearLocalStorage

Copyright © 2015, QNX Software Systems Limited84

WebLauncher's JavaScript APIs

• webview.clearWebFileSystem

• webview.contentRectangle

• webview.continueSSLHandshaking

• webview.convertIDNtoReadableStringByLanguage

• webview.create

• webview.createFadeColorWindow

• webview.currentContext

• webview.defaultFontSize

• webview.defaultTextEncoding

• webview.delete

• webview.destroy

• webview.destroyFadeColorWindow

• webview.destroyIfNotRejectedByUser

• webview.devicePixelRatio

• webview.dialogResponse

• webview.downloadCancel

• webview.downloadPause

• webview.downloadRemove

• webview.downloadResume

• webview.downloadRetry

• webview.downloadUpdate

• webview.downloadUrl

• webview.enableQnxJavaScriptObject

• webview.encryptionInfo

• webview.eventNames

• webview.executeJavaScript

• webview.executeJavaScriptFunction

• webview.extraHttpHeaders

• webview.fadeColorWindowPlatformHandle

• webview.favicon

• webview.fileSystemAPISandboxed

• webview.findString

• webview.focusNextField

• webview.focusPreviousField

• webview.forcedTextEncoding

• webview.fullScreenVideoCapable

• webview.fullScreenVideoExited

• webview.getCookies

• webview.getSSLCertificateDetails

• webview.goBack

• webview.goForward

• webview.handleContextMenuResponse

• webview.handleWebInspectorMessageToBackend

Copyright © 2015, QNX Software Systems Limited 85

WebLauncher's JavaScript APIs

• webview.historyLength

• webview.historyPosition

• webview.initialize

• webview.isActive

• webview.isAllPropertyChangedEventsEnabled

• webview.isAllWebEventsEnabled

• webview.isAlwaysShowKeyboardOnFocus

• webview.isAnyPropertyChangedEventsEnabled

• webview.isAnyWebEventsEnabled

• webview.isAutoDeferNetworkingAndJavaScript

• webview.isBlockPopups

• webview.isDeferNetworkingAndJavaScript

• webview.isEnableCookies

• webview.isEnableCredentialAutofill

• webview.isEnableCrossSiteXHR

• webview.isEnableDNSPrefetch

• webview.isEnableDefaultOverScrollBackground

• webview.isEnableDialogRequestedEvents

• webview.isEnableDiskCache

• webview.isEnableDownloadableBinaryFonts

• webview.isEnableFineCursorControl

• webview.isEnableFormAutofill

• webview.isEnableGeolocation

• webview.isEnableInputMethodSupport

• webview.isEnableInputNotifications

• webview.isEnableJavaScript

• webview.isEnableLocalAccessToAllCookies

• webview.isEnableMediaRTSP

• webview.isEnableNetworkResourceRequestedEvents

• webview.isEnablePlugins

• webview.isEnableSoundOnAnchorElementTouchEvents

• webview.isEnableSpatialNavigation

• webview.isEnableTextSelectionControls

• webview.isEnableWebInspector

• webview.isEnableWebSockets

• webview.isLoadImages

• webview.isPluginFullScreen

• webview.isPrivateBrowsing

• webview.isPropertyChangedEventEnabled

• webview.isVideoFullScreen

• webview.isVisible

• webview.isWebEventEnabled

• webview.isZoomToFitWidthOnLoad

Copyright © 2015, QNX Software Systems Limited86

WebLauncher's JavaScript APIs

• webview.javaScriptInterruptTimeout

• webview.jsScreenWindowHandle

• webview.knownSSLCertificate

• webview.knownSSLCertificates

• webview.loadFile

• webview.loadProgress

• webview.loadString

• webview.loadStringWithBase

• webview.loadURL

• webview.location

• webview.lockProperties

• webview.log

• webview.maximumScale

• webview.minimumFontSize

• webview.minimumScale

• webview.notificationClicked

• webview.notificationClosed

• webview.notificationError

• webview.notificationShown

• webview.notifyApplicationOrientationDone

• webview.notifyContextMenuCancelled

• webview.notifyDataReceived

• webview.notifyDone

• webview.notifyHeaderReceived

• webview.notifyOpen

• webview.notifySystemLowMemory

• webview.notifyViewportChanged

• webview.openWindowResponse

• webview.originalLocation

• webview.overScrollColor

• webview.printToStderr

• webview.printToStdout

• webview.reload

• webview.removeAllKnownSSLCertificates

• webview.removeGeolocationFilter

• webview.removeKnownSSLCertificate

• webview.removeOriginAccessWhitelistEntry

• webview.requestCurrentContextUpdate

• webview.requestSession

• webview.restoreSession

• webview.scale

• webview.scrollBy

• webview.scrollPosition

Copyright © 2015, QNX Software Systems Limited 87

WebLauncher's JavaScript APIs

• webview.secureType

• webview.securityInfo

• webview.sensitivity

• webview.setActive

• webview.setAllPropertyChangedEventsEnabled

• webview.setAllWebEventsEnabled

• webview.setAllowGeolocation

• webview.setAllowNotification

• webview.setAllowUserMedia

• webview.setAllowWebInspection

• webview.setAlwaysShowKeyboardOnFocus

• webview.setApplicationActivationState

• webview.setApplicationOrientation

• webview.setAutoDeferNetworkingAndJavaScript

• webview.setBackgroundColor

• webview.setBitmapZooming

• webview.setBlockPopups

• webview.setCookies

• webview.setDefaultFontSize

• webview.setDefaultTextEncoding

• webview.setDeferNetworkingAndJavaScript

• webview.setDevicePixelRatio

• webview.setEnableCookies

• webview.setEnableCredentialAutofill

• webview.setEnableCrossSiteXHR

• webview.setEnableDNSPrefetch

• webview.setEnableDefaultOverScrollBackground

• webview.setEnableDialogRequestedEvents

• webview.setEnableDiskCache

• webview.setEnableDownloadableBinaryFonts

• webview.setEnableFineCursorControl

• webview.setEnableFormAutofill

• webview.setEnableGeolocation

• webview.setEnableInputMethodSupport

• webview.setEnableInputNotifications

• webview.setEnableJavaScript

• webview.setEnableLocalAccessToAllCookies

• webview.setEnableMediaRTSP

• webview.setEnableNetworkResourceRequestedEvents

• webview.setEnablePlugins

• webview.setEnableSoundOnAnchorElementTouchEvents

• webview.setEnableSpatialNavigation

• webview.setEnableTextSelectionControls

Copyright © 2015, QNX Software Systems Limited88

WebLauncher's JavaScript APIs

• webview.setEnableWebSockets

• webview.setEnabledOutOfProcessWebInspector

• webview.setExtraHttpHeaders

• webview.setExtraPluginDirectory

• webview.setFadeColorWindowRect

• webview.setFadeWindowColor

• webview.setFileSystemAPISandboxed

• webview.setForcedTextEncoding

• webview.setFullScreenVideoCapable

• webview.setGeometry

• webview.setHistoryPosition

• webview.setJSWebViewBindings

• webview.setJavaScriptInterruptTimeout

• webview.setKeyboardVisibilityLocked

• webview.setKeyboardVisible

• webview.setLayerTilerPrefillRect

• webview.setLoadImages

• webview.setMinimumFontSize

• webview.setOverScrollColor

• webview.setPatternMatchingEnabled

• webview.setPopupWebView

• webview.setPrivateBrowsing

• webview.setPropertyChangedEventEnabled

• webview.setScreenPowerState

• webview.setScrollPosition

• webview.setScrolling

• webview.setSensitivity

• webview.setStandalone

• webview.setTemporaryViewportSize

• webview.setTextReflowMode

• webview.setUserAgent

• webview.setUserStyleSheetLocation

• webview.setViewport

• webview.setViewportHeight

• webview.setViewportInitialScale

• webview.setViewportMaximumScale

• webview.setViewportMinimumScale

• webview.setViewportTargetDensityDpi

• webview.setViewportUserScalable

• webview.setViewportWidth

• webview.setVisible

• webview.setWebEventEnabled

• webview.setWebInspectorEnabled

Copyright © 2015, QNX Software Systems Limited 89

WebLauncher's JavaScript APIs

• webview.setZOrder

• webview.setZoomFactor

• webview.setZoomToFitWidthOnLoad

• webview.status

• webview.stop

• webview.submitForm

• webview.syncProxyCredential

• webview.textEncoding

• webview.textHasAttribute

• webview.textReflowMode

• webview.title

• webview.tooltip

• webview.unlockProperties

• webview.updateDisabledPluginFiles

• webview.updateGeolocationFilter

• webview.updateNotificationPermission

• webview.userAgent

• webview.userStyleSheetLocation

• webview.viewport

• webview.viewportHeight

• webview.viewportInitialScale

• webview.viewportMaximumScale

• webview.viewportMinimumScale

• webview.viewportTargetDensityDpi

• webview.viewportUserScalable

• webview.viewportWidth

• webview.webInspectorPort

• webview.windowUniqueId

• webview.zOrder

• webview.zoomFactor

Copyright © 2015, QNX Software Systems Limited90

WebLauncher's JavaScript APIs

Index

.bar 29, 45

creating archive 29

installing archive on a target 29

location of files after building app 45

packaging 45

A

ACL 50

adding permissions to a PPS object 50

AJAX 23

support in browser engine 23

analyzing 58, 65

memory usage 65

page resources 58

Apache Cordova 27

plugins 27

using to create HTML5 apps 27

app 27, 29–30, 36, 39–42, 45, 47, 70–71

creating 30

creating .bar file 45

creating plugins for 71

enhancing performance 70

example 47

first page 36

HTML5 created with Apache Cordova framework 27

ID 42

installing on a target 29

location of files after building 45

namespace 42

packaging 45

packaging Cordova 29

packaging HTML5 29

setting name 39

setup 30

specifying feature permissions 40–41

version 42

archive 29

creating .bar file 29

auditing 68

webpage 68

authman 50

setting PPS object permissions 50

Authorization Manager 50

setting PPS object permissions 50

B

box model 57

in Web Inspector 57

inspecting 57

modifying 57

breakpoints 61–62

setting 61–62

browser 23–25, 28, 53

CCS support for browser engine 24

chromeless 23

engine technologies 23

offline support for engine 25

reference 23

using to test apps locally 28

Webkit 23

WebKit-enabled 53

Browser Support Reference 24

CSS3 24

build command 45

options 45

C

capabilities 50

setting for PPS object 50

client.js 72

config.xml 28, 32–42, 50

<access> 33

<author> 34

<config-file> 35

<content> 36

<description> 37

<feature> 38

<icon> 38

<name> 39

<rim:permissions> 40

<rim:permit> 41

<widget> 42

HTML5 app configuration file file 28

understanding 32

using 32

using to grant capabilities 50

configuration 28, 32

file for HTML5 app 28

Copyright © 2015, QNX Software Systems Limited 91

Index

Cordova 18, 24, 28–31, 71

create command 30

creating plugins 71

creating project 28

packaging apps 29

plugin structure 71

PPS demo 18

project directories 31

project folders 31

project permissions 28

required files for plugins 71

cordova.exec() 73

cordova.js 73

CordovaPPSdemo 50

create command 30

to create HTML5 project 30

creating 30

HTML5 project 30

CSS 24, 67

browser engine support 24

profiling selectors with Web Inspector 67

selector performance 67

CSS3 23–24

Browser Support Reference 24

support in browser engine 23

D

debugging 28, 53

HTML5 apps 28

with Web Inspector 53

demo 18

Cordova PPS 18

directories 31

Cordova project 31

DOM 56–57

inspecting 57

modifying 57

viewing tree with Web Inspector 56

E

element styles 57

inspecting 57

modifying 57

enabling 53

Web Inspector 53

example 47

HTML5 app 47

exception 63

pausing script 63

F

features 40–41

specifiying feature permissions 40–41

filtering 60

resources displayed by Web Inspector 60

first page 36

configuring app to load 36

folders 31

Cordova project 31

framework 24, 27

Apache Cordova for creating HTML5 apps 27

HTML5 24

G

Geolocation API 25

Google Chrome 15

H

Hello World! 47

HTML5 app 47

HTML source document 56

viewing with Web Inspector 56

HTML5 16, 21, 24, 27–30

Compass 16

creating apps with Apache Cordova framework 27

CSS 16

debugging 28

elements 24

engine instances 21

framework 24

packaging apps 29

Sass 16

testing 28

tools 16

using create command 30

HTML5 SDK 9, 24

components 9

Cordova JavaScript Plugins 9

Cordova runtime 9

understanding 9

WebLauncher 9

Copyright © 2015, QNX Software Systems Limited92

Index

HTML5 SDK (continued)

Webplatform 9

I

icon 38

setting custom for HTML5 app 38

ID 42

app 42

index.html 31

HTML5 app starting page 31

index.js 72

installing 29

Cordova app on a target 29

HTML5 app on a target 29

J

JavaScript 24, 72–73

client.js 72

index.js 72

plugin structure 73

plugin.xml 72

JavaScript Object Notation (JSON) 23

support in browser engine 23

JSON 23

support in browser engine 23

L

language 42

setting for app 42

latency 59

resource loading 59

launching 54

Web Inspector 54

M

managing 13

plugins 13

memory 65–66

analyzing usage 65

profiling usage 66

Metrics 56–57

Web Inspector pane 56–57

N

name 39

setting for HTML5 app 39

namespace 42

app 42

network 60–61

activity chart 60

changing time measure shown activity chart 61

reordering resource list in activity chart 61

Network panel 59

Web Inspector 59

Node.js 11, 13

package manager 13

NPAPI 24

O

options 45

app building 45

build command 45

P

package manager 13

Node.js 13

packaging 29, 45

Cordova apps 29

HTML5 app 45

HTML5 apps 29

page resources 58–59

analyzing 58

viewing content 59

pausing 63

script 63

script on exception 63

performance 63, 70

analyzing with Web Inspector 63

enhancing 70

permissions 28, 40–41, 50

Cordova project 28

for HTML5 app features 40–41

setting for PPS object 50

Persistent Publish/Subscribe (PPS) 11

plugin 13, 24, 27, 71–73

Apache Cordova 27

client.js 72

creating 71

file structure 71

Copyright © 2015, QNX Software Systems Limited 93

Index

plugin (continued)

index.js 72

JavaScript 24

JavaScript part 71

managing 13

native 24

Netscaper Plugin API 24

NPAPI 24

plugin.xml 72

PPS 24

required files 71

Screen 24

SQL 24

structure 73

plugin.xml 72

Plugman 11, 13, 28

using to manage plugins in a Cordova project 28

PPS 11, 18, 24, 50, 74

Cordova demo 18

JavaScript 74

object capabilities 50

object permissions 50

plugin 24

ppsUtils.js 74

webPlatform.js 74

profiling 66–67

CSS selector performance 67

memory usage 66

Properties 56

Web Inspector pane 56

Q

QNX SDK for HTML5 13

R

reference 23

browser 23

resource loading 59

latency 59

resources 58–59

analyzing page 58

viewing content for page 59

Resources panel 58

Web Inspector 58

S

sandboxing 21

Screen 24

plugin 24

script 63

pausing 63

pausing on exception 63

SDK 13

Installing 13

overview 13

selectors 67

profiling CSS selectors with Web Inspector 67

Sources panel 61

Web Inspector 61

SQL 24

plugin 24

SQLite 3 24

plugin 24

standard API 25

Geolocation API 25

Web Workers 25

WebSocket API 25

WebSQL Database 25

Style 56–57

Web Inspector pane 56–57

styles 57

inspecting element 57

modifying element 57

sys.acl 50

configuring access and restrictions 50

sys.res 50

configuring access and restricitons 50

T

Technical support 8

testing 28

HTML5 apps 28

Typographical conventions 6

U

URI 30

whitelist 30

Copyright © 2015, QNX Software Systems Limited94

Index

V

version 42

app 42

view class 23

web 23

viewing 59

page resource content 59

W

Web Graphics Library 11

Web Inspector 24, 28, 53–61, 63, 65, 67–68

analyzing memory usage 65

analyzing performance 63

auditing webpages 68

Audits panel 68

changing time measure used in network activity chart

61

debugging 53–54

debugging scripts 61

DOM tree 56

Elements panel 55

enabling 53

filtering resources displayed 60

HTML source document 56

inspecting DOM 57

launching 54

Metrics pane 56–57

modifying DOM 57

modifying the box model 57

network usage 59

Web Inspector (continued)

optimizing screen layout with 55

panels 54

profiling 54

profiling CSS selectors with 67

Properties pane 56

reordering resource list in network activity chart 61

Resources panel 58

Source panel 61

Style pane 56–57

using to debug apps 28

WebKit-enabled browsers 53

Web Workers 25

WebFrame 23

WebGL 11

WebKit 24

Web Inspector tool 24

webpage 68

auditing 68

Webplatform 11

webplatform.js 11

WebSocket API 25

WebSQL Database 25

WebView 23

whitelist 30, 33, 35

URI 30

X

XML 23

support in browser engine 23

Copyright © 2015, QNX Software Systems Limited 95

Index

Copyright © 2015, QNX Software Systems Limited96

Index

	Contents
	About This Guide
	Typographical conventions
	Technical support

	HTML5 SDK Overview
	The HTML5 Development Environment
	Install CSS development tools

	HTML5 Application Samples
	Building and deploying the Cordova PPS Demo

	Web Sandbox Model
	Browser Engine
	Browser engine components and technology support

	Developing HTML5 Apps
	Creating an HTML5 project
	Working with the configuration file
	<access>
	<author>
	<config-file>
	<content>
	<description>
	<feature>
	<icon>
	<name>
	<rim:permissions>
	<rim:permit>
	<widget>

	Packaging an HTML5 app
	Example: Hello World!
	Example: Adding a permission to access a PPS object
	Debugging Web Apps
	Enabling Web Inspector
	Launching Web Inspector
	Debugging and profiling using Web Inspector
	Optimizing layout and style
	Inspect and modify element styles
	Inspect and modify the DOM
	Modify the box model for an element

	Analyzing page resources
	View resource content
	View resource network information

	Analyzing network usage
	Apply a filter to display a specific resource type
	Change which time measure is displayed
	Reorder the list of resources

	Debugging scripts
	Set and use breakpoints
	Pause script execution
	Pause script execution on exceptions

	Analyzing loading, script execution, and rendering times
	Analyzing memory usage and processing demands
	Profile the memory usage of your scripts
	Profile the performance of your CSS selectors

	Auditing your webpage

	Improving HTML5 app performance

	Creating Custom Cordova Plugins
	The cordova.exec() function
	Example: Using the PPS interface

	WebLauncher's JavaScript APIs
	WebLauncher application API
	WebLauncher webinspector API
	WebLauncher webview API

	Index

