
Portability Made Possible:
Creating Reusable Software Assets
Through POSIX

Steve Furr, QNX Software Systems
Jason Clarke, QNX Software Systems

2QNX Confidential. All content copyright QNX Software Systems.

QNX Highlights

è QNX: provider of realtime operating system (RTOS)
software, development tools and services for mission-
critical embedded applications
> 24 years of realtime embedded experience
> Millions of installations worldwide
> Reputation for reliability and scalability

è Leader in innovative embedded technology
> First multitasking RTOS running with MMU support
> First RTOS to implement distributed processing
> First RTOS to implement symmetric multi-processing
> First POSIX certified RTOS
> First microGUI windowing system for embedded systems

3QNX Confidential. All content copyright QNX Software Systems.

Agenda

POSIX: Standard APIs
è Divergent Environments
è Portability vs. Conformance
è POSIX Overview and Evolution
è POSIX Comparison

> QNX Neutrino, Linux & VxWorks

Application Portability
è VxWorks & QNX Neutrino
è Migration Roadmap
è Examples and Q&A

4QNX Confidential. All content copyright QNX Software Systems.

Today�s Environment

è Typical company has multiple product lines
and limited interoperability

è Vendors are locked into a single OS solution or

è Applications need to be recoded or ported to deploy on
different product lines
> Takes time, adds costs
> Increases delays to product deployment

Product Line C
OS 3

Application

Product Line A
OS 1

Application

Product Line B
OS 2

Application

Recoding

5QNX Confidential. All content copyright QNX Software Systems.

Standards & Portability

è Standard APIs preserve software investments

è Portability lowers time, cost and risk associated
with integrating new technology across product lines

è Common standard maximizes application base for
development environments

è Developers familiar with standard become productive
more quickly

6QNX Confidential. All content copyright QNX Software Systems.

Portability vs. Conformance

è Portability
> Degree to which a software/application base is reusable
§ Between different versions of the same vendor�s environment
§ Between different vendors environments

> Measurement
§ Difficult to verifiably measure
§ Portability from one environment to another is not a reliable

metric of how portable it will be to other environments, except
under constrained circumstances

è Conformance
> Provides verifiable metric of portability on an application

by application basis (pass/fail)
> Two Sides:
§ Vendor conformance: conformant implementation
§ Consumer conformance: conforming application

The POSIX Specification

8QNX Confidential. All content copyright QNX Software Systems.

POSIX Overview

è Portable Operating System Interface

è Family of standards that define an interface,
using the C programming language, a command interpreter,
and common utility programs

è Developed by industry organizations
> IEEE
> ISO/IEC
> The Open Group

è Introduced in 1980s to define standard way to interact with
multiple UNIX derivatives

è POSIX1003.1-2001: current version of standard
> Used by Linux Standard Base and Embedded Linux Consortium

9QNX Confidential. All content copyright QNX Software Systems.

Where Is it Used?

è POSIX can be broadly implemented across a wide range of
systems, including:
> Current major systems that are ultimately derived from the original

UNIX system code (Version 7 or later)
> Compatible systems that are not derived from the original UNIX

system code
> Emulations hosted on entirely different operating systems
> Networked systems
> Distributed systems
> Systems running on a broad range of hardware

10QNX Confidential. All content copyright QNX Software Systems.

API Evolution

1742

1434

390

130
199

0

200

400

600

800

1000

1200

1400

1600

1800

Single UNIX v3
Single UNIX v2
POSIX 1003.1-1996
POSIX 1003.2
1003.1-90 FIPS 151-2

11QNX Confidential. All content copyright QNX Software Systems.

Key Benefits

è Source-level compatibility of applications
> Can choose the best OS for the job at hand, without having

to rewrite entire code base or change programming models

è Portability of applications and programmers
> Lowers the time, cost and risks associated with integrating

new technology across the enterprise

è Shifts focus from incompatible system product (RTOS)
implementations to compliance to single set of APIs

è If an OS meets the specification and commonly available
applications run on it then it is open
> Which specification (i.e. profile) do I need?

12QNX Confidential. All content copyright QNX Software Systems.

Application Environment
Profile (Landscape)

FIPS 151-2

ISO C

ISO C++

ELCPS, LSB

1003.1-1996

1003.1-2001 OMG CORBA/COS

C/C++
POA

Naming1003.1-1990

Minimal Application Profiles (1003.13)

POSIX Compliance
OS Comparison

14QNX Confidential. All content copyright QNX Software Systems.

POSIX Feature Matrix

xxx--1003.1b-93 Memory
Protection

xxxxx1003.1b-93 IPC Message
Passing

xxxxx1003.1b-93 Shared Memory

xxxxx1003.1b-93 Semaphores

xxxxx1003.1b-93 Realtime Signals

xxxxx1003.1b-93 Hi Res. Clocks &
Timers

xx---1003.1-90 Users & Groups

xx-x-1003.1-90 Files & Directories

xxx--1003.1-90 Pipes

xxx--1003.1-90 Processes

POSIX
1003.1-2001

PSE 54PSE 53PSE 52PSE 51Feature

Check for Advanced Realtime

15QNX Confidential. All content copyright QNX Software Systems.

POSIX Feature Matrix

xx---POSIX2_SW_DEV

xxxxx1003.1c-95 Thread
Priority Protection

xxxxx1003.1c-95 Thread
Priority Inheritance

xxxxx1003.1c-95 Thread
Priority Scheduling

xxx--1003.1c-95 Thread
Process Shared

xxxxx1003.1c-95 Thread
Attribute Stack Size

xxxxx1003.1c-95 Thread
Attribute Stack
Address

xxxxx1003.1c-95 Thread
Safe Functions

xxxxx1003.1c-95 Threads

POSIX 1003.1-
2001

PSE 54PSE 53PSE 52PSE 51Feature

16QNX Confidential. All content copyright QNX Software Systems.

POSIX Profiles � OS
Compliance

-Configure, GCC, perl, �Configure, GCC, perl, �Best practices
(development)

PSE 51/PSE 521003.1-1996*1003.1-2001Specification Base

--x1003.1j-200x Advanced
Realtime

(Barriers, spin-locks, �)

--x1003.1d-1999 Additional
Realtime

(Sporadic server scheduling,
execution timers, �)

-xxRealtime Threads (.1c)

xxxRealtime (.1b)

VxWorksLinuxQNX NeutrinoPOSIX Standard

*Newer versions of the Linux kernel are moving toward conformance with the 2001 specification.

17QNX Confidential. All content copyright QNX Software Systems.

Linux-QNX Portability

è Application portability between Linux and QNX Neutrino
can be easily accomplished
> Both Linux and QNX Neutrino share large POSIX feature set

è Linux developers can retain programming model
and existing APIs while porting applications to
QNX Neutrino

Bottom line:

è Porting applications between Linux and QNX Neutrino
is relatively simple

è Standard POSIX APIs are key

18QNX Confidential. All content copyright QNX Software Systems.

Application Porting Example �
Lynx Text Browser

make installInstall the browser:
Install.

../configure
make

Configure the source:
Make.

mkdir x86-pc-nto-qnx
cd x86-pc-nto-qnx

Make a host directory:
Go to the host directory.

tar xz lynx2.8.4.tar.gz
cd lynx2-8-4

Untar the source:
Go to the source directory.

19QNX Confidential. All content copyright QNX Software Systems.

Sample 3rd-Party Applications

Mozilla � Web browser
based on Netscape
source code

Samba � Shared
access to resources on
Windows networks

Zebra router �
Manages TCP/IP based
protocols

Open SSH/SSL �
Secure sockets and
shells

VIM � Vi IMproved, a
programmers� editor

CVS � Source code
Version-control System

GCC � GNU C/C++
compiler

GDB � GNU debugger

GNU EMACS �
Programmers� editor

Sendmail � Email
server

Open LDAP � Light
weight Directory
Access Protocol

Doxygen � Source
code documentation
tool

Ruby � Scripting
language

Perl � Scripting
language

Python � Scripting
language

Xerces � XML
Processor

LibXSLT � XSL
Processor

LibXML2 � XML
Database

Apache � Web serverGDBM � Database

Postgres � Open-
source database

mySQL � Open-
source database

PVM � Distributed
processing system

TAO � CORBA ORB

20QNX Confidential. All content copyright QNX Software Systems.

POSIX Summary

è Standard interface increases software portability for all
embedded systems

è Some markets, such as military, moving toward using POSIX
as their base specification

è OS conformance a matter of degree
> QNX Neutrino provides conformance with 1003.1-2001
> Linux moving toward 2001.3-2001 with latest versions
> VxWorks only conforms with minimal profiles � PSE 51/PSE 52

è Migration of legacy VxWorks code to POSIX RTOS increases
software portability

OS Migration: VxWorks to QNX
Neutrino
Jason Clarke, QNX Software Systems

22QNX Confidential. All content copyright QNX Software Systems.

OS Migration � Business Drivers

è Supplier limitations
> Proprietary API locks customer to OS vendor
> High cost of developer training
> Limited software choices

è Product capabilities
> Product stability � OS reliability, performance
> Support for latest technologies � SMP, HA, 3D graphics
> Dynamic upgradeability � modularity, software hotswap

è Development costs
> High cost of new feature development and deployment
> Soaring bug identification and bug fix costs
> Third-party software porting and integration costs
> Need to employ specialized kernel experts

23QNX Confidential. All content copyright QNX Software Systems.

Porting Issues

è Software architecture
> Memory accessibility (process vs. single-address model)
> Tight coupling between OS, system, and user tasks

è Differences at system and application level API
> POSIX vs. minimal profile + proprietary
> Physical memory vs. virtual memory addressing

24QNX Confidential. All content copyright QNX Software Systems.

Architectural Comparison

Realtime Executive
Device Drivers TCP/IP Stack File-system

Application Application Kernel space

Microkernel

Device Drivers TCP/IP Stack

File-systemApplication

Microkernel

25QNX Confidential. All content copyright QNX Software Systems.

Architecture � Microkernel

è POSIX is bred in the bone

è Applications, drivers, stacks coded to the same APIs

Device Drivers TCP/IP Stack

File-systemApplication

Microkernel
POSIX 1003.1 - 2001

26QNX Confidential. All content copyright QNX Software Systems.

Legacy VxWorks Environment

Application

Application

Application

Device
Drivers

TCP/IP
Stack

File-system

Kernel

IPSec

The Migration Goal:
è Re-use existing legacy software
è Future-proof, unified, scalable

software architecture

The Migration Challenge:
è Poorly defined coupling between

components
è Implicit sharing of memory
è Several assumptions about legacy

architecture creep into code

27QNX Confidential. All content copyright QNX Software Systems.

è Realtime executive model: All tasks have access
to complete system memory

> Tight coupling between OS, system and user tasks
> Difficult to separate components without re-design
> Re-architecting parts of the system is non-trivial

è Process model: Threads within a process have access
to the same memory
> Separate processes can share memory using explicitly

defined shared memory regions

Memory Accessibility

Driver
~~ Driver

~~
OS

APP~~ APP~~APP

Driver
Memory

APP

Driver

OS

28QNX Confidential. All content copyright QNX Software Systems.

APIs

è Differences at system and application level API
> Legacy applications often use proprietary APIs
> Interface to system is also proprietary (possibly different)
> While porting, a mapping may be necessary between the

proprietary API and the underlying POSIX API of the new OS
§ Can encapsulate most of mapping in a �porting library�

VX2QNX Lib

QNX OS

POSIX API

Driver
~~ Driver~~

APP~~ APP~~

Driver

Proprietary APIs

APPAPP

OS

29QNX Confidential. All content copyright QNX Software Systems.

Physical vs. Virtual Memory

Physical Addresses Physical Addresses

è OS uses hardware to translate virtual addresses to physical addresses
using a maintained table

è Must ensure all memory accesses performed via �mapped-in� variables
instead of #define

0:
1:

N-1:

Memory

Driver

APP

APP

0:
1:

N-1:

Memory

0:

P-1:

Page TableVirtual
Addresses

Driver

APP

APP

30QNX Confidential. All content copyright QNX Software Systems.

Software Builds

è Build scripts/makefiles must be re-worked
> Adapt/adopt build infrastructure

§ Re-work macros to point to QNX tools + re-write link sections
§ Import code base using the QNX Momentics IDE

(automatically sets up make infrastructure)

è Compiler differences
> Different compiler vendors (Diab, Metrowerks, GCC, etc.)
> Different GCC variants: 2.7.2 (VxWorks 5.4) vs. 2.95 (QNX / VxWorks 5.5)
> Code changes required to remove compiler errors

è Linker
> Different linkers/linker options (change makefiles / macros)
> �main� function for each separate process: Equivalent to VxWorks

�usrApplInit() � function
> Shared library concept used to reduce memory footprint

31QNX Confidential. All content copyright QNX Software Systems.

Other Considerations

è Significant legacy software base
> Millions to tens of millions of LOC
> Large number of protocols and applications to be re-used

è Most software written for real-time executives
> Specific assumptions about underlying RTOS

è Code may depend on specific tools
> C++ especially fragile

è Modularity not always enforced
> May complicate �from the ground up� re-architecting

è Device driver infrastructure

è Software build infrastructure, capabilities

Porting Strategies
A phased approach

33QNX Confidential. All content copyright QNX Software Systems.

Porting Process

è Two main aspects: porting driver/hardware related code,
and porting application code
> Typically porting driver code will be done manually by inspection

(�do-once� operation)
> Porting application code would likely be most significant portion

of effort associated with porting

Ported SystemLegacy System

POSIX API

OS

Driver APP-2APP-1Driver
Driver Driver

APP-2APP-1

VX2QNX Lib

QNX OS

POSIX API

34QNX Confidential. All content copyright QNX Software Systems.

OS

Porting Strategies

è Two main strategies to deal with legacy application code
> Develop porting library that provides legacy API while

implementing it using underlying API calls of new OS
> Replace legacy functions with appropriate native OS calls for

the new OS. Can be done manually or automatically through
use of code parsing tools

Less Work More Work

Legacy API

VX2QNX Lib

OS
POSIX API

Driver APP-2APP-1DriverDriver Driver

APP-2APP-1

35QNX Confidential. All content copyright QNX Software Systems.

OS

All tasks in
application
domain share
memory since
they are in the
same process

Protected
Memory Space

Execution Model

è Mapping tasks � Option #1
> Run application as single process under the new OS. Every task

in the original legacy application becomes a thread in the new application
process. Drivers run in their own protected memory spaces. Application is
protected from driver and OS

Task1 Task2 Task3

Application Process

Protected memory space

Protected memory space

Drivers are
protected
from each
other and
from OS,
application

Driver

Protected
Memory Space

Driver

36QNX Confidential. All content copyright QNX Software Systems.

Execution Model Cont.

è Option #2: Break application down into separate processes
that communicate using process IPC mechanisms and shared
memory to share data (far more robust)

Shared Memory IPC

Driver

Protected
Memory Space

Task 1

Protected
Memory Space

Task 2

Protected
Memory Space

Task 3

Protected
Memory Space

OS

Protected
Memory Space Protected memory space

Driver

37QNX Confidential. All content copyright QNX Software Systems.

APP-2APP-1 APP-2

OS
POSIX API

Driver Driver APP-2APP-1

Porting Roadmap

Legacy System

OS

Driver AP-1Driver AP-2

Application Blob

Decoupled
Application

IPC

Driver Driver

Shared Memory

OS

Driver APP-2APP-1Driver

OS

Legacy API
VX2QNX Lib

Driver Driver

APP-2APP-1

Application Blob

OS
POSIX API

38QNX Confidential. All content copyright QNX Software Systems.

Porting Library

è Implements key VxWorks functions
> Functionally equivalent implementation for the VxWorks API calls
> Provides code compatibility with legacy code at the application

layer
è Complete VxWorks system is encapsulated inside one

process under the QNX® Neutrino® RTOS
> Task in VxWorks → Thread in QNX Neutrino

è taskLib, msgQLib, semLib, semCLib, semBLib, semMLib,
wdLib, errnoLib, taskInfoLib, kernelLib, lstLib, schedPxLib,
mqPxLib, clockLib, semPxLib, sigLib, timerLib, �

è Covers majority of core VxWorks API
è Networking API coverage also being added into library
è Library provided as source:

> Use as reference for porting and/or deployment as a compatibility
layer

39QNX Confidential. All content copyright QNX Software Systems.

Migration Scope

è Adapt/adopt build infrastructure
§ Examine on per-environment basis

è Port hardware-related code
§ Drivers and OS

è Port application code
§ Porting library solves a major issue (API compatibility)

è Phased effort lets you evolve system over time
> No system downtime
> More manageable

Porting Examples

41QNX Confidential. All content copyright QNX Software Systems.

Inter-task Synchronization

SEM_ID mSem;
void func1(void) {
�
sem_take(mSem,�);
...critical section
sem_give(mSem);
...
}
void func2(void){
�
sem_take(mSem,�);
...critical section
sem_give(mSem);
...
}
void init(void) {
�
mSem = semMCreate(...)
�
taskSpawn(�Task1�, �, func1, �);
taskSpawn(�Task2�, �, func2, �);
...
}

pthread_mutex_t *mmtx;
void func1(void) {
�
pthread_mutex_lock(mmtx,�);
...critical section
pthread_mutex_unlock(mmtx);
...
}
void func2(void){
�
pthread_mutex_lock(mmtx, �);
...critical section
pthread_mutex_unlock(mmtx);
...
}
void init(void) {
�
mmtx = malloc(sizeof(pthread_mutex_t));
pthread_mutex_init(mmtx, �);
�
pthread_create(�, func1, �);
pthread_create(�, func2, �);
...
}

sem_t *msem;
void func1(void) {
�
sem_wait(msem,�);
...critical section
sem_post(msem);
...
}
void func2(void){
�
sem_wait(msem, �);
...critical section
sem_post(msem);
...
}
void init(void) {
�
msem = malloc(sizeof(sem_t));
sem_init(msem, �);
�
pthread_create(�, func1, �);
pthread_create(�, func2, �);
...
}

VxWorks Using
Semaphores

QNX Neutrino Using
Mutexes

QNX Neutrino Using
Semaphores

42QNX Confidential. All content copyright QNX Software Systems.

Memory Accessibility

#define DEVICEADDR 0x8000abcd
void *daddr;

void func1(void) {
int val;
�
// read value
val = *daddr;
// modify value
...
// write value
*daddr = val;
}

void init(void) {
�
daddr = DEVICEADDR;
taskSpawn(�Task1�, �, func1, �);
...
}

#define DEVICEADDR 0x8000abcd
void *daddr;

void func1(void) {
int val;
�
// read value
val = *daddr;
// modify value
...
// write value
*daddr = val;
}

void init(void) {
...
daddr = mmap (� len, ..., DEVICEADDR);
pthread_create(�, func1, �);
...
}

VxWorks QNX Neutrino

43QNX Confidential. All content copyright QNX Software Systems.

Migration Summary

è Business and technical needs drive migration
> Reliability, modularity, cost to add new features, software reuse�

è Moving to POSIX RTOS provides greater application
portability, increases software ROI

è Phased approach to migration enables continued revenue
stream and manageable migration path

è QNX offers program designed to accelerate migration
> Porting tutorial and library
> Extended QNX Momentics evaluation
> Migration support and services packages

44QNX Confidential. All content copyright QNX Software Systems.

Questions?

Q&A Session

45QNX Confidential. All content copyright QNX Software Systems.

Thanks for Your Time!

Steve Furr (furr@qnx.com)
Jason Clarke (jclarke@qnx.com)

Porting Tutorial: �Migrating Legacy Code from WindRiver�s
VxWorks to the QNX Neutrino RTOS�

http://www.qnx.com/mailings/vxporting/

