
QNX CAR™ Platform for Infotainment 2.1

QNX CAR™ Platform for Infotainment 2.1

QNX CAR Multimedia Architecture
Guide

©2013–2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, Foundry27 are trademarks of
BlackBerry Limited that are registered and/or used in certain jurisdictions, and
used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Thursday, April 17, 2014

Table of Contents

About This Guide ...5
Typographical conventions ...6

Technical support ...8

Chapter 1: QNX CAR Multimedia Architecture ...9

Media device detection and synchronization ..12

Media browsing ..14

Media playback ..16

QNX CAR Multimedia Architecture Guide

Table of Contents

About This Guide

The QNX CAR Multimedia Architecture Guide provides an overview of the multimedia

components in the QNX CAR Platform for Infotainment and describes how they work

together.

This table may help you find what you need in this guide:

Go to:To find out about:

QNX CAR Multimedia Architecture (p. 9)The layers in the multimedia architecture

and the communication between

components

Media device detection and

synchronization (p. 12)

The components used to detect

mediastores and synchronize their

metadata

Media browsing (p. 14)The components used to browse media

Media playback (p. 16)The components used to play media

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective � Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
QNX CAR Multimedia Architecture

The QNX CAR Platform brings together many different components to support the

media tasks of synchronizing metadata with databases, browsing mediastore contents,

and playing audio and video files.

To carry out user-requested media actions, the Media Player app in the HMI sends

commands to the mm-player server. This program uses several components, shipped

with either the CAR platform or the QNX SDK for Apps and Media to access media

filesystems and to browse and play media files. In addition, mm-player synchronizes

the media information on devices with the contents of databases managed by the QNX

Database (QDB) server. The information flow between these components looks like

this:

QNX Neutrino RTOS

Device publishers

Output

PPS

QDB
databases

io-audiomm-renderer

mm-sync

mm-detect

Play
media

Browse
media

Browse
media

Initiate synch

C APIs of
supporting components

iPodDLNAAVRCPPOSIXsynceddb

(C API)mm-player

Devices libraryQPlayer
extension

(car.mediaplayer)

Media Player (and other media apps)

OS services

Multimedia
components

HMI

Figure 1: QNX CAR Multimedia Architecture

Copyright © 2014, QNX Software Systems Limited 9

Communication

As Figure 1: QNX CAR Multimedia Architecture (p. 9) shows, communication between

and within the HMI, multimedia components, and OS services layers is handled by

native extensions, C APIs, QDB databases, and the Persistent Publish/Subscribe (PPS)

service. On CAR systems, the PPS and QDB services are running by default. This way,

the CAR user can initiate media actions as soon as the HMI loads. The components

in the various layers will then forward the appropriate commands and data amongst

themselves to perform the requested operations.

HMI

This release includes both an HTML5 and a Qt5 version of the HMI. The HTML5 HMI

includes the car.mediaplayer WebWorks extension, which provides a JavaScript

API that the Media Player app uses to send media requests to mm-player. In the

Qt5 HMI, Media Player communicates with mm-player through the QPlayer library,

which provides a Qt5 API for issuing media requests.

To customize media browsing and playback, you can modify the reference media player

shipped with the platform or write your own media apps. In addition to the WebWorks

extension and Qt library, your apps can directly call the C API of mm-player. All

three interfaces—car.mediaplayer, QPlayer, and the mm-player C API—define

functions for:

• retrieving a list of accessible media sources

• retrieving track metadata (e.g., artist name, album name, track title)

• starting and stopping playback

• jumping to a specific track during playback

• handling updates in playback state, media sources, and track postion

The functions defined in these interfaces aren't specific to any device type, which

allows your apps to work with a wide variety of media hardware and also simplifies

their design because most of the application logic is handled by mm-player.

Multimedia components

The mm-player service is a media browsing and playback engine that processes

commands sent by HMI apps through the car.mediaplayer extension. To support

different device types, mm-player uses plugins. Each plugin interfaces to a particular

device type to carry out media operations. For example, suppose you insert an SD

card. The POSIX plugin supports this type of device, so it detects the SD card insertion

and informs mm-player of the newly connected media source. This same plugin will

then be used for all media operations on the SD card. For more information about mm-

player plugins, see the Media Player Plugins chapter in the Multimedia Player

Developer's Guide.

The following services support the operations of mm-player:

10 Copyright © 2014, QNX Software Systems Limited

QNX CAR Multimedia Architecture

mm-detect

Discovers media devices and initiates synchronization of metadata.

mm-sync

Synchronizes metadata from tracks and playlists on media devices into QDB

databases.

mm-renderer

Plays audio and video tracks, and reports playback state.

io-audio

Starts audio drivers to enable outputting of audio streams through hardware.

OS services

Device publishers provide information about attached devices through PPS. When the

user attaches a device to their in-car system, the appropriate OS services inform the

device publishers, which then write device information (e.g., mountpoints) to PPS

objects in a directory monitored by mm-detect. The mm-detect service uses this

information to start synchronizing the new device's metadata.

Other OS-layer components, such as the filesystem mounting service and various

resource managers, support specific mm-player plugins.

Copyright © 2014, QNX Software Systems Limited 11

Media device detection and synchronization

QNX CAR automates media device detection and synchronization. When the user

attaches a device for the first time, the mm-detect and mm-sync services coordinate

to upload the device's metadata to its QDB database.

The interaction between these components proceeds like this:

QNX Neutrino RTOS

Device publishers

Output

PPS

QDB
databases

io-audiomm-renderer

mm-sync

mm-detect

Play
media

Browse
media

Browse
media

Initiate synch

C APIs of
supporting components

iPodDLNAAVRCPPOSIXsynceddb

(C API)mm-player

Devices libraryQPlayer
extension

(car.mediaplayer)

Media Player (and other media apps)

OS services

Multimedia
components

HMI

1

2

3

4

5

6 6

Figure 2: Media device detection and synchronization

1. Detecting device attachments

Device publishers don't physically detect when users attach or detach devices.

Other OS-layer processes—device drivers and protocol stacks—monitor I/O hardware

for physical state changes that indicate device attachments or detachments (e.g.,

SD card insertions or USB device connections). Because they interface with

hardware, the drivers and stacks contain up-to-date details on the physical

connectivity and filesystem mountpoints of attached devices. The publishers must

12 Copyright © 2014, QNX Software Systems Limited

QNX CAR Multimedia Architecture

communicate with these system processes to learn of device attachments and

detachments.

2. Obtaining device information

Different publishers use different methods for obtaining the latest device

information. The usblauncher publisher queries the io-usb process for device

information (for details, see “The usblauncher Service” in the Device Publishers

Programmer's Guide). The mmcsdpub and cdpub publishers monitor specific /dev

paths and when they notice new or updated entries, they communicate with the

drivers to obtain device information (for details, see “Role of device drivers and

mcd”).

3. Publishing device information to PPS

After retrieving information about newly attached devices from other OS processes,

the publishers output this information in text format to PPS objects. Each object

stores information that describes a single device. Also, the publishers use different

object types for storing device connectivity, driver process, and filesystem

information. For more details, see “PPS object types”.

When publishers learn from a driver or protocol stack process that a device has

been detached, they delete the PPS objects related to that device.

4. Reading device information from PPS

The mm-detect service keeps track of which devices are attached to your in-car

system by monitoring the filesystem information objects in PPS. When a new object

is created following a device attachment, mm-detect reads the new device's

information from the object, and stores this information.

5. Initiating synchronization

To start synchronizing the device's media metadata, mm-detect loads the device's

QDB database into memory (see the “Loading QDB databases” section in the QDB

Developer's Guide for information on how this is done). Next, mm-detect passes

the device's mountpoint and the name of its database to mm-sync. The database

name is constructed from the device's unique ID (UID), which was read (along with

the mountpoint) from the PPS object. The synchronization path given to mm-sync

is the root directory of the device's filesystem, which means all media files on the

device have their metadata synchronized.

6. Extracting and storing media metadata

The mm-sync service uses media libraries (not shown) to read filepaths and other

information from media tracks found on the device. Based on its internal mapping

of metadata fields to database fields, mm-sync copies the extracted metadata into

the appropriate tables and columns. At this point, applications can query the QDB

database to obtain creation and runtime information on all audio and video content

found on the device.

Copyright © 2014, QNX Software Systems Limited 13

Media device detection and synchronization

Media browsing

The Media Player and other HMI apps can browse the contents of mediastores through

mm-player. The mm-player plugins can explore filesystems and retrieve metadata

from different device types and databases.

The interaction between these components proceeds like this:

QNX Neutrino RTOS

Device publishers

Output

PPS

QDB
databases

io-audiomm-renderer

mm-sync

mm-detect

Play
media

Browse
media

Browse
media

Initiate synch

C APIs of
supporting components

iPodDLNAAVRCPPOSIXsynceddb

(C API)mm-player

Devices libraryQPlayer
extension

(car.mediaplayer)

Media Player (and other media apps)

OS services

Multimedia
components

HMI

2 2 2 2

2

11

1 1

1

33

33

3

Figure 3: Media browsing

1. Sending browsing requests

To send browsing requests to mm-player, HMI apps call functions in either the

car.mediaplayer WebWorks extension (for the HTML5 HMI) or the QtQnxCar2

library (for the Qt5 HMI), which then forwards the requests to the C API of mm-

player.

Each of these components exposes the following browsing operations:

• browse

14 Copyright © 2014, QNX Software Systems Limited

QNX CAR Multimedia Architecture

• search

• getMetadata

2. Navigating filesystems and retrieving metadata

The mm-player service uses plugins to explore mediastore filesystems and extract

metadata from their files. Each plugin uses a different mechanism to carry out the

browse, search, and getMetadata operations on a particular device type. For

instance, the synceddb plugin queries QDB databases for file information whereas

the POSIX plugin uses the mmbrowse library to navigate directories and read

information from locally mounted files. For details on how individual plugins browse

media content, refer to the Multimedia Player Plugins chapter in the Multimedia

Player Developer's Guide.

3. Delivering media information

After the appropriate plugin retrieves the file information or track metadata

requested by the browse operation, mm-player delivers the results data to the

HMI through either the car.mediaplayer extension or the QtQnxCar2 library,

depending on which HMI version is in use. For examples of reading results data

after issuing function calls or REST requests to the first of these mechanisms, see

the “car.mediaplayer.Mediaplayer” section of the HTML5 Developer's Guide.

The browse and search operations return file information that includes but is not

limited to:

• filepath

• media item type (e.g., audio, video, folder)

The getMetadata operation returns track metadata that may include but is not

limited to:

• artist name

• album name

• track title

• duration (runtime)

The plugins also notify mm-player when any serious browsing error occurs, so

that the service can inform HMI apps when a browse operation fails.

Copyright © 2014, QNX Software Systems Limited 15

Media browsing

Media playback

The Media Player and other HMI apps can play media files through mm-player. The

mm-player plugins manage their own tracksessions (track sequences) and support

playback on different device types by using mm-renderer and device-specific

components to control media streams.

The interaction between these components proceeds like this:

QNX Neutrino RTOS

Device publishers

Output

PPS

QDB
databases

io-audiomm-renderer

mm-sync

mm-detect

Play
media

Browse
media

Browse
media

Initiate synch

C APIs of
supporting components

iPodDLNAAVRCPPOSIXsynceddb

(C API)mm-player

Devices libraryQPlayer
extension

(car.mediaplayer)

Media Player (and other media apps)

OS services

Multimedia
components

HMI

1 1 33

2 2 2 2

2

2

1 3

11 33

Figure 4: Media playback

1. Sending tracksession and playback requests

To send tracksession and playback requests to mm-player, HMI apps call functions

in either the car.mediaplayer WebWorks extension (for the HTML5 HMI) or

the QtQnxCar2 library (for the Qt5 HMI), which then forwards the requests to the

C API of mm-player.

The tracksession operations exposed by each of these components include but are

not limited to:

16 Copyright © 2014, QNX Software Systems Limited

QNX CAR Multimedia Architecture

• createTrackSession

• destroyTrackSession

• getCurrentTrack

• getTrackSessionItems

The playback operations exposed include but are not limited to:

• play

• stop

• setPlaybackRate

• seek

• next

• previous

• shuffle

2. Managing tracksessions and playing media

The mm-player service uses tracksessions to store playback sequences of tracks.

For commands related solely to tracksession management (e.g., createTrackSession,

deleteTrackSession), mm-player creates, deletes, or updates its internal data

structures that store tracksession information, but then skips the rest of this step.

For commands affecting playback activity (e.g., play, setPlaybackRate), mm-

player reads its tracksession data structures to determine which track to play

next based on the requested operation. For instance, when processing the next

command, mm-player:

a. Retrieves the index of the next track

Each tracksession stores a sequential track list, which lists tracks in their relative

order defined at the media source, and a randomized track list, which lists track

in a random order generated when an app issues the shuffle command. The list

that mm-player reads the index of the next track from depends on the shuffle

setting.

b. Retrieves the metadata and the URL of the next track

Using the index of the next track, mm-player looks up the track's URL and

metadata, which are also stored in the tracksession. The URL indicates the

location of the media file that will become the new input to mm-renderer.

The metadata contains track creation and runtime information that mm-player

can deliver to HMI apps so that they can refresh their display to show the newly

selected track.

To manage playback, mm-player uses device-specific components to initiate and

terminate media streams from devices and also uses mm-renderer to direct the

media content to the designated output.

Copyright © 2014, QNX Software Systems Limited 17

Media playback

Each plugin interacts with different libraries and drivers to direct playback

commands to the devices that it supports. For example, the iPod plugin sends

commands to the ipodlib library, which communicates with the driver that

manages the audio device that the iPod is connected to. The plugin also provides

mm-renderer with the URL of the device path (i.e., /dev entry) for this same

device, to attach it as the input. When the library instructs the device driver to set

its media sampling rate above 0, the media content starts flowing from the iPod,

through the audio device, to mm-renderer. As it does with all plugins, the mm-

renderer service then directs the media flow to the io-audio utility, which

outputs it over the designated hardware (e.g., speakers).

For a more detailed explanation of playback, see the “Media playback” section in

the Multimedia Architecture Guide for the QNX SDK for Apps and Media.

In this release, mm-player doesn't support video playback (only audio).

To play videos, your apps must use the HTML5 video features.

3. Reporting tracksession and playback state

After the necessary tracksession and playback actions are carried out by a plugin,

the mm-player service delivers any results data to the HMI through either the

car.mediaplayer extension or the QtQnxCar2 library, depending on which

HMI version is in use. For examples of retrieving results data after issuing function

calls or REST requests to the first of these mechanisms, see the

“car.mediaplayer.Mediaplayer” section.

The getTrackSessionItems and getCurrentTrack operations return information for

tracksession items that includes but is not limited to:

• filepath

• media item type (e.g., audio, video, folder)

The getCurrentTrack operation also returns metadata, which includes but is not

limited to:

• artist name

• album name

• track title

• duration (runtime)

The playback operations listed in Step 1 (p. 16) don't produce any new playback

data. For these operations, no new information needs to be communicated to the

HMI, so the WebWorks extension or the Qt library returns only a Boolean field

indicating if the operation succeeded or failed.

The plugins also notify mm-player when any serious playback error occurs, so

that the service can inform HMI apps when a playback operation fails.

18 Copyright © 2014, QNX Software Systems Limited

QNX CAR Multimedia Architecture

Index

B

browsing media files 14

C

car.mediaplayer extension 10

D

detecting devices 12
device detection and synchronization process 12
device publishers 11

role in CAR multimedia architecture 11

H

HMI apps 10
sending media browsing and playback commands 10
sending requests to mm-player 10

M

media browsing process 14

media files 14, 16
browsing 14
playing 16

media playback process 16
mm-player 10

plugins 10
support for different device types 10
supporting services 10

multimedia 9
architecture 9
components 9
layers 9

P

playing media files 16

S

synchronizing media metadata 12

T

Technical support 8
Typographical conventions 6

Copyright © 2014, QNX Software Systems Limited 19

QNX CAR Multimedia Architecture Guide

20 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	QNX CAR Multimedia Architecture
	Media device detection and synchronization
	Media browsing
	Media playback

	Index

