
QNX CAR™ Platform for Infotainment 2.1

QNX CAR™ Platform for Infotainment 2.1

Bluetooth Architectural Overview and
Configuration Guide

©2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All rights
reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, Foundry27 are trademarks of
BlackBerry Limited that are registered and/or used in certain jurisdictions, and
used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Monday, May 5, 2014

Table of Contents

About This Guide ...5
Typographical conventions ...6

Technical support ...8

Chapter 1: Bluetooth Architecture ...9

Chapter 2: Starting Bluetooth on the Target ..11

Chapter 3: Device Management ...19

Pairing a device ..20

Removing a paired device ..23

Getting device information ...24

Chapter 4: Bluetooth Profiles ..25

Hands-Free Profile (HFP) ...27

Message Access Profile (MAP) ...28

Phone Book Access Profile (PBAP) ...30

Serial Port Profile (SPP) ..32

Advanced Audio Distribution Profile / Audio/Video Remote Control Profile (A2DP/AVRCP)33

Chapter 5: Bluetooth Databases ..35

Core database ..36

Phonebook database ...37

Messages database ...43

Bluetooth Architectural Overview and Configuration Guide

Table of Contents

About This Guide

The Bluetooth Architectural Overview and Configuration Guide describes the Bluetooth

components supplied with the QNX CAR platform. This guide is intended for application

developers who will be using Bluetooth technology in their in-car systems.

The following table may help you find information quickly:

Go to:To find out about:

Bluetooth Architecture (p. 9)Our level of Bluetooth support

Bluetooth Architecture (p. 9)Key components and how they interact

Starting Bluetooth on the Target (p. 11)Configuring the services in the Bluetooth

startup sequence

Device Management (p. 19)Pairing and authentication

Bluetooth Profiles (p. 25)Using the supported Bluetooth profiles

(HFP, MAP, PBAP, SPP, and

A2DP/AVRCP)

Bluetooth Databases (p. 35)Databases related to Bluetooth (core,

phonebook, and messages)

Related documentation

The following references also contain relevant information on using Bluetooth with

the QNX CAR platform:

• PPS Objects Reference—includes descriptions of several Bluetooth-related PPS

objects used for issuing commands and for publishing status information

• WebWorks JavaScript Extensions (CAR 2.0—Deprecated) in the HTML5 and

JavaScript Framework—includes descriptions of Bluetooth JavaScript extensions

(qnx.bluetooth, qnx.bluetooth.pbap, and qnx.bluetooth.spp)

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Bluetooth Architecture

The QNX CAR Platform uses the Cybercom blueGO application software framework,

which is a wrapper around Sybase iAnywhere's Bluetooth protocol stack and profiles.

Overview

The QNX CAR platform provides PPS objects for issuing Bluetooth commands and for

interacting with profiles. QDB databases store messages and phonebook information

read from a connected paired device. Both the QDB and PPS services interact with

the io-bluetooth service, which talks to the Bluetooth hardware through the devc-

seromap_hci driver.

For this release, we have tested Bluetooth on the Texas Instruments J5 ECO

EVM811x EVM and OMAP5432 EVM boards. This is not to say that Bluetooth

won't work on other hardware, but you'll need a BTS file created specifically

to support your hardware's Bluetooth chip.

The following diagram shows the interaction between the main Bluetooth components:

Bluetooth
hardware

devc-seromap-hci

io-bluetooth

pps-bluetooth

PBAP MAP HFP SPP A2DP
AVRCP

BTMGR

Discovery
& pairing

SQLite

QDB

MAP

PBAP

Bluetooth applications

Runtime environment

PPSSQL

PPS

Figure 1: The Bluetooth architecture for the QNX CAR platform

Resource manager (io-bluetooth)

The front-end resource manager for Bluetooth is io-bluetooth, which offers a

POSIX-compliant API and provides low-level access to the Bluetooth radio chip (typically

Copyright © 2014, QNX Software Systems Limited 9

via a serial interface such as UART, USB, or I2S). The io-bluetooth manager also

supports the Bluetooth profiles and provides profile concurrency and control.

PPS interface (pps-bluetooth)

The PPS abstraction layer for Bluetooth provides a filesystem-based interface for

activities such as pairing devices, managing profiles, getting status updates, and so

on. You'll find the following Bluetooth-related PPS objects on your system:

Core Bluetooth objects

• /pps/services/bluetooth/control

• /pps/services/bluetooth/services

• /pps/services/bluetooth/settings

• /pps/services/bluetooth/status

• /pps/services/bluetooth/remote_devices/<mac_addr>

• /pps/services/bluetooth/paired_devices/<mac_addr>

HFP-related objects

• /pps/services/bluetooth/handsfree/control

• /pps/services/bluetooth/handsfree/status

MAP-related objects

• /pps/services/bluetooth/messages/control

• /pps/services/bluetooth/messages/notification

• /pps/services/bluetooth/messages/status

PBAP-related objects

• /pps/services/bluetooth/phonebook/control

• /pps/services/bluetooth/phonebook/status

For details on using these PPS objects, see the PPS Objects Reference.

Serial driver (devc-seromap_hci)

The serial driver interfaces with the Bluetooth radio chip on the hardware. For details

on starting this driver and other key processes, see “Starting Bluetooth on the Target”

in this guide.

10 Copyright © 2014, QNX Software Systems Limited

Bluetooth Architecture

Chapter 2
Starting Bluetooth on the Target

The Bluetooth services on the QNX CAR platform depend on several system services

that must be started in a certain sequence as outlined below.

Starting the required services

The following commands assume a Texas Instruments OMAP5432 EVM

board.

1. Make sure the following general system services are running. Note that Bluetooth

as well as many applications throughout the system rely on these services:

• pps

• qdb

• io-acoustic (for HFP)

• mm-player (for AVRCP)

For more information on starting these services and their dependencies, see the

/etc/slm-config-all.xml file on your target.

To find out if a particular process is already running on your target, you

can use the pidin utility (which displays information for all process IDs)

and pipe the output through grep, specifying the process you're interested

in. For example, to see if io-acoustic is running, use this command:

pidin | grep io-acoustic

2. Make sure the devc-seromap_hci driver (for HCI shared transport) is running.

Here's the command line:

devc-seromap_hci -E -f -a -g 0x4805b000,142 -c48000000/16

0x48066000^2,137

3. Start the io-bluetooth service. Note that this command specifies the BTS file

for the OMAP5432 board:

io-bluetooth -vvvvv -s /etc/system/config/blue

tooth/WL18xx_2.x_SP2.8.bts

4. Start the pps-bluetooth service:

pps-bluetooth –vvvv

5. Start the following services, if you need them:

Copyright © 2014, QNX Software Systems Limited 11

bluetooth-map-initiator –vv (for syncing messages)

bluetooth-pbap-initiator –vv (for syncing the phonebook)

ifwatchd -A /scripts/ifarrv.sh -D /scripts/ifdepart.sh pan0

(PAN scripts)

If the io-bluetooth service isn't starting up, check the system log for

multiple instances of HCC_RESET failure. If you find such errors, you'll

need to slay and then restart the devc-seromap_hci driver. If you don't

see those HCC-related errors, then make sure that the pps-bluetooth

service is running, since it's the service that initializes io-bluetooth.

Command-line options for devc-seromap_hci

Although many general options are available for the devc-seromap_hci

driver (because it's one of several drivers that rely on the io-char library),

not all options make sense in the context of HCI. You must use the options

as shown in Step 2 above to enable these specific features, but not their

counterparts:

• raw input mode (-E)

• hardware flow control (-f)

• auto-RTS (-a)

For instance, don't use edited mode—this would break HCI packet handling!

Here are the command-line options you can use when starting the devc-seromap_hci

driver:

devc-seromap_hci [options] [port[^shift][,irq][,k]] &

-a

Use auto-RTS when hardware flow control is enabled.

-b number

Define initial baud rate (default is 115200).

Always start the driver with the default baud rate (115200). The BT

chip will default to this rate when it comes out of reset, so the UART

must be configured for this rate to issue the initial commands. If

you want to increase the baud rate, the commands should be sent

by the BT stack after the driver has reported CARRIER. The sequence

is as follows:

12 Copyright © 2014, QNX Software Systems Limited

Starting Bluetooth on the Target

1. The BT stack writes the HCI commands for a change in baud

rate to the BT chip via the HCI driver.

2. The stack waits for the acknowledgment.

3. The stack then changes the local HCI driver baud rate via the

tcsetattr() call.

This sequence can be included in the *.bts file so that the value

of the new baud rate won't need to be hard-coded into the BT stack.

-c clk[/div]

Set input clock rate (in hertz) and divisor.

-C number

Set size of canonical input buffer (default is 256 bytes).

-e

Set options to edited mode.

-E

Set options to raw mode (default).

-f

Enable hardware flow control (default).

-F

Disable hardware flow control.

-g gpio_base,gpio_pin

GPIO base and GPIO pin used for Bluetooth Enable. On driver initialization

or UART transmit/receive error, the driver will toggle the GPIO connected to

the chip's BT_EN or BT_RST pin and then issue the HCC_RESET command.

-I number

Set size of raw input buffer (default is 2048 bytes).

-l (0|1)

(“el”) Enable loopback mode (1=on, 0=off).

-n

Name of Bluetooth Script. If you use the -n option, the driver will follow up

the HCC_RESET command by uploading the provided file (*.bts). Note

Copyright © 2014, QNX Software Systems Limited 13

that the -n is optional since the Bluetooth stack sitting above the HCI UART

driver can open the file directly and write the encoded HCI commands down

to the driver via regular write() calls.

The driver will use the CD (Carrier Detect) line status to communicate when

the interfaces are “ready” to be used, i.e., the driver will report CARRIER

to the client, then the HCC_RESET and script load will be successfully

completed. If the -n option isn't used to enable script load, then CARRIER

is reported after the HCC_RESET. Note that the carrier signal is reported as

dropped/lost when we reset the chip by toggling the GPIO pin.

-O number

Set size of output buffer (default is 2048 bytes).

-s

Enable software flow control.

-S

Disable software flow control (default).

-t number

Set receive FIFO trigger level (default is 16).

-T number

Set transmit FIFO trigger level (default is 8).

-u unit

Set serial unit number (default is 1).

-U uid:gid

Set the user ID and group ID.

-v

Be verbose. Use multiple v's to increase verbosity (see sloginfo data).

port

Hex I/O address of serial port.

shift

The spacing of the device registers as a power of 2 (e.g., 0 means registers

are 1 byte apart, 1 means registers are 2 bytes apart, etc.). The default shift

is 0.

14 Copyright © 2014, QNX Software Systems Limited

Starting Bluetooth on the Target

irq

Interrupt used by the port. To specify in hex, prefix with 0x.

k

Place this after the irq value to indicate that a Maxim RS-232 transceiver

is used on this port, which requires sending it a null character to wake it up

after going into Autoshutdown Plus mode.

By default, the CREAD terminal flag will be disabled for all HCI interfaces

(serbtX, sergpsX, and serfmX). The Bluetooth stack (or whatever app

wants to use these interfaces) must set the CREAD flag to enable receive

functionality (on a per-interface basis). For proper functionality, the client app

must clear the flag when finished with the device/interface. This is because

all interfaces share the same UART hardware—we don't want to get stuck in

a flow-controlled state because there's no client reading from one of the

interfaces. Flow control will be asserted when any of the device buffers reaches

the defined high-water mark and won't be cleared until there's room in all

interface buffers to receive more data. In other words, if the system doesn't

care about GPS and there's no client reading from the sergpsX interface, we

don't want the driver to buffer GPS data, which would eventually fill the buffer

and assert the flow-controlled state.

Command-line options for io-bluetooth

Here are the command-line options you can use when starting the io-bluetooth

service:

io-bluetooth [-d path][-f FD][-r file][-s path][-v]

-d path

Set the path to the serial driver (default is /dev/serbt1).

-f FD

Specify the file descriptor for the log destination (e.g., 2 for stderr).

-r file

Dump raw data to the specified text file. The relevant profile will be added

to your filename after an underscore (i.e., file_profile.txt). For

example, if you use -r /mydata, the result will create /mydata_map.txt

and /mydata_pbap.txt.

-s path

Copyright © 2014, QNX Software Systems Limited 15

Set the path to the BTS file (default is /etc/system/config/blue

tooth/WL127x_2.0_SP1.bts). This file informs the hardware of the

low-level parameters of the Bluetooth exchange, including the line numbers

to use and the baud rate.

-v

Be verbose. Use multiple v's to increase verbosity (see sloginfo data).

Command-line options for pps-bluetooth

Here are the command-line options you can use when starting the pps-bluetooth

service:

pps-bluetooth [-f FD][-n name] [-U euid:egid][-v]

-f FD

Specify the file descriptor for the log destination (e.g., 2 for stderr).

-n name

Set the local name of the Bluetooth device.

-U euid:egid

Specify the effective user ID and group ID of the pps-bluetooth process.

-v

Be verbose. Use multiple v's to increase verbosity (see sloginfo data).

Command line for bluetooth-map-initiator

The bluetooth-map-initiator executable (for syncing messages) takes only one

option:

bluetooth-map-initiator [-v]

-v

Be verbose. Use multiple v's to increase verbosity (see sloginfo data).

Command line for bluetooth-pbap-initiator

The bluetooth-pbap-initiator executable (for syncing the phonebook) takes

only one option:

bluetooth-pbap-initiator [-v]

-v

16 Copyright © 2014, QNX Software Systems Limited

Starting Bluetooth on the Target

Be verbose. Use multiple v's to increase verbosity (see sloginfo data).

Automated startup via SLM

The System Launch and Monitor (SLM) is a utility used for automating the startup

sequence of processes and any interprocess dependencies. SLM itself is started early

in the boot sequence (from startup.sh) to launch complex applications consisting

of many processes that must be started in a specific order. For more information, see

the entry for slm in the OS Utilities Reference.

Here are the relevant sections from the /etc/slm-config-platform.xml

configuration file for starting variant-specific processes (in this case for an OMAP5432

board):

HCI shared transport serial driver:

<SLM:component name="hci">
 <SLM:command>devc-seromap_hci</SLM:command>
 <SLM:args>-E -f -a -g 0x4805b000,142 -c48000000/16 0x48066000^2,137</SLM:args>
 <SLM:waitfor wait="pathname">/dev/serbt1</SLM:waitfor>
 <SLM:stop stop="signal">SIGTERM</SLM:stop>
</SLM:component>

The io-bluetooth service:

<SLM:component name="bluetooth">
 <SLM:command>io-bluetooth</SLM:command>
 <SLM:args>-vvvvv -s /etc/system/config/bluetooth/WL18xx_2.x_SP2.8.bts</SLM:args>
 <SLM:waitfor wait="pathname">/dev/io-bluetooth/btmgr</SLM:waitfor>
 <SLM:stdout>/var/log/io-bluetooth/stdout</SLM:stdout>
 <SLM:stderr>/var/log/io-bluetooth/stderr</SLM:stderr>
 <SLM:stop stop="signal">SIGTERM</SLM:stop>
 <SLM:depend>hci</SLM:depend>
 <SLM:depend>ioacoustic</SLM:depend>
 <SLM:depend>qdb</SLM:depend>
</SLM:component>

The pps-bluetooth service:

<SLM:component name="pps-bluetooth">
 <SLM:command>pps-bluetooth</SLM:command>
 <SLM:args>-vvvvv</SLM:args>
 <SLM:stop stop="signal">SIGTERM</SLM:stop>
 <SLM:depend>bluetooth</SLM:depend>
 <SLM:depend>pps</SLM:depend>
</SLM:component>

Phonebook sync automator:

<SLM:component name="pps-pbap-initiator">
 <SLM:command>bluetooth-pbap-initiator</SLM:command>
 <SLM:args>-vv</SLM:args>
 <SLM:stop stop="signal">SIGTERM</SLM:stop>
 <SLM:depend>pps</SLM:depend>
</SLM:component>

Messages sync automator:

<SLM:component name="pps-map-initiator">
 <SLM:command>bluetooth-map-initiator</SLM:command>
 <SLM:args>-vv</SLM:args>
 <SLM:stop stop="signal">SIGTERM</SLM:stop>
 <SLM:depend>pps</SLM:depend>
 <SLM:depend>qdb</SLM:depend>
</SLM:component>

Copyright © 2014, QNX Software Systems Limited 17

PAN scripts to start and stop dhcp.client to get an IP from the phone:

<SLM:component name="pan-if-monitor">
 <SLM:command>ifwatchd</SLM:command>
 <SLM:args>-A /scripts/ifarrv.sh -D /scripts/ifdepart.sh pan0</SLM:args>
 <SLM:stop stop="signal">SIGTERM</SLM:stop>
</SLM:component>

18 Copyright © 2014, QNX Software Systems Limited

Starting Bluetooth on the Target

Chapter 3
Device Management

The QNX CAR platform supports three Bluetooth device operations: pairing a device

(e.g., a car's head unit or a smartphone), removing a paired device from the system,

and obtaining status information for devices.

Copyright © 2014, QNX Software Systems Limited 19

Pairing a device

To be able to connect and transfer data between two devices (such as the car's head

unit and a smartphone), you have to go through the pairing process. Pairing necessarily

involves authentication so as to ensure security when connecting.

Pairing interactions

The following diagram shows the interactions involving the HMI, the PPS interface

(pps-bluetooth), and the Bluetooth Manager (io-bluetooth):

20 Copyright © 2014, QNX Software Systems Limited

Device Management

HMI

OR

pps-bluetooth io-bluetooth

initiate_pairing, device (MAC) IOBTMGR_INITIATEPAIRING, device (MAC)

BTMGR_EVENT_INIT_PAIRING_SUCCESS, device (MAC)

IOBT_BTMGR_USERCONFIRM, device, passkeyset_passkey, device, passkey (max length=6)

BTMGR_EVENT_INIT_PAIRING_FAIL, device (MAC)

set_legacy_pin, device, pin (max length=16) IOBT_BTMGR_SETLEGACYPIN, device, pin

BTMGR_EVENT_LEGACY_PIN_REQUIRED, device (MAC)

BTMGR_EVENT_PASSKEY_REQUIRED, device

BTMGR_EVENT_CONFIRM_NUMERIC_REQ, device, numeric_key

user_confirm, device, [true,false] IOBT_BTMGR_USERCONFIRM, device, [1,10]

BTMGR_EVENT_DISPLAY_NUMERIC_IND, device, numeric_key

BTMGR_EVENT_PAIRING_FAILED, device

BTMGR_EVENT_PAIRING_COMPLETE, device

cancel_pairing, device IOBT_BTMGR_CANCEL_PAIRING device

BTMGR_EVENT_PAIRING_CANCELED, device

BTMGR_EVENT_AUTHORIZE_REQUIRED, device(MAC)

authorize, device, [true,false] IOBT_BTMGR_AUTHORIZE, device, [1,10]

OR

OR

Multiple options start

Multiple options end

Figure 2: Typical message exchange between the HMI, pps-bluetooth, and io-

bluetooth

The Bluetooth Manager listens for commands such as initiate_pairing on the

/pps/services/bluetooth/control object and then publishes BTMGR_EVENT_*

events to the /pps/services/bluetooth/status object.

Adding a device

When the HMI receives a request to add a device (e.g., the user taps ADD NEW DEVICE

in the Bluetooth Connectivity screen under Settings in the HMI), the Bluetooth Manager

will issue a BTMGR_EVENT_DEVICE_ADDED event to the pps-bluetooth service,

which will publish the appropriate status information to these PPS objects:

Copyright © 2014, QNX Software Systems Limited 21

Pairing a device

• /pps/services/bluetooth/remote_devices/<mac_addr>

• /pps/services/bluetooth/status

Making devices discoverable

The set_access Bluetooth command lets you set the accessibility level of the

Bluetooth system as follows:

Meaning:Number value in data parameter:

Devices won't be discovered or connected

(IOBT_NOT_ACCESSIBLE)

0

Devices may be discovered and connected

(IOBT_GENERAL_ACCESSIBLE)

1

Devices will have limited discoverability

and connectability (IOBT_LIMITED_AC

CESSIBLE)

2

Devices may be connected, but not

discovered (IOBT_CONNECTABLE_ONLY)

3

Devices may be discovered, but not

connected (IOBT_DISCOVERABLE_ONLY)

4

For example, the following set_access command will set the accessibility level to

1 (so devices may be discovered and connected):

echo "command::set_access\n
 data:n:1" >>
 /pps/services/bluetooth/control

22 Copyright © 2014, QNX Software Systems Limited

Device Management

Removing a paired device

When a device is deleted (i.e., the user taps DELETE in the Bluetooth Connectivity

control in the Settings screen), the HMI publishes a remove_device command

containing the device's MAC address in the data parameter to the /pps/ser

vices/bluetooth/control object, which is read by pps-bluetooth. This service

then issues an IOBT_BTMGR_REMOVEDEVICE event to the Bluetooth manager (io-

bluetooth) and also publishes a status update to the /pps/services/blue

tooth/status object.

The /pps/services/bluetooth/paired_devices/ directory stores a PPS object

for each successfully paired device. When a device is removed, its object (named after

its MAC address) is deleted from this directory.

Copyright © 2014, QNX Software Systems Limited 23

Removing a paired device

Getting device information

The io-bluetooth manager publishes status information for Bluetooth devices to

the following PPS objects:

Contains:This PPS object:

Status of messages per account_id from the MAP database./pps/services/bluetooth/messages/noti

fication

The results of commands sent to the /pps/services/blue

tooth/messages/control object.

/pps/services/bluetooth/messages/sta

tus

For each paired device, the profile services available, COD, etc./pps/services/bluetooth/paired_de

vices/<mac_addr>

The profiles used for a connected device./pps/services/bluetooth/services

MAC address, state, and status info for devices connecting via

PBAP.

/pps/services/bluetooth/phonebook/sta

tus

For each discovered device, the profile services available, COD,

etc.

/pps/services/bluetooth/remote_de

vices/<mac_addr>

Stack info, such as active connections, MAC address of the

local Bluetooth chip, etc.

/pps/services/bluetooth/settings

Events in response to commands sent to the /pps/ser

vices/bluetooth/control object.

/pps/services/bluetooth/status

The results of commands sent to the /pps/services/blue

tooth/handsfree/control object.

/pps/services/bluetooth/handsfree/sta

tus

24 Copyright © 2014, QNX Software Systems Limited

Device Management

Chapter 4
Bluetooth Profiles

A Bluetooth connection can be initiated either by the vehicle's head unit or by a mobile

device. For each requested connection, you must select a Bluetooth profile based on

which operations you want to perform.

After the connection has been established, the system creates PPS objects that io-

bluetooth uses to manage the connection according to the permissions and other

parameters in the selected profile.

The QNX CAR platform currently supports these profiles:

• HFP v1.4 (for making handsfree calls on connected devices)

• MAP v1.3.1 (for accessing email and text messages on devices)

• PBAP v1.4.1 (for accessing contact information on devices)

• SPP v1.1 (for exchanging raw data between the head unit and devices)

• A2DP/AVRCP v1.3 (for playing media)

Profile architecture

The following diagram shows the components involved with the operation of the HFP,

PBAP, and MAP profiles. Each of these profiles has a control object to accept

commands from HMI apps as well as a status object to report command results and

the state of the Bluetooth service. The profiles run within io-bluetooth, which

subscribes to the control objects and publishes to the status and notification objects.

Only the MAP profile uses a notification object, which stores information on messages

received.

The PBAP and MAP profiles modify information in their QDB databases, which the

HMI can read. Here, the term modify refers to the SQL operations of CREATE, INSERT,

UPDATE, and DELETE.

Copyright © 2014, QNX Software Systems Limited 25

publish

subscribe

modify

read write

pps/services/
bluetooth/
<profile>/
notification

pps/services/
bluetooth/
<profile>/
status

HMI

BTMGR
profile

QDB

io-bluetooth

HFP

PBAP

MAP

pps/services/
bluetooth/
<profile>/
control

Figure 3: The components involved with the operation of the HFP, PBAP, and MAP

profiles

The SPP and AVRCP profiles don't follow the same design of using separate

PPS objects for accepting commands and for reporting their outcomes. Apps

that need to stream data over SPP may choose to use PPS. For example, the

pps-spp service, which supports HTML5 applications that need to access

Bluetooth SPP data, uses the /pps/services/bluetooth/spp/spp

object. AVRCP is controlled through a C API and doesn't directly use PPS

objects. See the descriptions of these two profiles for information on how they

interact with other components.

26 Copyright © 2014, QNX Software Systems Limited

Bluetooth Profiles

Hands-Free Profile (HFP)

HFP allows the car head unit to communicate with mobile phones in the car.

Connecting

To connect via HFP, simply send the connect_service command with the MAC

address as the data parameter and the profile number (0x111E) as data2 to the

/pps/services/bluetooth/control object. For example:

echo "command::connect_service\n
 data::BA:C3:32:AD:55:CC\n
 data2::0x111E" >>
 /pps/services/bluetooth/control

In response to commands sent to the control object, the Bluetooth Manager publishes

appropriate events (e.g., BTMGR_EVENT_CONNECT_ALL_SUCCESS) in the

/pps/services/bluetooth/status object.

Using HFP

With the HFP profile, you can initiate a call, accept an incoming call, or terminate an

active call.

To perform any of these actions, you must write the appropriate command (e.g.,

HFP_CALL) to the /pps/services/bluetooth/handsfree/control object.

Our HFP implementation supports only one call at a

time.

Reading HFP status

You can read the /pps/services/handsfree/status object to learn the outcome

of the last HFP command and the call state of the paired mobile device. This last field

tells you if the device's phone line is idle or in use and if a call is on hold, being

initialized, or already connected.

Disconnecting

To disconnect, simply send the disconnect_service command using the same

parameters you used to connect. For example:

echo "command::disconnect_service\n
 data::BA:C3:32:AD:55:CC\n
 data2::0x111E" >>
 /pps/services/bluetooth/control

Copyright © 2014, QNX Software Systems Limited 27

Hands-Free Profile (HFP)

Message Access Profile (MAP)

MAP supports the exchange of messages between paired devices.

The MAP profile allows you to read the SMS, MMS, and email content on a connected

mobile device from the head unit. For a mobile device (e.g., a smartphone), two

accounts are typically available:

• a single aggregated SMS/MMS account tied to the device's phone number

• a corporate/personal email account

Each of these accounts will be entered into the accounts table of the messages

database. Note that you'll need to reference the account_id when making any requests.

Connecting

To connect via MAP, simply send the connect_service command with the MAC

address as the data parameter and the profile number (0x1134) as data2 to the

/pps/services/bluetooth/control object. For example:

echo "command::connect_service\n
 data::BA:C3:32:AD:55:CC\n
 data2::0x1134" >>
 /pps/services/bluetooth/control

In response to commands sent to the control object, the Bluetooth Manager publishes

appropriate events (e.g., BTMGR_EVENT_CONNECT_ALL_SUCCESS) in the

/pps/services/bluetooth/status object.

Using MAP

The MAP profile allows you to browse an account's folder. You can view the messages

listed and fetch the one you want.

Our MAP implementation currently has these limitations:

• You can't send messages

• You can sync only the default mail folders, not any nested

folders

• You can sync only 100 messages per folder per account

You can also mark messages as read or unread or you can delete them.

To perform any of these actions, you must write the appropriate command to the

/pps/services/bluetooth/messages/control object.

28 Copyright © 2014, QNX Software Systems Limited

Bluetooth Profiles

Monitoring messaging activity

Besides browsing an account's folder, you can read the /pps/services/blue

tooth/messages/notification object to know when a new message is received,

when a message is deleted, when a message is moved to a different folder, and other

details.

Reading MAP status

You can read the /pps/services/bluetooth/messages/status object to learn

the paired device's connection state and the profile's command-processing status (i.e.,

whether a command is currently being processed and the outcome of the last MAP

command).

Automated initiator

An automated initiator program (bluetooth-map-initiator) will sync the MAP

profile before its state will transition to connected. For each email account, the

initiator will sync the first 100 messages from these folders:

• inbox

• outbox

• deleted

• sent

Disconnecting

To disconnect, simply send the disconnect_service command using the same

parameters you used to connect. For example:

echo "command::disconnect_service\n
 data::BA:C3:32:AD:55:CC\n
 data2::0x1134" >>
 /pps/services/bluetooth/control

Copyright © 2014, QNX Software Systems Limited 29

Message Access Profile (MAP)

Phone Book Access Profile (PBAP)

PBAP supports the exchange of Phone Book Objects between devices.

The PBAP profile allows you to sync the contact information on the remote device with

the head unit's Bluetooth system. PBAP automatically downloads the call history (log

of incoming calls, outgoing calls, and missed calls) when the mobile phone is first

connected.

Connecting

To connect via PBAP, simply send the connect_service command with the MAC

address as the data parameter and the profile number (0x1130) as data2 to the

/pps/services/bluetooth/control object. For example:

echo "command::connect_service\n
 data::BA:C3:32:AD:55:CC\n
 data2::0x1130" >>
 /pps/services/bluetooth/control

In response to commands sent to the control object, the Bluetooth Manager publishes

appropriate events (e.g., BTMGR_EVENT_CONNECT_ALL_SUCCESS) in the

/pps/services/bluetooth/status object.

Using PBAP

The profile allows you to send it one command: SYNC_START. This command will

erase the database and repopulate it with fresh data received from the device.

To perform this action, you must write the command to the /pps/services/blue

tooth/phonebook/control object.

Reading PBAP status

You can read the /pps/services/bluetooth/phonebook/status object to

know whether a particular device is connected, whether any error occurred during a

connection attempt, and so on.

PBAP interactions

The following diagram shows the interactions involving the HMI, PPS, and PBAP:

30 Copyright © 2014, QNX Software Systems Limited

Bluetooth Profiles

HMI

PPS object information

Initialize PPS object

Repeats at any time.

/pps/services/bluetooth/phonebook
@control
-command::
@status
-state::
@status
-state::
-status::
-device::

PBAP

state = DISCONNECTED, device = NULL

Repeats on device
connection changes.

state = CONNECTED, device = [MAC]

status = SYNC_START

status = SYNC_COMPLETE

SYNC_COMPLETE

SYNC_FAILED

SYNC_START

sync

Figure 4: Typical PPS message exchange between the HMI and the PBAP profile

Automated initiator

An automated initiator program (bluetooth-pbap-initiator) will sync the PBAP

profile before its state will transition to connected.

Disconnecting

To disconnect, simply send the disconnect_service command using the same

parameters you used to connect. For example:

echo "command::disconnect_service\n
 data::BA:C3:32:AD:55:CC\n
 data2::0x1130" >>
 /pps/services/bluetooth/control

Copyright © 2014, QNX Software Systems Limited 31

Phone Book Access Profile (PBAP)

Serial Port Profile (SPP)

SPP emulates an RS-232 serial connection, thereby supporting raw binary

communication between two Bluetooth devices.

Connecting

To connect via SPP, simply send the connect_service command with the MAC

address as the data parameter and the profile number (0x1101) along with the UUID

of the SPP server you wish to connect to as data2 to the /pps/services/blue

tooth/control object. For example:

echo "command::connect_service\n
 data::BA:C3:32:AD:55:CC\n
 data2::0x1101:5DF26DC6-8E42-8401-6D98-75C100B108B1" >>
 /pps/services/bluetooth/control

Using SPP

When reading from and writing to the remote device, see the following files for file

descriptors:

/dev/io-bluetooth/spp/UUID/stdin

/dev/io-bluetooth/spp/UUID/stdout

You can use regular filesystem read/write facilities to read from or write to these mount

paths. So if you're connected to SPP, you can use commands such as cat for reading

or echo for writing to these paths as a way to get and send data from an SPP-connected

phone.

Disconnecting

To disconnect, simply send the disconnect_service command using the same

parameters you used to connect. For example:

echo "command::disconnect_service\n
 data::BA:C3:32:AD:55:CC\n
 data2::0x1101:5DF26DC6-8E42-8401-6D98-75C100B108B1" >>
 /pps/services/bluetooth/control

32 Copyright © 2014, QNX Software Systems Limited

Bluetooth Profiles

Advanced Audio Distribution Profile / Audio/Video Remote Control Profile
(A2DP/AVRCP)

AVCRP allows the head unit to control media playback on connected devices.

The AVRCP profile is used with the Advanced Audio Distribution Profile (A2DP) profile,

which supports streaming of high-quality audio, in mono and stereo, from a mobile

device to the head unit.

Architecture

The following diagram shows the components involved with the operation of the AVRCP

profile.

Hardware

Software

Sound card
Bluetooth

io-audiomm-renderer

/1
/2

/dev/io-bluetooth/avrcp/mmr/0

/1
/2

/dev/io-bluetooth/avrcp/0

/dev/name/local/avrcp-mmplayer-plugin-server

mm-playermmp-avrcp.soio-bluetooth AVRCP

HMI

devc-seromap-hci

Figure 5: The components involved with the operation of the AVRCP profile

The AVRCP profile writes playback status updates to /dev/name/local/avrcp-

mmplayer-plugin-server, creates the pathnames for the media player devices

(/dev/io-bluetooth/avrcp/#, where # is an integer), and then monitors these

entries for new playback commands. It also writes the audio data read from the

Bluetooth hardware and devc-seromap_hci serial driver to the audio data device

entries (/dev/io-bluetooth/avrcp/mmr/#, where # is an integer).

The mmp-avrcp.so plugin supports AVRCP. The mm-player service uses this plugin

to forward playback commands, issued by the user in the HMI, to the appropriate

media player device path and to mm-renderer. This last service reads media streams

through the audio data device entries and then sends these streams to io-audio,

which outputs the audio through hardware. The plugin also reads status information

from the avrcp-mmplayer-plugin-server device entry and updates the HMI

with this information as needed.

Copyright © 2014, QNX Software Systems Limited 33

Advanced Audio Distribution Profile / Audio/Video Remote Control Profile (A2DP/AVRCP)

Connecting

To connect via A2DP/AVRCP, simply send the connect_service command with

the MAC address as the data parameter and the profile number (0x110B) as data2

to the /pps/services/bluetooth/control object. For example:

echo "command::connect_service\n
 data::BA:C3:32:AD:55:CC\n
 data2::0x110B" >>
 /pps/services/bluetooth/control

In response to commands sent to the control object, the Bluetooth Manager publishes

appropriate events (e.g., BTMGR_EVENT_CONNECT_ALL_SUCCESS) in the

/pps/services/bluetooth/status object.

A2DP/AVRCP works only with the mm-player media service; it doesn't work

with the legacy mm-control service.

Disconnecting

To disconnect, simply send the disconnect_service command using the same

parameters you used to connect. For example:

echo "command::disconnect_service\n
 data::BA:C3:32:AD:55:CC\n
 data2::0x110B" >>
 /pps/services/bluetooth/control

34 Copyright © 2014, QNX Software Systems Limited

Bluetooth Profiles

Chapter 5
Bluetooth Databases

The QNX CAR platform uses the following Bluetooth databases:

DescriptionStorage file

Core database—contains authentication

data for connecting to devices.

bluetoothdb.db

Phonebook database—contains

PBAP-specific data.

phonebook.db

Messages database—contains

MAP-specific data.

messages.db

Each Bluetooth database has a raw SQLite storage file (.db) and a schema file (.sql)

that defines the schema for creating the database. The phonebook and messages

databases each have an additional .sql file that populates the database with initial

data.

Database backups

The system keeps two backup copies of the core database (bluetoothdb.db) in

these directories:

• /var/db/backup/

• /var/db/backup2/

A backup is made whenever a device is paired or connected. Each backup overwrites

the older of the two existing backup files. This policy ensures that if the system crashes

after many devices have been paired, none of these devices will have to be paired

again when the system reboots because their authentication data can be recovered

from the backups.

Copyright © 2014, QNX Software Systems Limited 35

Core database

The core database contains all the authentication information needed to connect or

reconnect to a device.

ER diagram

The following entity-relationship (ER) diagram shows the relationships among the

tables in the core database:

bluetooth_devices

deviceid

address
cod
nameFound
name
call
media
pim
message
network

INTEGER

TEXT
INTEGER
INTEGER
TEXT
BLOB
BLOB
BLOB
BLOB
BLOB

PK

bluetooth_general

recordid

record_type
address
data

INTEGER

INTEGER
TEXT
BLOB

PK

Figure 6: ER diagram for core database

Sample schema file

The database schema is specified in /db/bluetoothdb.sql, which looks like this:

CREATE TABLE bluetooth_general(
 recordid INTEGER PRIMARY KEY AUTOINCREMENT,
 record_type INTEGER,
 address TEXT,
 data BLOB
);

CREATE TABLE bluetooth_devices(
 deviceid INTEGER PRIMARY KEY AUTOINCREMENT,
 address TEXT,
 cod INTEGER,
 nameFound INTEGER,
 name TEXT,
 call BLOB,
 media BLOB,
 pim BLOB,
 message BLOB,
 network BLOB
);

36 Copyright © 2014, QNX Software Systems Limited

Bluetooth Databases

Phonebook database

The phonebook database contains all the PBAP-specific data.

ER diagram

The following entity-relationship (ER) diagram shows the relationships among the

tables in the phonebook database:

contacts

PK contact _id INTEGER

version TEXT
fn TEXT
family _name TEXT
given _name TEXT
additional_names TEXT
honorific_prefixes TEXT
honorific_suffixes TEXT
bday TEXT
geo_lat REAL
geo_long REAL
mailer TEXT
tz TEXT
title TEXT
role TEXT
org TEXT
note TEXT
rev TEXT
url TEXT
uid TEXT
prod_id TEXT
class TEXT
sort_string TEXT

photos

PK photo _id INTEGER

FK1 contact _id INTEGER
photo_data BLOB
photo_uri TEXT
encoding _type TEXT
image_media_type TEXT

emails

PK email _id INTEGER

FK1 contact _id INTEGER
email TEXT

emails_types_rel

PK,FK1 email _id INTEGER
PK,FK2 email _type _id INTEGER

email_types

PK email _type _id INTEGER

type TEXT

telephone_numbers

PK telephone _number _id INTEGER

FK1 contact _id INTEGER
number TEXT

telephone_numbers_types_rel

PK,FK1 telephone _number _id INTEGER
PK,FK2 telephone _number _type _id INTEGER

telephone_number_types

PK telephone _number _type _id INTEGER

type TEXT

addresses

PK address _id INTEGER

FK1 contact _id INTEGER
post_office_box TEXT
extended_address TEXT
street_address TEXT
locality TEXT
region TEXT
postal_code TEXT
country_name TEXT

addresses_types_rel

PK,FK1 address _id INTEGER
PK,FK2 address _type _id INTEGER

address_types

PK address _type _id INTEGER

type TEXT

nicknames

PK nickname _id INTEGER

FK1 contact _id INTEGER
nickname TEXT

categories

PK category _id INTEGER

FK1 contact _id INTEGER
category TEXT

calls

PK call _id INTEGER

FK1 contact_id INTEGER
FK2 call _type_id INTEGER

fn TEXT
number TEXT
time TEXT
duration INTEGER

call_types

PK call _type _id INTEGER

type TEXT

Figure 7: ER diagram for phonebook database

Copyright © 2014, QNX Software Systems Limited 37

Phonebook database

Sample schema file

The database schema is specified in /db/phonebook.sql, which looks like this:

/* Turn foreign key constraints on */
PRAGMA foreign_keys = ON;

/* Contacts */
CREATE TABLE contacts (
 contact_id INTEGER PRIMARY KEY AUTOINCREMENT,
 version TEXT NOT NULL,
 fn TEXT NOT NULL,
 family_name TEXT NOT NULL,
 given_name TEXT NOT NULL,
 additional_names TEXT,
 honorific_prefixes TEXT,
 honorific_suffixes TEXT,
 sort_string TEXT,
 bday TEXT,
 geo_lat REAL,
 geo_long REAL,
 mailer TEXT,
 tz TEXT,
 title TEXT,
 role TEXT,
 org TEXT,
 note TEXT,
 rev TEXT,
 url TEXT,
 uid TEXT,
 prod_id TEXT,
 class TEXT
);

/* Emails */
CREATE TABLE emails (
 email_id INTEGER PRIMARY KEY AUTOINCREMENT,
 contact_id INTEGER NOT NULL REFERENCES contacts ON DELETE CASCADE,
 email TEXT NOT NULL
);

CREATE TABLE email_types (
 email_type_id INTEGER PRIMARY KEY AUTOINCREMENT,
 type TEXT NOT NULL UNIQUE
);

CREATE TABLE emails_types_rel (
 email_id INTEGER NOT NULL REFERENCES emails ON DELETE CASCADE,
 email_type_id INTEGER NOT NULL REFERENCES email_types
);

/* Telephone numbers */
CREATE TABLE telephone_numbers (
 telephone_number_id INTEGER PRIMARY KEY AUTOINCREMENT,
 contact_id INTEGER NOT NULL REFERENCES contacts ON DELETE CASCADE,
 number TEXT NOT NULL
);

CREATE TABLE telephone_number_types (
 telephone_number_type_id INTEGER PRIMARY KEY AUTOINCREMENT,
 type TEXT NOT NULL UNIQUE
);

CREATE TABLE telephone_numbers_types_rel (
 telephone_number_id INTEGER NOT NULL REFERENCES telephone_numbers ON DELETE CASCADE,
 telephone_number_type_id INTEGER NOT NULL REFERENCES telephone_number_types

38 Copyright © 2014, QNX Software Systems Limited

Bluetooth Databases

);

/* Addresses */
CREATE TABLE addresses (
 address_id INTEGER PRIMARY KEY AUTOINCREMENT,
 contact_id INTEGER NOT NULL REFERENCES contacts ON DELETE CASCADE,
 post_office_box TEXT,
 extended_address TEXT,
 street_address TEXT,
 locality TEXT,
 region TEXT,
 postal_code TEXT,
 country_name TEXT
);

CREATE TABLE address_types (
 address_type_id INTEGER PRIMARY KEY AUTOINCREMENT,
 type TEXT NOT NULL UNIQUE
);

CREATE TABLE addresses_types_rel (
 address_id INTEGER NOT NULL REFERENCES addresses ON DELETE CASCADE,
 address_type_id INTEGER NOT NULL REFERENCES address_types
);

/* Nicknames */
CREATE TABLE nicknames (
 nickname_id INTEGER PRIMARY KEY AUTOINCREMENT,
 contact_id INTEGER NOT NULL REFERENCES contacts ON DELETE CASCADE,
 nickname TEXT NOT NULL
);

/* Categories */
CREATE TABLE categories (
 category_id INTEGER PRIMARY KEY AUTOINCREMENT,
 contact_id INTEGER NOT NULL REFERENCES contacts ON DELETE CASCADE,
 category TEXT NOT NULL
);

/* Photos */
CREATE TABLE photos (
 photo_id INTEGER PRIMARY KEY AUTOINCREMENT,
 contact_id INTEGER NOT NULL REFERENCES contacts ON DELETE CASCADE,
 photo_data BLOB,
 photo_uri TEXT,
 encoding_type TEXT,
 image_media_type TEXT
);

/* Call Log */
CREATE TABLE calls (
 call_id INTEGER PRIMARY KEY AUTOINCREMENT,
 contact_id INTEGER REFERENCES contacts ON DELETE SET NULL,
 call_type_id INTEGER NOT NULL REFERENCES call_types,
 fn TEXT,
 number TEXT,
 time TEXT NOT NULL,
 duration INTEGER
);

CREATE TABLE call_types (
 call_type_id INTEGER PRIMARY KEY AUTOINCREMENT,
 type TEXT
);

Copyright © 2014, QNX Software Systems Limited 39

Phonebook database

/********
 VIEWS
********/
CREATE VIEW emails_view AS
SELECT
 emails.email_id,
 emails.contact_id,
 emails.email,
 MAX(CASE WHEN email_types.type = 'PREF' THEN 1 ELSE 0 END) AS pref,
 MAX(CASE WHEN email_types.type = 'INTERNET' THEN 1 ELSE 0 END) AS internet
FROM emails
LEFT JOIN emails_types_rel ON emails.email_id = emails_types_rel.email_id
LEFT JOIN email_types ON emails_types_rel.email_type_id = email_types.email_type_id
GROUP BY emails.email_id
ORDER BY pref DESC, emails.email_id DESC;

CREATE VIEW telephone_numbers_view AS
SELECT
 telephone_numbers.telephone_number_id,
 telephone_numbers.contact_id,
 telephone_numbers.number,
 MAX(CASE WHEN telephone_number_types.type = 'PREF' THEN 1 ELSE 0 END) AS pref,
 MAX(CASE WHEN telephone_number_types.type = 'HOME' THEN 1 ELSE 0 END) AS home,
 MAX(CASE WHEN telephone_number_types.type = 'WORK' THEN 1 ELSE 0 END) AS work,
 MAX(CASE WHEN telephone_number_types.type = 'VOICE' THEN 1 ELSE 0 END) AS voice,
 MAX(CASE WHEN telephone_number_types.type = 'FAX' THEN 1 ELSE 0 END) AS fax,
 MAX(CASE WHEN telephone_number_types.type = 'MSG' THEN 1 ELSE 0 END) AS msg,
 MAX(CASE WHEN telephone_number_types.type = 'CELL' THEN 1 ELSE 0 END) AS cell,
 MAX(CASE WHEN telephone_number_types.type = 'PAGER' THEN 1 ELSE 0 END) AS pager,
 MAX(CASE WHEN telephone_number_types.type = 'BBS' THEN 1 ELSE 0 END) AS bbs,
 MAX(CASE WHEN telephone_number_types.type = 'MODEM' THEN 1 ELSE 0 END) AS modem,
 MAX(CASE WHEN telephone_number_types.type = 'CAR' THEN 1 ELSE 0 END) AS car,
 MAX(CASE WHEN telephone_number_types.type = 'ISDN' THEN 1 ELSE 0 END) AS isdn,
 MAX(CASE WHEN telephone_number_types.type = 'VIDEO' THEN 1 ELSE 0 END) AS video
FROM telephone_numbers
LEFT JOIN telephone_numbers_types_rel ON telephone_numbers.telephone_number_id
 = telephone_numbers_types_rel.telephone_number_id
LEFT JOIN telephone_number_types ON telephone_numbers_types_rel.telephone_number_type_id
 = telephone_number_types.telephone_number_type_id
GROUP BY telephone_numbers.telephone_number_id
ORDER BY pref DESC, telephone_numbers.telephone_number_id DESC;

CREATE VIEW addresses_view AS
SELECT
 addresses.address_id,
 addresses.contact_id,
 addresses.post_office_box,
 addresses.extended_address,
 addresses.street_address,
 addresses.locality,
 addresses.region,
 addresses.postal_code,
 addresses.country_name,
 MAX(CASE WHEN address_types.type = 'PREF' THEN 1 ELSE 0 END) AS pref,
 MAX(CASE WHEN address_types.type = 'HOME' THEN 1 ELSE 0 END) AS home,
 MAX(CASE WHEN address_types.type = 'WORK' THEN 1 ELSE 0 END) AS work,
 MAX(CASE WHEN address_types.type = 'DOM' THEN 1 ELSE 0 END) AS dom,
 MAX(CASE WHEN address_types.type = 'INTL' THEN 1 ELSE 0 END) AS intl,
 MAX(CASE WHEN address_types.type = 'POSTAL' THEN 1 ELSE 0 END) AS postal,
 MAX(CASE WHEN address_types.type = 'PARCEL' THEN 1 ELSE 0 END) AS parcel
FROM addresses
LEFT JOIN addresses_types_rel ON addresses.address_id
 = addresses_types_rel.address_id
LEFT JOIN address_types ON addresses_types_rel.address_type_id
 = address_types.address_type_id
GROUP BY addresses.address_id
ORDER BY pref DESC, addresses.address_id DESC;

40 Copyright © 2014, QNX Software Systems Limited

Bluetooth Databases

CREATE VIEW contacts_view AS
SELECT
 contacts.contact_id,
 contacts.honorific_prefixes AS title,
 contacts.family_name AS last_name,
 contacts.given_name AS first_name,
 contacts.bday AS birthday,
 NULL AS anniversary,
 contacts.org AS company,
 contacts.title AS job_title,
 home_phone_1.number as home_phone,
 home_phone_2.number as home_phone_2,
 work_phone_1.number as work_phone,
 work_phone_2.number as work_phone_2,
 mobile_phone.number as mobile_phone,
 pager_phone.number as pager_phone,
 fax_phone.number as fax_phone,
 other_phone.number as other_phone,
 email_1.email AS email_1,
 email_2.email AS email_2,
 email_3.email AS email_3,
 home_address.street_address AS home_address_1,
 home_address.extended_address AS home_address_2,
 home_address.locality AS home_address_city,
 home_address.country_name AS home_address_country,
 home_address.region AS home_address_state_province,
 home_address.postal_code AS home_address_zip_postal,
 work_address.street_address AS work_address_1,
 work_address.extended_address AS work_address_2,
 work_address.locality AS work_address_city,
 work_address.country_name AS work_address_country,
 work_address.region AS work_address_state_province,
 work_address.postal_code AS work_address_zip_postal,
 photos.photo_uri AS picture,
 NULL AS pin,
 contacts.uid AS uid,
 contacts.url AS web_page,
 (SELECT GROUP_CONCAT(categories.category) FROM categories
 WHERE categories.contact_id = contacts.contact_id) AS categories,
 contacts.note AS note,
 NULL AS user1,
 NULL AS user2,
 NULL AS user3,
 NULL AS user4
from contacts
LEFT JOIN telephone_numbers_view home_phone_1 ON contacts.contact_id
 = home_phone_1.contact_id AND home_phone_1.home = 1
LEFT JOIN telephone_numbers_view home_phone_2 ON contacts.contact_id
 = home_phone_2.contact_id AND home_phone_2.home = 1
 AND home_phone_2.telephone_number_id <> home_phone_1.telephone_number_id
LEFT JOIN telephone_numbers_view work_phone_1 ON contacts.contact_id
 = work_phone_1.contact_id AND work_phone_1.work= 1
LEFT JOIN telephone_numbers_view work_phone_2 ON contacts.contact_id
 = work_phone_2.contact_id AND work_phone_2.work = 1
 AND work_phone_2.telephone_number_id <> work_phone_1.telephone_number_id
LEFT JOIN telephone_numbers_view mobile_phone ON contacts.contact_id
 = mobile_phone.contact_id AND mobile_phone.cell = 1
LEFT JOIN telephone_numbers_view pager_phone ON contacts.contact_id
 = pager_phone.contact_id AND pager_phone.pager = 1
LEFT JOIN telephone_numbers_view fax_phone ON contacts.contact_id
 = fax_phone.contact_id AND fax_phone.fax = 1
LEFT JOIN telephone_numbers_view other_phone ON contacts.contact_id
 = other_phone.contact_id
 AND other_phone.telephone_number_id NOT IN(
 COALESCE(home_phone_1.telephone_number_id, 0),
 COALESCE(home_phone_2.telephone_number_id, 0),

Copyright © 2014, QNX Software Systems Limited 41

Phonebook database

 COALESCE(work_phone_1.telephone_number_id, 0),
 COALESCE(work_phone_2.telephone_number_id, 0),
 COALESCE(mobile_phone.telephone_number_id, 0),
 COALESCE(pager_phone.telephone_number_id, 0),
 COALESCE(fax_phone.telephone_number_id, 0))
LEFT JOIN emails_view email_1 ON contacts.contact_id = email_1.contact_id
LEFT JOIN emails_view email_2 ON contacts.contact_id = email_2.contact_id
 AND email_2.email_id <> email_1.email_id
LEFT JOIN emails_view email_3 ON contacts.contact_id = email_3.contact_id
 AND email_3.email_id <> email_1.email_id AND email_3.email_id <> email_2.email_id
LEFT JOIN addresses_view home_address ON contacts.contact_id
 = home_address.contact_id AND home_address.home = 1
LEFT JOIN addresses_view work_address ON contacts.contact_id
 = work_address.contact_id AND work_address.work = 1
LEFT JOIN photos ON contacts.contact_id = photos.contact_id
WHERE 0=0
AND (CASE WHEN home_phone_2.telephone_number_id IS NOT NULL
 THEN home_phone_1.pref >= home_phone_2.pref ELSE 1 END)
AND (CASE WHEN work_phone_2.telephone_number_id IS NOT NULL
 THEN work_phone_1.pref >= work_phone_2.pref ELSE 1 END)
AND (CASE WHEN email_2.email_id IS NOT NULL THEN email_1.pref >= email_2.pref ELSE 1 END)
AND (CASE WHEN email_3.email_id IS NOT NULL THEN email_1.pref >= email_3.pref ELSE 1 END)
GROUP BY contacts.contact_id
ORDER BY LOWER(last_name) ASC, LOWER(first_name) ASC;

42 Copyright © 2014, QNX Software Systems Limited

Bluetooth Databases

Messages database

The messages database contains all the MAP-specific data.

ER diagram

The following entity-relationship (ER) diagram shows the relationships among the

tables in the messages database:

message_contents

message_content_id

message_id
subject
body_html
body_plain_text

INTEGER

INTEGER
TEXT
TEXT
TEXT

PK

messages

message_id

message_type_id
folder_id
handle
subject
datetime
sender_contact_id
reply_to_contact_id
read
sent
protected
priority

INTEGER

INTEGER
INTEGER
TEXT
TEXT
TEXT
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

PK

attachments

attachment_id

message_id
filename
size
embedded

INTEGER

INTEGER
TEXT
INTEGER
BOOLEAN

PK

message_recipients

message_recipient_id

message_id
contact_id
message_recipient_type_id

INTEGER

INTEGER
INTEGER
INTEGER

PK

accounts_message_types_rel

account_id

message_type_id

INTEGER

INTEGER

PK

PK

message_recipient_types

message_recipient_type_id

type

INTEGER

TEXT

PK

contacts

contact_id

email
number
family_name
given_name

INTEGER

TEXT
TEXT
TEXT
TEXT

PK

folders

folder_id

parent_id
account_id
name
path

INTEGER

INTEGER
INTEGER
TEXT
TEXT

PK

accounts

account_id

name
active

INTEGER

TEXT
BOOLEAN

PK

message_types

message_type_id

type

INTEGER

TEXT

PK

Figure 8: ER diagram for messages database

Sample schema file

The database schema is specified in /db/messages.sql, which looks like this:

/* Turn foreign key constraints on */

Copyright © 2014, QNX Software Systems Limited 43

Messages database

PRAGMA foreign_keys = ON;

/* Message types */
CREATE TABLE message_types (
 message_type_id INTEGER PRIMARY KEY AUTOINCREMENT,
 type TEXT NOT NULL UNIQUE
);

/* Accounts/Instances */
CREATE TABLE accounts (
 account_id INTEGER PRIMARY KEY,
 name TEXT NOT NULL UNIQUE,
 active BOOLEAN NOT NULL
);

/* Accounts/Instances */
CREATE TABLE accounts_message_types_rel (
 account_id INTEGER NOT NULL REFERENCES accounts ON DELETE CASCADE,
 message_type_id INTEGER NOT NULL REFERENCES message_types,
 PRIMARY KEY (account_id, message_type_id)
);

/* Folders */
CREATE TABLE folders (
 folder_id INTEGER PRIMARY KEY AUTOINCREMENT,
 parent_id INTEGER REFERENCES folders ON DELETE CASCADE,
 account_id INTEGER NOT NULL REFERENCES accounts ON DELETE CASCADE,
 name TEXT NOT NULL,
 path TEXT NOT NULL,
 CHECK (parent_id <> folder_id)
);

/* Messages (all types: email, sms, mms) */
CREATE TABLE messages (
 message_id INTEGER PRIMARY KEY AUTOINCREMENT,
 message_type_id INTEGER NOT NULL REFERENCES message_types,
 folder_id INTEGER NOT NULL REFERENCES folders ON DELETE CASCADE,
 handle TEXT NOT NULL,
 subject TEXT NOT NULL,
 datetime TEXT NOT NULL,
 sender_contact_id INTEGER NOT NULL REFERENCES contacts(contact_id),
 reply_to_contact_id INTEGER REFERENCES contacts(contact_id),
 read INTEGER NOT NULL DEFAULT 0,
 sent INTEGER NOT NULL DEFAULT 0,
 protected INTEGER NOT NULL DEFAULT 0,
 priority INTEGER NOT NULL DEFAULT 0,
 CHECK (read = 0 OR read = 1),
 CHECK (sent = 0 OR sent = 1),
 CHECK (protected = 0 OR protected = 1),
 CHECK (priority = 0 OR priority = 1)
);

/* Contacts (senders/recipients) */
CREATE TABLE contacts (
 contact_id INTEGER PRIMARY KEY AUTOINCREMENT,
 email TEXT,
 number TEXT,
 family_name TEXT,
 given_name TEXT,
 CHECK(email IS NOT NULL OR number IS NOT NULL)
);

/* Message contents */
CREATE TABLE message_contents (
 message_content_id INTEGER PRIMARY KEY AUTOINCREMENT,
 message_id INTEGER NOT NULL REFERENCES messages ON DELETE CASCADE,
 subject TEXT ,

44 Copyright © 2014, QNX Software Systems Limited

Bluetooth Databases

 body_html TEXT ,
 body_plain_text TEXT ,
 CHECK (body_html IS NOT NULL OR body_plain_text IS NOT NULL)
);

/* Message recipient types */
CREATE TABLE message_recipient_types (
 message_recipient_type_id INTEGER PRIMARY KEY AUTOINCREMENT,
 type TEXT NOT NULL UNIQUE
);

/* Message recipients */
CREATE TABLE message_recipients (
 message_recipient_id INTEGER PRIMARY KEY AUTOINCREMENT,
 message_id INTEGER NOT NULL REFERENCES messages ON DELETE CASCADE,
 contact_id INTEGER NOT NULL REFERENCES contacts,
 message_recipient_type_id INTEGER NOT NULL REFERENCES message_recipient_types
);

/* Attachments */
CREATE TABLE attachments (
 attachment_id INTEGER PRIMARY KEY AUTOINCREMENT,
 message_id INTEGER NOT NULL REFERENCES messages ON DELETE CASCADE,
 filename TEXT NOT NULL,
 size INTEGER NOT NULL,
 embedded BOOLEAN NOT NULL
);

/**
 VIEWS
 */

 /* View to retrieve a list of brief messages */
 CREATE VIEW "messages_view" AS
 SELECT
 accounts.account_id,
 accounts.name as account_name,
 messages.message_id,
 messages.folder_id,
 folders.name as folder_name,
 folders.path as folder_path,
 message_types.type,
 messages.handle,
 messages.subject,
 messages.datetime,
 messages.sender_contact_id,
 contacts_sender.email as sender_email,
 contacts_sender.number as sender_number,
 contacts_sender.family_name as sender_last_name,
 contacts_sender.given_name as sender_first_name,
 messages.reply_to_contact_id,
 contacts_reply.email as reply_to_email,
 contacts_reply.number as reply_to_number,
 contacts_reply.family_name as reply_to_last_name,
 contacts_reply.given_name as reply_to_first_name,
 messages.read,
 messages.sent,
 messages.protected,
 messages.priority,
 recipients.email as recipient_email,
 recipients.number as recipient_number,
 recipients.family_name as recipient_last_name,
 recipients.given_name as recipient_first_name
FROM messages
LEFT JOIN contacts contacts_sender ON messages.sender_contact_id
 = contacts_sender.contact_id
LEFT JOIN contacts contacts_reply ON messages.reply_to_contact_id

Copyright © 2014, QNX Software Systems Limited 45

Messages database

 = contacts_reply.contact_id
LEFT JOIN folders ON messages.folder_id = folders.folder_id
LEFT JOIN accounts ON folders.account_id = accounts.account_id
LEFT JOIN message_types ON messages.message_type_id
 = message_types.message_type_id
LEFT JOIN contacts recipients ON recipients.contact_id
 = (SELECT contact_id FROM message_recipients
 WHERE message_recipients.message_id = messages.message_id
 AND message_recipients.message_recipient_type_id
 = 1 ORDER BY message_recipients.message_recipient_id DESC LIMIT 1);

/* View to retrieve full messages */
CREATE VIEW "full_messages_view" AS
SELECT
 accounts.account_id,
 accounts.name as account_name,
 messages.message_id,
 messages.folder_id,
 folders.name as folder_name,
 folders.path as folder_path,
 message_types.type,
 messages.handle,
 messages.datetime,
 messages.sender_contact_id,
 contacts_sender.email as sender_email,
 contacts_sender.number as sender_number,
 contacts_sender.family_name as sender_last_name,
 contacts_sender.given_name as sender_first_name,
 messages.reply_to_contact_id,
 contacts_reply.email as reply_to_email,
 contacts_reply.number as reply_to_number,
 contacts_reply.family_name as reply_to_last_name,
 contacts_reply.given_name as reply_to_first_name,
 messages.read,
 messages.sent,
 messages.protected,
 messages.priority,
 COALESCE(message_contents.subject, messages.subject) as subject,
 message_contents.body_plain_text,
 message_contents.body_html
FROM messages
LEFT JOIN message_contents ON messages.message_id
 = message_contents.message_id
LEFT JOIN contacts contacts_sender ON messages.sender_contact_id
 = contacts_sender.contact_id
LEFT JOIN contacts contacts_reply ON messages.reply_to_contact_id
 = contacts_reply.contact_id
LEFT JOIN folders ON messages.folder_id = folders.folder_id
LEFT JOIN accounts ON folders.account_id = accounts.account_id
LEFT JOIN message_types ON messages.message_type_id
 = message_types.message_type_id
WHERE message_contents.message_content_id IS NOT NULL;

/* view to retrieve contacts */
CREATE VIEW "contacts_view" AS
select contacts.contact_id, contacts.email, contacts.number, contacts.family_name,
 contacts.given_name, message_recipient_types.type, message_recipients.message_id
 from message_recipients
LEFT JOIN message_recipient_types ON message_recipients.message_recipient_type_id
 = message_recipient_types. message_recipient_type_id
LEFT JOIN contacts ON message_recipients.contact_id = contacts.contact_id;

/*
 TRIGGERS
*/

46 Copyright © 2014, QNX Software Systems Limited

Bluetooth Databases

/* Constrain messages to be a message type that is of its parent account supported
 * message types */
/*
CREATE TRIGGER insert_message_check_message_type BEFORE INSERT ON messages
FOR EACH ROW WHEN NOT EXISTS (SELECT *
 FROM accounts_message_types_rel
 LEFT JOIN folders ON accounts_message_types_rel.account_id = folders.account_id
 LEFT JOIN messages ON folders.folder_id = new.folder_id
 WHERE new.message_type_id = accounts_message_types_rel.message_type_id)
BEGIN
 SELECT RAISE(ABORT,
 'Message type must be a supported message type of the message''s account');
END

CREATE TRIGGER insert_message_check_handle BEFORE INSERT ON messages
FOR EACH ROW WHEN (SELECT count(*) FROM messages JOIN folders
 ON messages.folder_id = folders.folder_id
 WHERE new.handle = messages.handle AND folders.account_id =
 (SELECT accounts.account_id FROM accounts JOIN folders
 ON accounts.account_id = folders.account_id
 WHERE folders.folder_id = new.folder_id)) > 0
BEGIN
 SELECT RAISE(ABORT, 'Handle must be unique per a message''s account');
END
*/

Copyright © 2014, QNX Software Systems Limited 47

Messages database

Index

A

A2DP, See AVRCP
accessibility levels 22
account_id 28
accounts 28
Advanced Audio Distribution Profile (A2DP), See AVRCP
Audio/Video Remote Control Profile (AVRCP) 33
AVRCP 33

B

Bluetooth 9, 11, 35
databases 35
resource manager (io-bluetooth) 9
starting 11

bluetooth-map-initiator 16, 29
command line 16

bluetooth-pbap-initiator 16, 31
command line 16

bluetoothdb.sql file 36
BTS file 9, 11, 16

chip-specific file required for other hardware 9
specifying for OMAP5432 board 11
specifying with io-bluetooth –s 16

C

call history 30
connect_service 27, 28, 30, 32, 34
connectable-only setting 22
contact information 30
core 36

database 36
ER diagram for database 36

core database 36

D

databases 35
backups 35
Bluetooth databases used by the QNX CAR platform 35
schema files 35
SQLite storage files 35

DELETE button (HMI) 23
devc-seromap_hci 10, 12

command-line options 12
device 21, 22, 23, 24

accessibility levels for 22
adding 21
removing 23
status information for 24

disconnect_service 27, 29, 31, 32, 34
discoverable 22

allowing devices to be 22

discoverable (continued)
preventing devices from becoming 22

discoverable-only setting 22

E

ER diagram 36, 37, 43
core database 36
messages database 43
phonebook database 37

events 21

F

file descriptors 32
SPP 32

H

Hands-Free Profile (HFP) 27
handsfree 27

PPS control object 27
PPS status object 27

I

io-bluetooth 9, 15
command-line options 15

M

Message Access Profile (MAP) 28
messages 28, 29, 43

database 43
ER diagram for database 43
initiator 29
limitations 28
PPS control object 28
PPS notification object 29
PPS status object 29
profile 28
syncing 29

messages.sql file 43

P

pairing 20
interactions 20

Phone Book Access Profile (PBAP) 30
interactions 30

phonebook 30, 37
database 37
ER diagram for database 37
PPS control object 30

Copyright © 2014, QNX Software Systems Limited 49

Bluetooth Architectural Overview and Configuration Guide

phonebook (continued)
PPS status object 30

phonebook.sql file 37
PPS 10, 24

Bluetooth-related objects 10, 24
interface (pps-bluetooth) 10

PPS Objects Reference 5
pps-bluetooth 12, 16, 20

command-line options 16
profile number (connect_service) 27, 28, 30, 32, 34

AVRCP 34
HFP 27
MAP 28
PBAP 30
SPP 32

S

serial driver 10, 15
path 15

Serial Port Profile (SPP) 32
set_access 22
Settings app 23
SYNC_START 30
syncing 29, 31

MAP 29
PBAP 31

System Launch and Monitor (SLM) 17
automating processes at startup 17

T

Technical support 8
Typographical conventions 6

W

WebWorks JavaScript Extensions 5

50 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Bluetooth Architecture
	Starting Bluetooth on the Target
	Device Management
	Pairing a device
	Removing a paired device
	Getting device information

	Bluetooth Profiles
	Hands-Free Profile (HFP)
	Message Access Profile (MAP)
	Phone Book Access Profile (PBAP)
	Serial Port Profile (SPP)
	Advanced Audio Distribution Profile / Audio/Video Remote Control Profile (A2DP/AVRCP)

	Bluetooth Databases
	Core database
	Phonebook database
	Messages database

	Index

