
QNX CAR™ Platform for Infotainment 2.1

QNX CAR™ Platform for Infotainment 2.1

Architecture Guide

©2012–2014, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of BlackBerry
Limited, which are registered and/or used in certain jurisdictions, and used
under license by QNX Software Systems Limited. All other trademarks belong
to their respective owners.

Electronic edition published: Tuesday, September 16, 2014

Table of Contents

About This Guide ...5
Typographical conventions ...6

Technical support ...8

Chapter 1: Top-Level Design ..9

Chapter 2: Common Mechanisms ..13

Chapter 3: Supported Boards ..15

Chapter 4: Ecosystem ...17

Chapter 5: Boot Time Optimization ..19

Chapter 6: Platform Layer ...21

QNX Neutrino RTOS ..22

Microkernel ..22

Instant Device Activation ..22

Networking ...22

Fault detection ..23

High Availability ..23

Adaptive Partitioning ...24

Resource manager framework ...24

OpenGL ES ..26

Software Update ...27

Chapter 7: Middleware Layer ...29

Multimedia ..30

Navigation ...33

Automatic Speech Recognition (ASR) ...35

ASR modules ..36

ASR and TTS integration ..39

Radio ..42

Rearview camera ..43

Mobile Device Gateway ..44

Android interfaces ...44

Bluetooth ...44

DLNA ...45

Architecture Guide

Apple iOS interfaces ..45

MTP device interface ...46

MirrorLink ..46

Network interfaces ...47

USB ...47

Chapter 8: HMI Layer ...49

Application support ...50

HTML5 application framework ...52

Browser engine ...54

Qt application model ...55

Application Management ...57

HMI Notification Manager ...59

Table of Contents

About This Guide

The Architecture Guide provides an overview of the QNX CAR platform and describes

how its components work together.

See:To find out about:

Top-Level Design (p. 9)The architecture layers

Common Mechanisms (p. 13)Mechanisms that you can leverage when

you extend or replace architectural

components

Supported Boards (p. 15)The automotive hardware boards

supported by the platform

Ecosystem (p. 17)Technologies provided by partners

Boot Time Optimization (p. 19)Optimizing the boot sequence and boot

times

Platform Layer (p. 21)QNX Neutrino RTOS, OpenGL ES, and

Software Update components

Middleware Layer (p. 29)Multimedia, Navigation, Automatic

Speech Recognition, Radio, and the

Mobile Device Gateway components

HMI Layer (p. 49)The HTML5 and Qt5 application runtime

environments, application management,

and the HMI Notification Manager.

© 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

6 © 2014, QNX Software Systems Limited

About This Guide

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

© 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Top-Level Design

The QNX CAR platform architecture consists of three layers: Platform, Middleware,

and Human-Machine Interface (HMI).

BSP

QNX Neutrino RTOS

Mobile Device Gateway

PPS

Software
Update

Radio

Navigation

ASRPhoneMedia

HMI notification
manager Screen SQL DB

QtQnxCar2 & QPPS libraries

Reference apps

Qt5 framework

PPS, SQL & Screen plugins (based on NPAPI)

NavigatorBrowser app

Reference apps

HTML5 / Web engine
& JavaScript application frameworks

Figure 1: A high-level view of the QNX CAR architecture

Platform

The Platform layer includes the QNX Neutrino RTOS, the Board Support Package

(BSP) appropriate for the hardware platform, and the Software Update component for

managing system upgrades.

© 2014, QNX Software Systems Limited 9

Middleware

The Middleware layer provides infotainment-related services to applications, such as

multimedia, Bluetooth, navigation, and radio. The Automatic Speech Recognition

(ASR) component provides services not only to the layer above but to the other

middleware components as well. For example, ASR can be used to turn on the radio,

initiate a Bluetooth phone call, or play a video track managed by the multimedia

component. The Mobile Device Gateway provides interfaces to external components

through Bluetooth, DLNA, Wi-Fi, and other mechanisms.

Meanwhile, the HMI Notification Manager reacts to system events such as navigation

updates or text message arrivals by updating the HMI, based on a policy specified in

a configuration file.

HMI

The HMI layer consists of several reference UI apps that provide controls for general

subsystems such as the media player, navigation service, and climate controller.

This release includes both a Qt5 and an HTML5 version of the HMI. By default, the

Qt5 HMI is shown but you can configure your QNX CAR system to launch the HTML5

HMI at startup, as explained in “Running the HTML5 HMI” in the User's Guide. The

appearance and functionality of the entire HMI—the Home screen shown after the

HMI loads, all reference UI apps, and the UI controls for switching screens and

launching apps—is identical in the two versions. Note that the architecture supports

running apps written with many UI technologies, including native (OpenGL ES), Qt,

HTML5, and others, with either HMI version.

The HMI layer includes a browser engine based on the Torch browser. This engine is

the runtime environment for the HTML5 HMI and HTML5 apps. Plugins based on the

Netscape Plugin Application Programming Interface (NPAPI), which are loaded by the

browser engine, provide apps with access to services from the Middleware layer. For

example, the SQL plugin accesses databases that store contact information and

messages read off Bluetooth devices. A plugin for the Persistent Publish/Subscribe

(PPS) service supports persistent object storage and change notification.

To access the NPAPI plugins, HTML5 apps use Apache Cordova plugins implemented

in JavaScript, which provide high-level APIs for performing tasks related to navigation,

media playback, and so on. The reference apps in the HTML5 HMI use Cordova as

well as other JavaScript frameworks. For more information on the HTML5 frameworks

in the product, see the HTML5 and JavaScript Framework guide.

Qt5 apps can use the QtQnxCar2 and QPPS libraries to access Middleware layer

services. The first library exposes a set of C++ classes that provide high-level controls

for using those services and also access to databases through SQL query support. The

second library wraps the POSIX interface to the PPS objects used by those services

with a replacement Qt interface, which allows client apps to use the Qt notification

mechanisms of signals and slots. The reference apps in the Qt5 HMI use both these

10 © 2014, QNX Software Systems Limited

Top-Level Design

libraries, with the exception of Media Player, which also uses the special-purpose

QPlayer library to perform media browsing and playback.

© 2014, QNX Software Systems Limited 11

Chapter 2
Common Mechanisms

The QNX CAR platform includes defined mechanisms that you can leverage when you

extend or replace architectural components.

Persistence

The PPS service provides persistence so that objects and their attributes

can persist across reboots. For descriptions of all the objects that reside on

the QNX CAR platform, see the PPS Objects Reference.

Interprocess communication

PPS provides services for components to communicate with each other in

a loosely coupled fashion. For finer-grained, deterministic IPC, use the

services provided by the OS itself. For details, see “Interprocess

Communication (IPC)” in the QNX Neutrino RTOS System Architecture

guide.

Logging

Native apps use the system slogger (or slogger2) facility. HTML5 apps

use the JavaScript console.

Application packaging

Native and HTML5 apps must be packaged before being installed on the

QNX CAR platform.

Application installation

Instructions for installing a packaged app are included in Application and

Window Management (in your QNX SDK for Apps and Media package).

© 2014, QNX Software Systems Limited 13

Chapter 3
Supported Boards

The QNX CAR platform is designed to run on popular automotive boards.

Supported boards include:

• Texas Instruments:

• J5 Eco Rev 5

• OMAP5 uEVM (ES2 Silicon)

• Freescale:

• i.MX6Q SABRE Lite

• NVIDIA:

• Jetson (Tegra 3)

Our support for this board is experimental at this time. See the release

notes for limitations and other details.

© 2014, QNX Software Systems Limited 15

Chapter 4
Ecosystem

QNX Software Systems works with partners in its large ecosystem to offer the best

possible foundation for building vehicle infotainment systems and to help OEMs and

Tier-1 suppliers reduce costs and time to market.

Technologies provided by partners include:

PartnersFeature

Voice recognition
• AT&T

• Nuance

Terminal mode
• RealVNC

Bluetooth connectivity
• Sybase iAnywhere

• Cybercom

Software Update
• Red Bend

Navigation
• Elektrobit

Integrated apps
• Pandora

• TuneIn

• The Weather Network

Multimedia cookies
• Texas Instruments

• Freescale

DSP radio interfaces
• Texas Instruments

Components and frameworks
• jQuery

• Sencha

© 2014, QNX Software Systems Limited 17

Chapter 5
Boot Time Optimization

Every system has its own set of requirements to meet at boot time. The platform is

shipped with many boot-time optimizations already implemented, but it is designed

so that you can optimize system startup so that it best meets your goals. By

implementing some simple techniques at various points in the boot sequence, you

can make the OS and applications load, initialize, and launch more quickly or in a

specific sequence.

In the QNX CAR platform, the boot sequence has been optimized using several different

techniques. These optimizations focus on the following goals:

Early splash screen and camera

The system loads the image filesystem (IFS) and begins executing the build

script as soon as possible. The build script then launches the Screen

Graphics Subsystem and the graphical app as early as possible. To

accomplish these tasks, we have optimized the initial program loader (IPL)

to reduce the IFS size and have reordered the sequence in which services

are launched in the boot script.

Early audio

This optimization uses the same techniques as early splash screen and

camera, except that audio is started as early as possible in the boot sequence.

Early HMI display

To display the HMI as early as possible, the system uses the same techniques

as the first two optimizations while reducing the HMI's dependencies to

what is strictly necessary. This work has led to the development of the Boot

Manager, a service that manages HMI dependencies and instructs the System

Launch and Monitor (SLM) service to launch processes based on the state

of the system and the HMI requirements. The Boot Manager allows the HMI

to come up before all the apps are instantiated.

Early playing of last audio

This optimization is based on a new multimedia service (mm-player) that

saves its state at shutdown and restores it at power-up. To meet the goal of

quickly resuming audio playback at the same track and position when the

system was shut down, the mm-player service and its dependencies are

carefully placed in the SLM configuration file so that they are run at the

earliest point possible.

© 2014, QNX Software Systems Limited 19

For more information on optimization techniques and on the system's boot sequence,

see the Boot Optimization Guide.

20 © 2014, QNX Software Systems Limited

Boot Time Optimization

Chapter 6
Platform Layer

The platform layer includes the QNX Neutrino RTOS, the BSP applicable to the target

hardware, and the Software Update component.

© 2014, QNX Software Systems Limited 21

QNX Neutrino RTOS

The QNX Neutrino RTOS is a full-featured, robust operating system that scales down

to meet the constrained resource requirements of realtime embedded systems. Its true

microkernel design and modular architecture enable customers to create highly

optimized and reliable systems with low total cost of ownership.

Microkernel

Microkernel architecture gives the QNX Neutrino RTOS the reliability to run life- and

safety-critical applications in nuclear power plants, hospitals, space stations—wherever

a rock-solid, dependable system is a must.

The QNX Neutrino RTOS is so reliable because it is a true microkernel operating

system. Every driver, protocol stack, filesystem, and application runs in the safety of

memory-protected user space, outside the kernel. If a component happens to fail, it

can be automatically restarted without affecting any other components or the kernel.

No other commercial OS offers this degree of protection.

Instant Device Activation

Instant Device Activation (IDA) allows in-vehicle systems to perform intelligently even

before the OS is operational.

Code is directly linked into the startup component of the boot loader. In this way it

can perform all the necessary functions, such as responding to external events, meeting

critical 50-millisecond startup response times, accessing hardware, and storing data

for use by the full driver. For example, a system can be configured to provide immediate

response to power-mode messages transmitted over the CAN bus.

IDA allows system developers to manage data from the CAN bus without adding costly

hardware. Conventional OS implementations often take several seconds to boot up

from a cold or low-power state, requiring auxiliary communications processors to meet

timing and response requirements. Using QNX IDA technology, this problem can be

solved in software, eliminating hardware components and decreasing bill of material

(BOM) costs.

Networking

The QNX Neutrino RTOS supports IPv4/IPv6 over Ethernet as well as Wi-Fi 802.11

and provides the standard complement of network services, including DNS, DHCP,

inetd, firewall, FTP, TFTP, HTTP, Telnet, PPP, NFS, and NTP. Since the OS supports

POSIX APIs, you can easily incorporate other open-source networking components

(e.g., Asterisk for VoIP).

As part of our vehicle reference implementations, QNX Software Systems provides a

full Wi-Fi access point that can be used in conjunction with a Bluetooth-capable

22 © 2014, QNX Software Systems Limited

Platform Layer

mobile phone to provide an Internet gateway, which can then be used throughout the

cab of the vehicle.

As a distributed operating system, the QNX Neutrino RTOS uses an underlying

networking approach known as Transparent Distributed Processing (TDP, also known

as Qnet). All Qnet-connected nodes can share devices and OS resources. For example,

every node on a network can transparently communicate with a Bluetooth-connected

phone, even if the node doesn't have a Bluetooth interface. This provides overall cost

savings by reducing the memory footprint and by removing additional software costs.

The QNX concept Porsche provides another example. This car has a multimedia library

that runs on the head unit. The two Rear Seat Entertainment (RSE) units are able to

share this library. On the head unit, the library is accessed through a POSIX path such

as /db/mmlibrary.db. When accessed from the two RSE units, the path for this

resource would be /net/headunit/db/mmlibrary.db. The simplicity of TDP

allows the underlying source code to remain the same. Only the resource path changes,

even when accessing resources across the network. Note that the name change can

be avoided by using a symbolic link.

Fault detection

Keeping components isolated through memory protection lets the OS do the hard work

of finding stray pointers and crashes, often finding difficult bugs that can elude a

system deployed on a monolithic operating system.

We also provide a powerful instrumented kernel that traces all system activity, including

interrupts, thread scheduling, and interprocess communications. You can use the

system profiler (included in the QNX Momentics Tool Suite) to visualize this trace log

to help diagnose system problems and optimize the software. For details, see “Analyze

Your System with Kernel Tracing” in the IDE User's Guide.

High Availability

The modular, microkernel architecture of the QNX Neutrino RTOS enables faults to

be isolated, down to the driver level. Together with the High Availability framework's

“smart watchdog”, this architecture helps your system recover from faults automatically.

This approach enables you to develop truly self-healing systems.

Our High Availability technology provides:

Instant fault notification

The watchdog automatically detects process faults, triggering recovery

procedures. Heartbeating technology can detect nonfatal errors.

Customized failure recovery

Using the High Availability framework library, your system can tell the

watchdog what recovery actions to take if an error occurs.

© 2014, QNX Software Systems Limited 23

QNX Neutrino RTOS

Instant reconnections

The High Availability framework includes a client-recovery library that lets

your system instantly reestablish broken connections if a component fails.

Postmortem analysis

If a process faults, the High Availability framework can generate a full

memory dump for analysis.

Resilience to internal failures

The watchdog employs a self-monitoring “guardian” that can take over if

the watchdog itself fails.

When the watchdog detects component failures, it notifies the system and then

manages recovery.

Adaptive Partitioning

Adaptive Partitioning is a technology that can budget CPU cycles for a process or

group of processes to create a system whose parts are all protected against resource

starvation.

Task or process starvation is a fundamental concern for any embedded system. Services

provided by lower-priority threads—including diagnostic services that protect the

system from software faults or denial-of-service attacks—can be starved of CPU cycles

for unbounded periods, compromising system availability.

Adaptive Partitioning guarantees that all partitions get their budgeted share of CPU

time to ensure your system runs correctly under all conditions.

Adaptive Partitioning reserves CPU cycles for a process (or group of processes) and

applies a dynamic scheduling algorithm to assign CPU cycles from partitions that

aren't using them to partitions that can benefit from extra processing time. Partition

budgets are enforced only when the CPU is running to capacity. Adaptive Partitioning

thus lets systems run at capacity, enforcing partitioning budgets only when processes

in more than one partition compete for cycles.

Resource manager framework

The resource manager framework lets you integrate new technologies and services

through a standard POSIX interface that all applications can use.

A resource manager is a user-level server program that accepts messages from other

programs and, optionally, communicates with hardware. The resource manager

framework can be used for any requirement, from adding a new device type (driver

level) to a whole software subsystem, such as a voice-recognition engine.

Since the QNX Neutrino RTOS is a distributed, microkernel system with virtually all

nonkernel functionality provided by user-installable programs, a clean and well-defined

24 © 2014, QNX Software Systems Limited

Platform Layer

interface is required between client programs and resource managers. With this

framework, resource managers have a common, POSIX interface—open(), read(),

write(), and close()—to provide a wrapper around the underlying technology. Once a

resource manager is implemented, it instantly becomes network-distributed and

available locally.

© 2014, QNX Software Systems Limited 25

QNX Neutrino RTOS

OpenGL ES

OpenGL ES is subset of the OpenGL cross-platform API designed for 2D and 3D

graphics on embedded systems, including consoles, phones, appliances, and vehicles.

It consists of a well-defined subset of desktop OpenGL, creating a flexible and powerful

low-level interface between software and graphics acceleration.

OpenGL ES includes profiles for floating- and fixed-point systems and for the EGL

specification for portably binding to native windowing systems. The benefits of OpenGL

ES include:

• “raw” 3D graphics support, accelerated by the GPU

• standardized low-level interface across different GPUs

• the ability to create customized vertex and fragment shaders for specialized effects

• superior performance (all other frameworks eventually call OpenGL ES for rendering)

26 © 2014, QNX Software Systems Limited

Platform Layer

Software Update

The Software Update (SWU) feature for the QNX CAR platform provides a mechanism

for safely updating your platform software.

The feature uses these components:

• a software update daemon (swud)

• plugins for the update daemon that provide platform-specific functionality

• a partial-shutdown utility (downsize) that prepares the system for a software

update

• an HMI application that allows the user to initiate a software update

When you connect a USB mass-storage device to your system and the device contains

a software update package, which consists of a manifest file and a delta file, the

following occurs:

1. The mcd utility detects the manifest file (which has a filename ending in

.manifest) in the software update package and notifies swud.

2. The swud daemon validates the update package by parsing the manifest file and

the delta file (whose full path is specified in the manifest file). If the update package

is not valid (e.g., the base version stated is wrong), swud logs an error (to slogger

and to the HMI) and then stops the update process.

3. If the update package is valid, swud notifies the HMI, which displays the pending

update in the software update application.

4. When ready, the user initiates the software update from the HMI.

5. The swud service coordinates with the downsize utility to terminate all processes

except those needed to perform the update (e.g., screen, disk drivers).

6. After the nonessential processes have been terminated, swud updates the system

based on the contents of the delta file.

7. The system is rebooted and the newer version of the system now runs.

© 2014, QNX Software Systems Limited 27

Software Update

Figure 2: Software Update components detect and validate the software update

package, downsize the system processes, and reboot the system to apply the update

The unique microkernel architecture of the QNX Neutrino RTOS makes software updates

easy and reliable. For example, if the user obtains a new smartphone that requires a

new device driver, the Software Update mechanism ensures that the QNX CAR system

uses the new driver with the new phone but an older driver with an older phone. This

allows the system to be updated for new devices yet reduces the validation effort so

that only the new devices require revalidation.

For more information on initiating software updates, see Software Updates in the

User's Guide. For a detailed explanation of swud and how to generate a delta file, see

Software Updates in the System Services Reference.

28 © 2014, QNX Software Systems Limited

Platform Layer

Chapter 7
Middleware Layer

The Middleware layer provides infotainment-related services to applications. The major

components of the layer include Multimedia, Navigation, ASR, Radio, and the Mobile

Device Gateway.

© 2014, QNX Software Systems Limited 29

Multimedia

Besides providing access to media devices, the multimedia subsystem reads and

interprets metadata, converts audio/video streams, and manages playlists. The

subsystem also provides the business logic for retrieving album art, directing track

playback, detecting media sources, and presenting media to the user for selection.

The media browsing and playback engine is decoupled from the media rendering

engine, allowing various HMI components to interact with iPods, USB sticks, and other

media devices. The multimedia design is shown in this diagram:

QNX CAR
Platform

QNX SDK for
Apps and Media

Outputmm-renderer
QDB

SQLiteMedia

mm-syncusblauncher

mm-playerartwork-clientmm-detect

MCD

Qt5 Media Player

car.mediaplayer plugin

HTML5 Media Player

HTML5 HMI

Browser engine

Qt5 HMI

Qt runtime libraries

QPlayer

Figure 3: Architecture of media browsing and playback subsystems in HTML5 and

Qt5 HMIs

HMI interaction with media playback services

Both the HTML5 and Qt5 versions of the HMI include the Media Player app but they

provide separate mechanisms to this application for sending requests to mm-player,

which is the back-end media browsing and playback service. In the HTML5 HMI,

Media Player communicates with mm-player by sending requests and receiving media

information through the car.mediaplayer plugin, which runs within the browser

engine (p. 54). In the Qt5 HMI, Media Player makes calls to functions in the QPlayer

30 © 2014, QNX Software Systems Limited

Middleware Layer

library, which talks to mm-player. The mm-player service uses QDB to retrieve

media information from databases and uses mm-renderer to control the media flow

during playback.

Multimedia detection and synchronization binaries

The platform includes utilities that can detect when the user attaches a device and

then respond to this action by synchronizing the metadata describing the device's

media content to an embedded database. The synchronization ensures that the database

has up-to-date media information before any tracks can be played.

Multimedia detection and synchronization relies on the following binaries:

/bin/usblauncher

This service enumerates USB devices, launches drivers for communicating

with those devices, and publishes their hardware information in PPS.

/usr/sbin/mcd

The mcd utility (media content detector or MCD) mounts filesystems of

attached devices so their contents can be read by other programs.

/usr/sbin/mm-detect

This service calls mm-sync to initiate media synchronization, notifies the

Media Player about device attachments and detachments, and provides

synchronization status updates.

/usr/sbin/mm-sync

This service synchronizes the information of media files on mass storage

devices with the contents of QDB databases, which can then be read by the

Media Player.

/usr/sbin/qdb

The QNX Database Server (QDB) utility manages the embedded databases

that store multimedia information.

/usr/sbin/artwork_client_car2

This media utility uploads artwork found on devices, such as album cover

art and thumbnail graphics, to QDB databases.

Multimedia browsing and playback binaries

Through the multimedia browsing and playback service, applications can discover

media content on attached devices, control the playback of audio and video tracks or

playlists, and retrieve the current playback status and notifications of status changes.

The following binaries manage media browsing and playback:

© 2014, QNX Software Systems Limited 31

Multimedia

/usr/sbin/mm-player

Browsing and playback commands sent from the HMI Media Player are

processed by the mm-player service. This program uses device-specific

libraries to explore media filesystems, retrieve metadata from tracks and

playlists, and initiate media flow for playback. It also interacts with

mm-renderer to direct the media flow to the specified outputs.

/usr/sbin/mm-renderer

The mm-renderer service manages the flow of media content from one

input to one or many outputs. A media flow can be directed to an audio or

video output device for playback or to a file for recording.

32 © 2014, QNX Software Systems Limited

Middleware Layer

Navigation

The QNX CAR platform includes the Elektrobit (EB) street director navigation software.

Both the HTML5 and Qt5 HMI versions include a navigation front end that accesses

the EB navigation engine through the platform's native navigation service.

The native navigation service can communicate with any navigation engine running

on the system. This design allows you to install and use software from multiple vendors

and reconfigure your system to use a particular navigation engine without impacting

your HMI apps. For more information, see “Navigation Engine” in the System Services

Reference.

The navigation subsystem design for the two HMI versions is shown this diagram:

OpenGL
map

EB street director SDK

EB navigation engine

Native navigation service

PPS

Map dataPOI

QDB

SQLite

Qt5 navigation front end

Browser engine

PPS pluginSQL plugin

car.navigation plugin

HTML5 navigation front end

HTML5 HMI Qt5 HMI

Qt runtime libraries

QPPSQtQnxCar2

Figure 4: Architecture of navigation subsystems in HTML5 and Qt5 HMIs

The native navigation service publishes information to a PPS object, making details

about the route available to other applications. For example, trip information can be

made available to the weather application, which can then display the weather forecast

for the estimated arrival time at the destination. The car.navigation plugin provides

© 2014, QNX Software Systems Limited 33

Navigation

HTML5 applications with navigation status, which it reads from PPS. For Qt5

applications, the QtQnxCar2 and QPPS libraries wrap the PPS objects and provides

functions for reading navigation information.

When the user directs the navigation system to a Point of Interest (POI) or asks to

search a city, province, state, or country for a particular POI, the HMI writes to the

navigation control PPS object by using either the JavaScript plugin or the Qt-supporting

libraries, depending on which HMI version is in use.

When the native navigation service reads a request from the control PPS object, it

forwards the request to the EB SDK. Once the EB SDK returns the results, the native

navigation service updates the same PPS object to notify the sender of the request

about the request's completion. The service also writes the results to a database, so

subscribers that receive the notification can then read the results from the database.

In the HTML5 HMI, subscribers access the database through the SQL plugin, which

runs within the browser engine (p. 54). In the Qt5 HMI, subscribers access the database

through the QtQnxCar2 library, which runs within the Qt runtime environment.

34 © 2014, QNX Software Systems Limited

Middleware Layer

Automatic Speech Recognition (ASR)

The ASR subsystem provides speech-recognition services to other components.

Interfaces hide the existence of third-party speech-recognition software so that vendors

can be replaced without affecting the rest of the system.

The ASR subsystem uses application-specific conversation modules to provide

speech/prompting handling throughout the system. Conversation modules are decoupled

from the speech-recognition provider so the same modules will work for multiple ASR

vendors. This architecture allows customers to easily add or remove functionality,

including adaptations for downloadable applications.

The platform uses various modules to manage human-machine interactions:

Prompt modules

Manage machine-to-human interactions, which can be either visual

(onscreen) or audible.

Audio modules

Provide a hardware abstraction layer to hide the details of how audio is

captured.

Recognition modules

Provide an abstraction layer to hide the details of the speech-to-text engine,

allowing ASR services to be substituted transparently.

Conversation modules

Define how to handle human-to-machine speech commands.

© 2014, QNX Software Systems Limited 35

Automatic Speech Recognition (ASR)

PPS

HMI Media appTCS Pop-upPTT

EmailInvo

Media engine

Recognition modules

ASR-AL

NL-AL

ControllerCapture

File

PTT

Audio
modules

Conversation &
prompt modules

Email

Phone

TTS

WAV

Nav

Apps

Media

HMI
dialog

Figure 5: ASR subsystem architecture

The ASR components are pluggable modules. With this architecture, you can

reconfigure the ASR system to:

• add or remove conversation modules to modify the speech flow

• adjust the prompt module to change how the user receives responses

• change the recognition module to switch speech-to-text services

• specify different audio modules to capture audio from different sources

For more information, see the following:

• “Automatic Speech Recognition (ASR)” in the User's Guide

• Automatic Speech Recognition Developer's Guide

ASR modules

The ASR uses various modules to perform tasks such as audio capture and import and

to provide prompt services.

ASR services are launched through PPS when the user activates the Push-to-Talk tab

on the HMI taskbar. These services use different ASR modules.

36 © 2014, QNX Software Systems Limited

Middleware Layer

Prompt module

Recognition module

capture

search

2. Request audio
command

car_media

4. Request speech to
text conversion

5. Return decoded
text (result)

1. Prompt user

io-asr
6. Determine context and

initiate requested action

file

3. Return audio
buffer

dialer

3rd-party modules

Conversation
modules

Audio modules

7. Confirm action is
complete or request
more info

8. Request more
info

Figure 6: A typical ASR sequence to manage speech commands

Audio capture module

The audio capture module detects the spoken command, including the beginning and

end of sentences, and then forwards the audio stream to the third-party recognition

modules.

Audio file module

The audio file module imports audio from a file, which it can save for future use. This

module is used primarily for testing.

Recognition modules

The recognition module converts a spoken command (utterance) to text. It collects

the audio sample, passes it to a third-party recognizer for processing, and converts

the vendor-specific result data (dictation) to the format required by the ASR. The ASR

service then passes this result on to the Natural Language Adaptation Layer (NLAL).

The NLAL uses the grammar provided by the conversation module to produce intent

information, which it adds to the data in the original result structure.

For example, the recognition module would take the utterance “search media for Hero”

and create a results structure with the dictation as follows:

© 2014, QNX Software Systems Limited 37

Automatic Speech Recognition (ASR)

• Result Type: Dictation

• Utterance: “search media for Hero”

• start-rule: search#media-search

• confidence: 600

From this dictation, the NLAL would add intent information to the structure:

• Result Type: Intent

• Utterance: “search media for Hero”

• Start-rule: search-media

• Confidence: 600

• Intent entries: 2

• Field: search-type, value: media

• Field: search-term, value: "Hero"

Confidence is a value from 0 to 1000 (0 means no confidence; 1000 means complete

confidence).

• The conversation modules need the intent fields to understand the meaning

of an utterance; without them a conversation is impossible.

• Some recognition modules can produce intent results directly, bypassing

the NLAL. The intents that are extracted by the NLAL are predicated by a

grammar that must be provided with the conversation module.

Conversation modules

The conversation modules are responsible for:

• determining the domain (e.g., navigation, phone)

• determining whether the conversation is complete or whether another recognition

pass is required

• creating and/or modifying PPS objects as required

Apps such as Media Player and Navigation subscribe to PPS objects for changes. For

example, if the user presses the Push-to-Talk tab and says “play Arcade Fire”, the

recognition modules parse the command. The Media conversation module then activates

the media engine, causing tracks from the desired artist to play.

Prompt modules

Used primarily by conversation modules, prompt modules provide audio and visual

prompt services. Specifically, these modules provide notification of nonspeech

responses to onscreen notifications (e.g., selecting an option or canceling a command).

Prompts come from prerecorded WAV files or from Text-To-Speech (TTS).

38 © 2014, QNX Software Systems Limited

Middleware Layer

ASR and TTS integration

The ASR and TTS components, libraries, and configuration files manage ASR

conversations, enable modules to communicate with each other, and allow control of

various component settings.

ASR modules are linked to a particular service variant, depending on the ASR

technology used to perform the speech recognition. For instance, in the current release

of the platform, the service is io-asr-generic. If Nuance technology is used, the

service is called io-asr-nuance.

The following ASR modules are io-asr-service_name runtime dependencies:

/usr/sbin/io-asr-generic

Manages ASR conversations. This binary isn't tied to a particular recognition

technology. If you use this binary, you can specify the recognition module

as a plug-in module. However, if you use a technology-specific module

binary, such as io-asr-nuance, you won't be able to switch recognition

modules without recompiling.

/lib/libasr-core.so.1

An ASR library that enables inter-module communication.

/etc/asr-car.cfg

The recognition module's configuration file that lets you configure:

• audio capture characteristics

• TTS synthesis settings

• recognition module attributes

• module ID mapping

/opt/asr

A directory containing resources required by io-asr-generic and its

modules.

Prompt modules

asr-offboard_tts-prompt.so

Prompting service for playing text strings or files as audio. These modules

are configurable in the asr-car.cfg configuration file.

asr-wav_file-prompt.so

Prompting service for .wav file playback.

© 2014, QNX Software Systems Limited 39

Automatic Speech Recognition (ASR)

Audio modules

capture

Audio capture capability. You can configure this in the audio/capture

section in the asr-car.cfg configuration file.

file

Import and save audio files. You can configure this in the audio/file

section in the asr-car.cfg configuration file.

Recognition modules

asr-vocon3200-recognition.so

Interpretation of captured audio signals to deduce the words and sentences

spoken.

Conversation modules

Conversation modules are independent of each other.

search

Used by other modules to handle search-related commands. For example,

the navigation subsystem uses this module to process instructions to navigate

to a destination or search for a point of interest.

Provides the capabilities for various conversation modules, including:

• app launching

• navigation

• internet and local media search

• weather queries

car-media

Processes voice commands for performing media playback actions.

To support these commands, the ASR subsystem uses different back-end

plugins in the different HMI versions. By default, the platform is configured

to use the plugin for the mm-player service (which works with the HTML5

HMI). If you want to use media voice commands when running the Qt5 HMI,

you need to use the mm-control plugin. You can tell the ASR subsystem

to load this plugin instead of the one for mm-player by modifying the ASR

configuration file, as explained in “Using mm-control to process voice

commands” in the User's Guide.

40 © 2014, QNX Software Systems Limited

Middleware Layer

dialer

Process voice-dialing commands.

Third parties implementing ASR can add additional conversation modules to

extend ASR capabilities (e.g., calendar).

© 2014, QNX Software Systems Limited 41

Automatic Speech Recognition (ASR)

Radio

The Radio Integration Module provides a control and status application that serves as

a front end to a DSP-based radio.

This release includes a reference radio supplied by Texas Instruments for the TI Jacinto

5 platform. The radio module communicates with the HMI via the PPS service. In

addition, the module provides the control interface to the DSP to support tuning, band

selection, scanning, Radio Data System (RDS), and more.

Supported radio features include:

• AM, FM, and HD radio

• HD radio metadata

• station presets for each band

• seek and scan functionality

• simulation mode for boards without an antenna

• TI radio tuner on Jacinto 5

• configurable profiles for different regions

• radio control through PPS

42 © 2014, QNX Software Systems Limited

Middleware Layer

Rearview camera

Overview

The QNX CAR platform supports a video feed from a camera attached to the reference

board. This camera is intended for use as a rearview (backup) camera in the vehicle.

This release supports cameras on the following boards:

• Jacinto 5 Eco

• i.MX6D

• i.MX6Q SABRE Lite

When the platform detects any cameras attached to the hardware, it automatically

launches the rearview camera software component. The default state of this component

is to stay paused and not render the video feed. It can be triggered to open a window

and render the video feed from the camera to the screen by:

• a user command through the HMI

• a change notice sent from the vehicle hardware (e.g., the vehicle is put in reverse)

For more information about using the rearview camera, see “Rearview Camera” in the

User's Guide.

PPS objects

The QNX CAR platform uses the /pps/qnxcar/sensors PPS object's

cameraRearviewActive attribute to learn if a rearview camera is attached and active.

For application and window management, the rearview camera software component

uses the following PPS objects:

• /pps/system/navigator/command

• /pps/system/navigator/windowgroup

© 2014, QNX Software Systems Limited 43

Rearview camera

Mobile Device Gateway

The Mobile Device Gateway component allows passengers to link mobile devices to

the QNX CAR platform. Supported interfaces include Bluetooth, USB, DLNA,

MirrorLink, 3G, LTE, and Wi-Fi. Each connection has associated PPS objects that

apps can use to interact with the device. By providing this level of indirection, apps

are freed from having to know the details of the physical connection.

Android interfaces

The platform can connect with Android devices through Bluetooth (supported profiles

include A2DP/AVRCP, HFP, MAP, PAN, PBAP, and SPP), DLNA, and MirrorLink,

where available.

Bluetooth

The platform supports connections to external devices over Bluetooth—it can initiate

a Bluetooth connection or accept a connection request.

Supported Bluetooth profiles include:

• HFP (Hands-Free Profile)

• MAP (Message Access Profile)

• PBAP (Phone Book Access Profile)

• SPP (Serial Port Profile)

• A2DP/AVRCP (Audio Profiles)

The QNX CAR platform uses the Cybercom blueGO application software framework,

which is a wrapper around Sybase iAnywhere's Bluetooth protocol stack and

profiles. While the profiles listed above are preintegrated and tested for this release,

the Bluetooth stack supports many other profiles that can also be integrated.

The front-end resource manager for Bluetooth is io-bluetooth, which offers a

POSIX-compliant API and provides:

• low-level access to the Bluetooth radio chip (typically via a serial interface such

as UART, USB, or I2S)

• support for Bluetooth profiles

• profile concurrency and control

44 © 2014, QNX Software Systems Limited

Middleware Layer

Bluetooth
hardware

devc-seromap-hci

io-bluetooth

pps-bluetooth

PBAP MAP HFP SPP A2DP
AVRCP

BTMGR

Discovery
& pairing

SQLite

QDB

MAP

PBAP

Bluetooth applications

Runtime environment

PPSSQL

PPS

Figure 7: The QNX CAR architecture for Bluetooth

The PPS abstraction layer for Bluetooth provides an application interface for activities

such as pairing, profile management, status updates, and device list management.

A Bluetooth connection can be initiated either by the vehicle or by the mobile device.

When requesting the connection, the developer selects a Bluetooth profile. After the

connection has been established, the system creates PPS objects that io-bluetooth

uses to manage the connection according to the permissions and other parameters in

the selected profile.

DLNA

Support for Digital Living Network Alliance (DLNA) is preintegrated, providing streaming

capabilities from smartphones or tablets.

Apple iOS interfaces

The QNX CAR platform provides a Made for iPod interface for Apple iOS products,

allowing users to synchronize media metadata and to browse and play media on the

device. The iPod Out protocol is also supported.

The iOS interface supports various Apple models, generations, and firmware releases.

The iPod interface software conforms to the relevant sections of the “Apple iPod

Accessory Interface Protocol Specification Release”. Automotive suppliers will use

this interface software in conjunction with hardware that complies with the “Apple

© 2014, QNX Software Systems Limited 45

Mobile Device Gateway

iPod/iPhone Hardware Specification Release”. These specifications are available from

Apple.

Since the QNX iPod interface is intended to work with Apple iPods and iPhones that

comply with these specifications, a high level of compatibility can be expected when

using iPod Out control through a touchscreen or other external USB HID device or in

the scenario when the iOS device takes over the entire screen.

The focus here is on driver and iAP protocol. To complete the implementation,

automotive suppliers need to add:

• video capture to scale video appropriately and render as a display layer

• interface from video capture into composition manager

If and when Apple moves to digital video, we will be able to provide a complete

framework for iPod Out.

MTP device interface

The QNX CAR platform provides an interface for devices that use the Microsoft Media

Transfer Protocol (MTP). Users of the platform can synchronize media metadata and

can browse and play media that is stored on these devices.

MTP devices maintain their own filesystems. With the MTP device interface,

applications can access media on these devices in the same manner as they access

media on USB devices.

For more information, see the Multimedia Renderer Developer's Guide.

MirrorLink

The QNX CAR platform relies on the RealVNC Mobile Solution for the VNC and other

MirrorLink-specific protocols.

The platform supports the MirrorLink technology standard (version 1.1) to enable

MirrorLink apps on a supported smartphone to work with the car's HMI. For the current

list of MirrorLink Certified phones (also called server devices), see the following page

at the Car Connectivity Consortium (CCC) site (using the Servers search filter):

MirrorLink™ Certified Product Listing

For more information, see the MirrorLink entry in the System Services Reference.

The Screen software component is used to scale and combine the VNC graphics output

within the UI environment. For more information, see the Screen Graphics Subsystem

Developer's Guide.

46 © 2014, QNX Software Systems Limited

Middleware Layer

http://www.mirrorlink.com/
https://cert.mirrorlink.com/ProductListing/

Network interfaces

The QNX CAR platform supports connections to mobile devices over Ethernet, Wi-Fi,

3G, and LTE.

The io-pkt resource manager is the low-level interface to networking/connectivity

options such as wired Ethernet, Wi-Fi, and other radio devices (3G/LTE). The io-pkt

resource manager integrates low-level drivers and the TCP/IP stack as well as a number

of technologies for managing network connections.

PPS is used for controlling the various components contained in io-pkt. Overall

network management includes:

• APIs for network control planes

• coordination of system-wide network configuration (preferred/default network

interfaces, routes, and resolver configuration)

• general networking information details and device information

USB

USB connections are handled in the same way as Bluetooth and the networking

interfaces—through a combination of low-level support (io-usb) and PPS

management/control. Integration of CDC-ECM (USB Ethernet dongle), CDC-NCM (for

MirrorLink), and Android Accessory Protocol can be handled through this component.

© 2014, QNX Software Systems Limited 47

Mobile Device Gateway

Chapter 8
HMI Layer

The HMI layer includes reference UI apps, application management services, and

runtime components that support apps written in HTML5, Qt5, and other supported

HMI technologies.

You can write your own automotive apps and showcase them on the QNX App Portal

to allow Tier-1 suppliers and OEMs to download and evaluate them. For information

on doing this, see Showcasing Your Apps on the QNX App Portal.

© 2014, QNX Software Systems Limited 49

Application support

In this release, the QNX CAR platform comes with distinct HTML5 and Qt5 versions

of the HMI.

Both versions provide identical UI controls for launching applications written in HTML5,

Qt, and other HMI technologies. The applications run independently of the HMI, as

shown in this diagram:

sends requests
through PPS

sends requests
through PPS

launches

displaysdisplays

UI Core
Launcher

QPPS

Qt runtime libraries

Apps Section

Qt5 HMI

Browser engine

Apps Section

HTML5 HMI

Browser engine

HTML5 Apps

Cordova plugins

Qt5 Apps

Qt libraries

Other Apps

Open GL

Android

Runtimes

Figure 8: Application support in HTML5 and Qt5 versions of the HMI

The HMI shows any installed applications in the Apps Section screen. When the user

requests to launch an app by tapping its icon in this screen, the HMI forwards the

request through PPS to the Launcher service. The different HMI versions use different

mechanisms to read from and write to PPS. The HTML5 HMI uses Cordova plugins,

which run in the browser engine; the Qt5 HMI uses the QPPS library.

For information on how the HMI manages application windows, see the Application

and Window Management guide. For instructions on writing a generic window manager,

see “Creating Your Own Application Window Manager” in the QNX SDK for

Apps and Media documentation.

50 © 2014, QNX Software Systems Limited

HMI Layer

Launcher

Launcher starts the selected app after it receives the launch request through PPS.

HTML5 apps are run in the browser engine (p. 54). Qt apps are run in separate

processes, each of which links in its own copy of any required Qt libraries (e.g.,

QtQnxCar2, QPPS). Thus, all Qt applications run independently of the HMI and of

each other. This is also the case for apps written in other supported HMI technologies,

such as Open GL.

The Launcher service is part of the UI Core set of services, which manages the

application lifecycle and the visual display, as explained in “Application Management

(p. 57)”.

© 2014, QNX Software Systems Limited 51

Application support

HTML5 application framework

The HTML5 application framework provides the components needed to support apps

that are written with web technologies and that access native services.

Using this framework, developers can create and deploy web applications—built with

technologies such as HTML5, CSS3, and JavaScript—that use plugins to access device

hardware and native services (just like native C/C++ applications). The plugins are

written with Apache Cordova, an open-source framework for developing mobile apps.

JS JSJSJS

HTML

</>

CSS

.h1{

JS

Runtime environment

URL

Packaged
application
(.bar file)

ScreenSQLPPS

Application APIs (Cordova plugins)

Application code (HTML5, jQuery, Sencha...)

Web controller

JavaScript interfaces for NPAPI plugins

RadioNavigationMedia Phone

NPAPI plugins

PPS SQL Screen

Player

Player

Figure 9: Architecture of the HTML5 application framework

As Figure 9: Architecture of the HTML5 application framework (p. 52) illustrates, the

Cordova plugins provide JavaScript interfaces for accessing middleware services such

as media, navigation, radio, and phone. The app code uses these interfaces to send

requests and read results. The requests are sent through URLs to the Web Controller,

which executes the plugin code. In the Web Controller, the Cordova plugins talk to

plugins based on the Netscape Plugin Application Programming Interface (NPAPI),

which access native services. The Web Controller exposes the interfaces for the NPAPI

plugins but their code runs in the native layer of the browser. The browser supports

the following NPAPI plugins:

PPS plugin

Provides the HTML5 domain with access to the full PPS API.

SQL plugin

52 © 2014, QNX Software Systems Limited

HMI Layer

Provides QDB database access, including a complete API for opening,

querying, and modifying databases.

Screen plugin

Used by the Navigator application, this plugin provides window and buffer

management and supports the event notification system. Navigator can use

this plugin to set properties for window, context, and display, and to handle

events received from the low-level graphics components.

Player plugin

Provides access to the mm-player media browsing and playback engine.

Developers can add NPAPI plugins as

required.

Sample application

The Communications app uses the qnx.message Cordova plugin to read email and

text messages and the qnx.bluetooth.pbap plugin to read address book information

found on Bluetooth devices. When the devices are paired with your system, their

message contents and address information gets stored in QDB databases. The Cordova

plugins talk to the SQL plugin in the browser engine, which then accesses the

databases. To manage phone calls on paired devices, the app uses the qnx.phone

plugin, which in turn uses the PPS plugin to communicate through PPS with the

Bluetooth services (pps-bluetooth and io-bluetooth).

io-bluetooth

pps-bluetooth

PPS
QDB

PPSSQL

Browser engine

qnx.*

Communications
JavaScript interfacesUser code

Communications application

Figure 10: The reference Communications app

© 2014, QNX Software Systems Limited 53

HTML5 application framework

Browser engine

The browser engine provides the runtime environment for HTML5 apps. The engine

supports many features, including canvas, WebSocket, session storage, offline apps,

worker threads, DOM improvements, audio and video tags, and WebGL.

The QNX CAR platform provides a multiprocess architecture that allows system

developers to partition the UI into a set of core and sandboxed apps. With this

architecture, multiple WebViews (or windows) can either share a common engine

instance or run in their own engine instance. Each WebView can be implemented with

a separate JavaScript application framework (e.g., jQuery Mobile or Sencha Touch).

By running multiple WebViews in a single engine instance, overall memory footprint

can be reduced. However, when all apps share the same engine, they're not isolated

from each other. Bad behavior in one app can impact all other apps that share the

same engine instance. This mode would typically be used for a set of well-tested apps

that are deployed together as a bundle (e.g., core apps shipped from the manufacturer).

Or, a single app can be run in its own private engine instance. This provides isolation

at the expense of increased memory footprint.

Based on WebKit, the browser engine provides support for HTML5 (and related)

standards and technologies, including CSS3 and the JavaScript language and associated

standards, such as AJAX, JavaScript Object Notation (JSON), and XML. We have

optimized WebKit in a number of ways:

• improved user interaction (e.g., complex touch-event handling, smooth

zooming/scrolling, fat-finger touch target detection), performance, and battery life

for mobile devices

• enhanced user operations such as fast scrolling and zoom (e.g., zooming in on a

webpage) to reduce RAM utilization

• enhanced JavaScript execution to improve performance and reduce CPU utilization

and unnecessary battery drain

• reduced power consumption (e.g., by throttling background threads)

• support for multimodal input (e.g., trackpad, keyboard, and virtual keyboard)

• improved overall speed (e.g., by selective image down-sampling)

54 © 2014, QNX Software Systems Limited

HMI Layer

http://www.webkit.org

Qt application model

QNX CAR 2.1 includes the runtime binaries for version 5.2 of the Qt framework as

well as several Qt-compliant libraries that allow HMI apps to access middleware

services.

Developers can write apps that use the Qt framework to specify their GUIs and use

the Qt-compliant libraries to access many middleware services. These services include

but aren't limited to:

• PPS

• ASR

• navigation

• multimedia

• vehicle sensors

• Bluetooth profiles

• application launching

PNG

Aa

QML

</>

Qt5

Qt5Qt5Qt5Qt5

mm-player

Application source files

Application code (Qt5)

PhoneRadioNavigationMedia

Qt5 interfaces for libraries

QPPSQtQnxCar2QPlayer

Qt runtime libraries

QPPS

QtQnxCar2

QPlayer

Packaged
application
(.bar file)

C API

QDB

DBs Nav & media info

C API

Middleware
services

PPS

Figure 11: Qt application model

As Figure 11: Qt application model (p. 55) illustrates, Qt apps access middleware

services through Qt5 interfaces in their source files. These interfaces are exposed by

© 2014, QNX Software Systems Limited 55

Qt application model

Qt libraries and consist of C++ classes that manage services such as media, navigation,

radio, and phone. Each app links in its own copy of any required Qt libraries, which

talk directly to middleware services (e.g., mm-player, QDB) through their C APIs or

PPS. The platform ships with these Qt-compliant libraries:

QPlayer

Integrates apps with the platform's media browsing and playback engine,

mm-player, by providing a Qt5 API that wraps the mm-player C library.

QtQnxCar2

Provides controls for configuring all other middleware services (e.g.,

navigation, vehicle sensors, ASR) and for accessing QDB databases.

QPPS

Provides a Qt5 API for reading from and writing to PPS objects, replacing

the POSIX API for PPS. The QtQnxCar2 library uses the QPPS library, but

apps can also use the QPPS library directly.

You can find full details on these libraries in the Qt Development Environment guide.

56 © 2014, QNX Software Systems Limited

HMI Layer

Application Management

The Application Management service (also known as UI Core) controls the application

lifecycle: starting, switching, activating, sleeping, and terminating. It also provides a

means of restricting the services that applications can use. UI Core includes Screen,

a component that allows multiple applications built with disparate technologies to

share the same physical display real estate.

The figure below shows the main UI Core components: the application installer, the

authorization manager (authman), Screen, and Launcher.

Window Manager (Navigator)
various technologies

Screen

Authman Launcher

ApplicationApplication Application

Installer

Permissions

Native plugins

UI Core

Sandboxed apps

OpenGL ES

HTML5

Qt

PPSScreen

Runtime environment Window
management

Figure 12: UI Core components

The application installer unpackages the application, validates its signature, and

installs the application on the QNX CAR platform.

Launcher enables any application to launch any other application in any UI environment

(subject to system permissions).

The authman module controls which APIs and system services can be used by each

application, enforcing the security model that the system developers have defined.

This authorization ensures that downloaded applications can't use interfaces they

aren't authorized to use. See Application and Window Management for details.

The Screen module integrates multiple graphics and UI technologies into a single

scene that can be rendered on the display. Developers can create a separate pane for

the output of each rendering engine (such as HTML5, Qt, Video, or OpenGL ES). Each

frame buffer can be transformed (scaling, translation, rotation, alpha blend, etc.) to

build the final display. Whenever possible, Screen uses GPU-accelerated operations

to build the display as optimally as possible, falling back on software only when the

hardware can't satisfy a request.

© 2014, QNX Software Systems Limited 57

Application Management

As an example, consider the screenshot of the Torch browser application below:

Figure 13: Torch browser application

What appears to be a single homogeneous display is actually made up of the following:

• HTML5 browser chrome (title bar, forward/backward buttons, address bar)

• natively rendered image

• HTML5 navigator tabs

Screen provides a lightweight composited windowing system. Unlike traditional

windowing systems that arbitrate access to a single buffer associated with a display,

a composited windowing system combines individual off-screen buffers holding window

contents into one image, which is associated with a display.

For more information about Screen, see the Screen Graphics Subsystem Developer's

Guide.

58 © 2014, QNX Software Systems Limited

HMI Layer

HMI Notification Manager

The HMI Notification Manager handles asynchronous, multimodal events based on

predefined priorities.

The manager appraises incoming events, applies appropriate rules specified in its

configuration file, and then notifies all HMI subscribers via PPS. Like a window

manager, the HMI Notification Manager decides when and how events should get

processed, based on their priority, and determines whether or not to notify the user

via the HMI. But unlike a window manager, it also responds to low-level system services

using various input modalities and can manage various outputs in addition to a video

display (e.g., you could use the manager to handle audio streams).

Suppose an event such as an incoming phone call occurs. The HMI Notification

Manager will notify the Navigator application, which will automatically switch to the

appropriate screen for the user to deal with the event, and then automatically switch

back to the previous screen when that event has finished (e.g., the phone calls ends).

Based on priorities set in the configuration file, the HMI Notification Manager can

prioritize competing events—an incoming call versus a low-fuel alert—and apply the

appropriate policy for handling them.

For more information, see the HMI Notification Manager guide.

© 2014, QNX Software Systems Limited 59

HMI Notification Manager

Index

A

adaptive partitioning 24
Apache Cordova 52
Applications Window Manager, See Navigator
architecture 9

overview of 9
architecture (multimedia) 30
ASR 10, 35, 36, 39

components 39
modules 36

authorization manager (authman) 57
Automatic Speech Recognition (ASR) 35

B

backup camera, See rearview camera
Bluetooth 22, 44
boards supported 15
Boot Manager 19
boot time optimization 19
browser engine 54

C

camera, rearview 43
Car Connectivity Consortium (CCC) 46
Cordova plugins 52

E

Eco 15

F

Freescale 15

H

High Availability 23, 24
watchdog 24

HMI 50
application support 50

HMI layer 10
HMI Notification Manager 59
HMI versions 10
HTML5 52, 54

application framework 52
runtime environment 54

I

i.MX6Q SABRE Lite 15
IDA (Instant Device Activation) 22

intents 36
io-asr-generic 39
io-pkt 47
iOS 45
IPC 13

J

Jacinto 15

L

Launcher 57

M

Media Transfer Protocol, See MTP
microkernel 22, 23, 28

instrumented 23
middleware layer 10
MirrorLink 46
MTP 46
multimedia architecture 30

N

Natural Language Adaptation Layer (NLAL) 36
navigation engines 33

changing without affecting HMI apps 33
Navigator 53, 59

automatic screen switching in response to events 59
usage of Screen 53

networking 22
NPAPI 10
NPAPI plugins 52
NVIDIA 15

O

OpenGL ES 26

P

partners 17
platform layer 9
POSIX 23, 24
POSIX API 44
PPS 10, 13, 33, 36, 45

ASR and 36
Bluetooth and 45
navigation objects 33

Push-to-Talk 36

© 2014, QNX Software Systems Limited 61

Architecture Guide

Q

Qnet 23
Qt 55

application model 55
libraries 55

R

radio 42
rearview camera 43
resource manager 24

POSIX interface 24

S

Screen 57
slogger 13
software update 27
speech recognition, See ASR
Speech-To-Text (STT), See ASR
System Launch and Monitor (SLM) 19

system profiler 23

T

Technical support 8
Tegra 3 15
Texas Instruments 15
Text-To-Speech (TTS) 38

See also ASR
TTS 39
Typographical conventions 6

U

UI Core 57

W

watchdog 24
WebKit 54
WebView 54

62 © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Top-Level Design
	Common Mechanisms
	Supported Boards
	Ecosystem
	Boot Time Optimization
	Platform Layer
	QNX Neutrino RTOS
	Microkernel
	Instant Device Activation
	Networking
	Fault detection
	High Availability
	Adaptive Partitioning
	Resource manager framework

	OpenGL ES
	Software Update

	Middleware Layer
	Multimedia
	Navigation
	Automatic Speech Recognition (ASR)
	ASR modules
	ASR and TTS integration

	Radio
	Rearview camera
	Mobile Device Gateway
	Android interfaces
	Bluetooth
	DLNA
	Apple iOS interfaces
	MTP device interface
	MirrorLink
	Network interfaces
	USB

	HMI Layer
	Application support
	HTML5 application framework
	Browser engine

	Qt application model
	Application Management
	HMI Notification Manager

	Index

