

 Using Symmetric Multiprocessing (SMP)

to Scale Data Plane and Control Plane

Performance

Sebastien Marineau-Mes, Senior Networking Architect,

QNX Software Systems

sebastien@qnx.com

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 2

Table of Contents

Abstract..3

The Demand for Scalability ..4

SMP Defined ..4

The Benefits of SMP ...6

QNX Neutrino and SMP ..7

Identifying Applications that Benefit from SMP ..8

Case Study: Packet Forwarding Performance with SMP..9

Performance Gains Out of the Box ...17

References...17

About QNX Software Systems.. Error! Bookmark not defined.

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 3

Abstract

Symmetric multiprocessing (SMP) can offer enormous scaling benefits, particularly when applied

to networking applications such IP and MPLS route calculation, Layer 3 packet forwarding, storage

caching, and call-processing encryption. In this paper, we provide an overview of SMP, describing

how it compares to other forms of multiprocessing, why it benefits networking applications, and what

techniques developers can employ to take advantage of it. Then, to illustrate the power of SMP, we

review a benchmark study that measures Layer 3 packet forwarding, using a test system based on the

QNX® Neutrino® RTOS and Broadcom’s SiByte BCM1250 dual-processor SOC.

The study demonstrates that SMP implemented on QNX Neutrino can offer dramatic performance

gains — more than 100 per cent faster throughput for small packets — without modifications to software.

In addition, the study shows how trace analysis tools such as the QNX Momentics® system profiler can

uncover hidden bottlenecks in SMP systems, allowing developers to achieve even greater concurrency

and performance.

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 4

The Demand for Scalability

Fortune 1000 companies and service providers share a common problem: large, unpredictable increases

in their network traffic. In response, these organizations have stepped up demands for networking

equipment that can handle growing workloads without sacrificing performance or requiring additional

hardware. Nonetheless, this demand for scalability — combined with the continuous growth of network

topologies — is placing enormous processing demands on both the control plane and the data plane.

Consider, for example, the control plane in a typical VPN router. To keep track of all nodes on a network

and to update the most reliable path between any two points, the control plane typically uses Open

Shortest Path First (OSPF), a link-state routing protocol with a large appetite for CPU cycles. When OSPF

is combined with a protocol such as the Virtual Redundancy Routing Protocol (VRRP), the control plane

must create and maintain huge routing tables that can cover hundreds of thousands of nodes. But that’s

only the beginning. The processing units on VPN routers must also help forward packets, since many

routers, in an effort to reduce costly ASICs, handle some IP forwarding in software.

Together, these computational demands have reached the point where even the fastest host processor

struggles to keep pace. Consequently, many networking equipment designers are looking at multi-

processing architectures, in particular, symmetric multiprocessing (SMP), to address the problem.

SMP Defined

Before continuing, let’s define what we mean by multiprocessing and SMP.

Unlike multitasking, which is the simultaneous execution of multiple tasks by a single processor,

multiprocessing is the simultaneous execution of multiple tasks by N processors. A variety of

multiprocessing techniques exist — everything from parallel processing across multiple processors to

instruction pipelining on multiple logic units within a single processor.
1

In a multiprocessing system, processors are either loosely coupled or tightly coupled, depending on how

the processors communicate and share resources. Loosely coupled designs, which have been the staple

of embedded networking equipment, typically consist of multiple independent processing complexes,

each with its own peripherals, memory, and software stack. Applications running on these processors

communicate via messaging protocols implemented over peripheral interconnects such as PCI, switch

fabrics, or Ethernet. An emerging trend in the industry is the advent of high-speed, switched, chip-to-chip

interconnects that allow high-speed, low-latency processor-to-processor messaging. Examples include

RapidIO, HyperTransport, and Advanced Switching.

1
 Of course, in a conventional multitasking system, tasks only appear to run simultaneously — in reality, the processor is simply

switching from one task to another very quickly. In a multiprocessing system, on the other hand, multiple tasks really do run at the

same time.

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 5

Tightly coupled processors, which form the basis of SMP systems, share global resources such as

memories and data buses, and communicate through common hardware circuits; see Figure 1.

Tightly coupled processors can be asymmetric or symmetric:

• Asymmetric Multiprocessing — Specific processors can execute only certain task types. For example,

processor x runs only kernel code, processor y runs only application code, and processor z is restricted

to executing interrupt service routines. This asymmetry may arise from processor differences,

interconnect differences, application design, or OS kernel architecture.

• Symmetric Multiprocessing — In a true SMP system, any processor can execute any thread, including

kernel code, application code, and interrupt service code. This symmetry, which allows each processor

to be exploited to the fullest, is achieved through identical processors and interconnects, combined with

appropriate application and OS kernel design.

Figure 1 — Loosely vs. tightly coupled processors.

SMP variants

Recently, two variants of SMP have appeared in the communication space. The first consists of multicore

processors that implement tightly coupled SMP on a single chip. Examples include the Broadcom

BCM1250 and the PMC-Sierra RM9000x2, both of which are dual-core, highly integrated MIPS-based

designs.

The second approach, simultaneous multithreading (SMT), allows multiple tasks or threads to execute

concurrently on a single processor core.
2
 The result is greater execution-unit utilization and higher overall

instruction execution rate. An example is Intel’s Hyper-Threading technology, implemented in Pentium 4

and Xeon processors. Intel’s implementation of Hyper-Threading closely follows the SMP model, as the

multiple threads on each processor appear as virtual processors to software.

2
 From this point on, we use the generic designation “SMP” to indicate both SMT and traditional SMP.

CPU

I/O Memor

CPU

I/O Memory

CPU

I/O Memory

CPU

I/O Memory

CPU

I/O Memory

CPU CPU

Bridge / Memory
Controller

Loosely coupled
processors

Tightly coupled
processors

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 6

The Benefits of SMP

Implementing SMP in your system design can provide a number of advantages, including higher

processing density, lower cost per MIPS, and increased scalability.

High density and lower cost per MIPS

Within the last several years, multiprocessing offerings from commercial embedded vendors have made

SMP a cost-effective vehicle for achieving higher raw computing power at lower cost. Vendors such as

Broadcom, IBM, Intel, Motorola, and PMC-Sierra now offer off-the-shelf SMP boards for a variety of

MIPS, PowerPC, and x86 processors.

A major benefit of SMP is the reduced board and chip real estate needed to achieve higher processing

power. In traditional loosely coupled systems, each processor complex has its own bridge chip, memory

controller, memory, boot flash, and peripherals. With SMP, however, only the processor needs to be

duplicated.

The simultaneous multithreading enabled by SMP also reduces costs by offering higher utilization of

processor resources, with limited incremental cost or heat dissipation. For instance, typical performance

gains for Hyper-Threading processors are in the order of 40 per cent for real-world, multithreaded

applications.

Until recently, SMP entailed significant software development costs. Because engineers built SMP

systems with proprietary hardware and had to code SMP awareness into their applications, an application

implemented for a particular SMP system required substantial reengineering to migrate to new hardware.

With the advent of SMP-capable operating systems like QNX Neutrino, these problems have been

eliminated. As a software engineer, you no longer have to hardcode SMP awareness into each application,

nor do you have to recode when migrating applications to different SMP platforms or back to uniprocessor

platforms. In fact, if you’ve converted your existing uniprocessor code from a single-threaded to a

multithreaded model, most of your work is already done.

Moreover, software doesn’t incur any overhead to maintain a coherent view of the data distributed among

the processors of an SMP system; this coherency is handled transparently by modern SMP hardware.

Increased scalability

When an RTOS kernel such as the QNX Neutrino microkernel properly implements and exclusively

manages SMP, applications can be SMP-capable without having to be SMP-aware. In effect, an

application running on such a kernel is inherently scalable: the application’s independent threads will

automatically multitask when running on a single processor, and those same threads can automatically

migrate to the multiple processors when running on an SMP system. Application performance can

increase without any need for code modifications or any need for algorithms that detect when additional

processors are present.

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 7

Figure 2 — While offering performance gains (by doing the same amount of work

in less time), an SMP system also offers capacity scaling (by doing more work in

the same amount of time).

QNX Neutrino and SMP

QNX Neutrino is a multithreading, SMP operating system that implements file systems, device drivers,

and other system services as memory-protected user processes. These services communicate with each

other, and with applications, by means of message-passing and synchronization primitives that are

managed by the QNX Neutrino microkernel.

This microkernel architecture offers a fundamental advantage over the monolithic OSs traditionally

used to implement SMP. In monolithic OSs, the kernel contains the bulk of OS services. As a result,

adding support for SMP typically requires large numbers of performance-robbing modifications and

spinlocks throughout the kernel code. In fact, since device drivers also run in kernel space, adding SMP

support typically means modifying each driver as well. With QNX Neutrino, on the other hand, only the

microkernel needs SMP awareness and supporting logic. As a result:

• Support for SMP requires only a few additional kilobytes of kernel code, incurring negligible overhead.

• Multithreaded applications, drivers, protocol stacks, and OS services can automatically take advantage

of all available processors on an SMP system, since the microkernel handles the details of scheduling

threads on each processor. There’s no need for additional application logic or recompilation.

• Most system services don’t grow in complexity as a result of the conditional logic traditionally required

to support both uniprocessor and multiprocessor platforms.

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 8

Moreover, QNX Neutrino SMP is truly symmetric: Any kernel thread, any process (e.g. database, file

system), and any thread within a process can be transparently scheduled for execution on any CPU.

Note that QNX Neutrino supports a variety of SMP boards based on MIPS, PowerPC, and x86 processors.

Support is provided though board support packages (BSPs).

Figure 3 — As a microkernel OS, QNX Neutrino runs both applications and system services

(e.g. drivers, file systems) as separate, user-space processes. This architecture enables optimal

SMP performance by allowing a large number of independent components to run concurrently.

Identifying Applications that Benefit from SMP

In general, SMP can provide performance improvements for:

• compute-bound tasks
3
 that wait for intermittent I/O, then process the input

• loosely coupled tasks that seldom communicate with each other

• independent computations

• distributed algorithms

• sets of independent applications

Which networking applications benefit from SMP?

Networking applications that successfully employ SMP include:

• IP and MPLS route calculations

• Layer 3 packet forwarding

• storage caching algorithms

3
 In this document, “task” refers to any arbitrary unit of computation. In practice, a task is assigned to either a thread or a process. (In

some OSs, such as QNX Neutrino, a process may contain more than one thread.)

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 9

• call-processing encryption applications

• voice and data compression and encoding

Such applications are often compute bound, are either multithreaded or amenable to multitask

decomposition, and contain tasks that seldom contend over shared resources.

Applications less likely to benefit

The following algorithms may benefit less from SMP:

• I/O-bound tasks that primarily stream I/O with little or no computation between

task arrivals

• Tasks that frequently communicate with each other, contend for shared resources,

or serialize access to a resource

• Tasks that implement a serial pipeline of dependent computations

Nonetheless, I/O-bound tasks can benefit from multithreading and Hyper-Threading; execution units

that become idle because of stalls in communicating with I/O devices can execute instructions from

other threads running in the processor core.

Case Study: Packet Forwarding Performance with SMP

To demonstrate the benefits of SMP, and to investigate techniques for optimizing its performance,

QNX Software Systems conducted a study that examined Layer 3 packet forwarding. The following

sections:

• describe the test setup

• examine packet forwarding performance in both single-processor and SMP configurations

• discuss the architecture of the forwarding code in QNX Neutrino

• explore an optimization that offers additional performance gains under SMP

Test setup

Since measurement of Layer 3 packet forwarding performance is a common benchmark for routers, the

testing methodology has been standardized by the Internet Engineering Task Force (IETF) in RFC2544.

We followed this methodology, using an Adtech AX/4000 Broadband Test System that included two

Gigabit Ethernet port interfaces and two 1 Gbps mAX IP and mAX IPex routing generator/analyzers.

We connected the Ethernet ports to the device under test (DUT), which was configured as a router. See

Figure 4.

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 10

Figure 4 — Test setup for measuring packet

forwarding performance. RFC2544 was used

as the testing methodology.

The DUT consisted of the following:

• Hardware — The DUT used the Broadcom BCM91250A “SWARM” evaluation board, based on the

SiByte BCM1250 dual-processor SOC (clocked at 600MHz for this study). The board includes two

Gigabit Ethernet ports; both were used as the network interfaces in the packet forwarding tests.

• Software — The DUT software consisted of the QNX Neutrino RTOS v6.2.1B, including a TCP/IP

stack, supporting software utilities, and an instrumented SMP kernel. QNX Neutrino’s SWARM board

support package (BSP) provided boot support, including UART and PCI drivers, as well as Ethernet

network drivers for the board’s Gigabit ports.

The RFC2544 testing methodology includes the measurement of throughput, latency, frame loss, and

back-to-back packet handling. We focused on the first test, throughput, which RFC2544 defines as the

highest rate at which packets of a given size can be sent to a DUT and forwarded back, without loss of a

single frame.

The AX/4000 traffic generator/analyzers implement this benchmark by generating known packet streams

through each interface and analyzing the forwarded packets to measure frame loss. The AX/4000 software

automates measurement of throughput by iterating through different packet rates (via a binary search

algorithm) to determine the packet rate at which no frames are dropped. The results are stored, and the test

is repeated for all packet sizes.

We configured the two ports on the DUT to reside on different subnets (10.x.x.x and 11.x.x.x), and set up

static route entries to allow forwarding between these two interfaces. We then set the AX/4000 to generate

two traffic streams, in a fully meshed configuration; that is, traffic would be sent to both ports and the

throughput would be the highest packet rate that both ports could sustain.

 Adtech AX/4000

11.1.1.1
10.1.1.1

GigE

GigE

 DUT: QNX Neutrino SMP

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 11

On the DUT, we used the following commands to start the QNX network manager (io-net), network

driver, and TCP/IP stack:

Io-net –dbcm1250 receive=256,transmit=1024 –ptcpip-v6 fastforward –s &

 # Set number of RX and TX descriptor

 # Enable fastforward

 # Enable static io-net configuration

Ifconfig en0 10.1.1.1

Ifconfig en1 11.1.1.1

Ifconfig +ip4csum en0

 # Turn on HW checksum on port 0

Ifconfig +ip4csum en1

 # Turn on HW checksum on port 1

Packet forwarding results with a single processor

To obtain a baseline, we first measured packet forwarding for a single processor. The software configuration

was identical to that used in our subsequent SMP test, with one exception: the QNX Neutrino startup

component was passed the “-P1” option, forcing it to run in single-CPU mode. See Table 1 for the results.

Packet

Size

Packet Rate

(PPS per port)

Total Throughput

(Mbit/sec)

64 167280 214

128 164666 421

256 166254 851

512 145056 1485

768 130208 2000

1024 97656 2000

1280 78125 2000

1514 65876 2000

Table 1 — Throughput results for single-processor case.

As you can see, the forwarding rate is fairly constant for small packet sizes — about 180,000 packets

per second (PPS) for each port, or 360,000 forwarded PPS for the device — and quickly reaches the

theoretical maximum rate for large packets.

We then used the QNX Momentics system profiler, a visualization tool that hooks directly into the

instrumented SMP kernel, to capture system trace events as the test progressed. This trace information

allowed us to determine exactly how the system was behaving. But before we review this information,

let’s look at the architecture of the QNX networking stack to understand the path that packets take as

they are being forwarded. This will provide a better understanding of the trace results.

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 12

How packets are forwarded under io-net

Under the QNX Neutrino networking stack architecture, io-net, packets can originate either within a

device driver (received packets from interfaces) or from a protocol stack; see Figure 5. In the present case,

packets are received by either of the Gigabit Ethernet ports. The driver removes the packets from the

received queues, then sends them up through io-net to the next layer. To determine where a packet goes

next, io-net looks up the packet type (for instance, “ethertype”), then chooses the appropriate upper

module.

Figure 5 — QNX networking stack architecture (io-net).

In this particular scenario, the packets are IP packets, which get passed up to the TCP/IP stack. If packet

forwarding is enabled, the IP stack will send any new packet it receives through the “fast-forwarding” path

(see L3 Fast FW in Figure 5). The fast-forwarding code looks up the packet source and destination in the

forwarding table, and, if it finds a match, updates the next-hop information and sends the packet down to

the appropriate driver to be transmitted.

If no match is found in the forwarding table, the packet is queued for exception processing. Packets that

require additional processing include packets destined for the local host (for instance, SNMP and RIP

packets) and packets that need additional transformations before being forwarded (for instance, packets

that match an IPSec rule and need to be encrypted).

Now let’s look at the system profiler trace taken during the packet forwarding test in single-processor

mode. As shown in Figure 6, threads 5 and 6 in io-net are alternatively active: these are the driver threads

for the two Gigabit Ethernet ports. These threads share the processor and never actually block, each

draining its receive queue and forwarding the packets to the other port’s transmit queue. From this trace,

we could conclude that the fast-forwarding path works as expected, and that our packet rate is limited

mostly by processing power — we’ll see later whether this conclusion holds up under further scrutiny.

IO-NET

TCP/IP

Stack

RIP
Route
Sockets

OSPF

…

FW

Table

Sockets

Port 0 Port 1

DriverDriver

L3
Fast
FW

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 13

Figure 6 — System profiler results for single-processor case.

Packet forwarding results with symmetric multiprocessing

Next, we repeated the test, but with both processors enabled. See Table 2.

Packet

Size

Packet Rate

(PPS per port)

Total Throughput

(Mbit/sec)

64 323429 413

128 315630 808

256 312545 1600

512 195312 2000

768 130208 2000

1024 97656 2000

1280 78125 2000

1514 65876 2000

Table 2 — Throughput results for dual-processor case. Throughput has improved

almost 100 per cent for small packets.

As you can see, SMP provided clear performance gains; for small packets, total throughput has improved

by almost 100 per cent. This performance gain was achieved without any modifications to the software or

to the configuration of the device.

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 14

Figure 7 shows a system profiler trace taken during the benchmark — the running thread on CPU 0 is

light blue, the running thread on CPU 1 is magenta. We can now see that the performance gain from the

dual-processor system comes from its ability to run the two driver threads in parallel (threads 5 and 6 of

io-net), each driver forwarding packets from a separate interface.

Figure 7 — System profiler results for dual-processor case.

SMP optimizations for packet forwarding performance

Next, we investigated whether we could further speed up packet forwarding with SMP.

A common SMP bottleneck occurs when two or more threads contend for the same resource — for

instance, two threads that share a data structure whose access is protected by a mutex or spinlock. If the

two threads run in parallel on separate processors (SMP) and both access this data structure for significant

amounts of time, they may end up spending considerable time contending for the lock, thereby serializing

execution. This will diminish the benefits of parallel processing.

Returning to the system profiler trace in Figure 7, we can make some additional observations. For instance,

the trace shows that each driver thread makes several calls to mutex_lock() and mutex_unlock(), a telltale

sign of lock contention. This contention is for the same mutex object, which we can trace back to the mutex

protecting the forwarding table in the TCP/IP fast-forwarding code. This lock is necessary, since the table

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 15

has to be updated by the driver threads whenever packets are forwarded (to increment statistics, for

instance). The table also has to be updated by the main TCP/IP stack thread when route table entries are

added or deleted, usually by external routing protocols such as RIP and OSPF. While these updates are

infrequent, the mutex protecting the table is necessary to prevent the data structures from becoming

corrupted during forwarding-table modifications.

To reduce the lock contention and improve scalability and performance with SMP, we modified the fast-

forwarding code to use a separate forwarding table for each processor. So, in a two-way SMP system, we

now maintain two separate copies of the forwarding table, each with its own forwarding entries (which are

duplicated for each CPU), and a separate mutex protecting each table. In principle, this should reduce lock

contention, as each driver thread, running on a separate processor, would no longer contend for a shared

forwarding table. It also has the benefit of improving cache utilization. The modified stack architecture is

shown at right in Figure 8.

 Figure 8 — Original io-stack architecture (left) and modified io-stack stack architecture (right).

We repeated our tests, this time with the new architecture. In Table 3 and Figure 9, you’ll see that the

forwarding rate for small packets is now about 20 per cent faster than the original SMP results.

Furthermore, a system profiler trace, shown in Figure 10, reveals that resource contention has been

virtually eliminated: threads 5 and 6 of io-net now run concurrently on each processor without any

interruptions, rescheduling, or lock contention.

CPU 2

CPU 1

CPU 0

IO-NET

FW

Table

Port 0 Port 1

DriverDriver

L3
Fast

FW

IP4/6
TCP
UDP

IPsec

Route
Table

IO-NET

TCP/IP

Stack

RIP
Route
Sockets

OSPF

…

FW

Table

Sockets

Port 0 Port 1

DriverDriver

L3
Fast
FW

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 16

Packet

Size

Packet Rate

(PPS per port)

Total Throughput

(Mbit/sec)

64 341390 436

128 339602 869

256 330858 1693

512 195312 2000

768 130208 2000

1024 97656 2000

1280 78125 2000

1514 65876 2000

Table 3 — Throughput results after lock contention was reduced. Forwarding rate for small

packets is now about 10 per cent faster than original SMP results, and over 100 per cent

faster than single-CPU results.

Figure 9 — Throughput results after lock contention was reduced. (See comments for Table 3.)

Layer 3 Throughput per RFC2544

BCM1250

0

500

1000

1500

2000

2500

0 500 1000 1500 2000

Packet Size

T
h

ro
u

g
h

p
u

t
(M

b
it

s
/s

e
c

)

Single-CPU

SMP (Original)

SMP (Optimized)

Using Symmetric Multiprocessing (SMP) QNX Software Systems

 17

Figure 10 — Use of separate forwarding tables has virtually eliminated resource contention. Threads 5 and 6 of io-

net now run concurrently without any interruptions or rescheduling.

Performance Gains Out of the Box

In the QNX Neutrino RTOS, only the microkernel needs to have SMP awareness; consequently, developing

SMP-capable applications is no more difficult than developing multithreaded applications for a uniprocessor

platform. This ease of development, combined with the high processing density and low cost per MIPS of

SMP hardware, makes SMP a compelling alternative for any OEM building scalable, high-performance

network elements. In fact, as the case study demonstrates, dramatic performance benefits can be obtained

“out of the box” without any code changes or recompilation. And even greater performance can be achieved

through a tool such as the QNX Momentics system profiler, which graphically pinpoints contention for

shared resources and other potential SMP bottlenecks.

While the tests described here were performed on a MIPS dual-core processor, similar increases in

performance can also be realized on other processor architectures (e.g. PowerPC, x86) that support SMP.

References

RFC 2544, “Benchmarking Methodology for Network Interconnect Devices”

http://www.faqs.org/rfcs/rfc2544.html

Adtech AX/4000 Broadband Test System

http://www.spirentcom.com/analysis/product_line.cfm?pl=1&WS=173&wt=2

BCM91250A (SWARM) evaluation board product brief

http://www.broadcom.com

QNX Neutrino RTOS product brief

http://www.qnx.com/resource/rs_pdf/rs_neutrino.pdf

© 2003 QNX Software Systems GmbH & Co. KG. , a subsidiary of Research In Motion Limited. All rights reserved. QNX, Momentics, Neutrino, Aviage, Photon and

Photon microGUI are trademarks of QNX Software Systems GmbH & Co. KG, which are registered trademarks and/or used in certain jurisdictions, and are used under

license by QNX Software Systems Co. All other trademarks belong to their respective owners. 302102 MC411.31

www.qnx.com

About QNX Software Systems

QNX Software Systems is the leading global provider of innovative embedded technologies, including middleware,

development tools, and operating systems. The component-based architectures of the QNX® Neutrino® RTOS, QNX

Momentics® Tool Suite, and QNX Aviage® middleware family together provide the industry’s most reliable and

scalable framework for building high-performance embedded systems. Global leaders such as Cisco, Daimler,

General Electric, Lockheed Martin, and Siemens depend on QNX technology for vehicle telematics and infotainment

systems, industrial robotics, network routers, medical instruments, security and defense systems, and other mission-

or life-critical applications. The company is headquartered in Ottawa, Canada, and distributes products in over 100

countries worldwide.

