
QNX CAR™ Platform for Infotainment 2.1

QNX CAR™ Platform for Infotainment 2.1

Multimedia Controller Configuration
Guide

©2013–2014, QNX Software Systems Limited, a subsidiary of BlackBerry. All
rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Neutrino, Momentics, Aviage, and Foundry27 are trademarks
of BlackBerry Limited that are registered and/or used in certain jurisdictions,
and used under license by QNX Software Systems Limited. All other trademarks
belong to their respective owners.

Electronic edition published: Tuesday, February 25, 2014

Table of Contents

About This Guide ..5
Typographical conventions ...6

Technical support ...8

Chapter 1: Multimedia Controller Overview ...9

Deciding whether to run mm-control ...10

mm-control components ..12

Chapter 2: Running mm-control ..13

Restarting mm-control manually ...15

Preventing mm-control from running ...16

mm-control SLM specification ...17

mm-control command line ...19

mm-control configuration file ..20

Chapter 3: Setup and Command Monitoring ..23

Media command processing ...25

Multimedia Controller Configuration Guide

Table of Contents

About This Guide

The Multimedia Controller Configuration Guide provides QNX CAR users with a reference

for commands they can issue to the mm-control service to perform multimedia tasks

such as playback, output device definition, and tracksession management.

Understanding the capabilities and PPS interface of mm-control is necessary if you

want to write your own media applications that use this service or to customize the

Media Player application shipped with the QNX CAR platform.

This table may help you find what you need in this guide:

Go to:To find out about:

Multimedia Controller Overview (p. 9)The role of mm-control in car

infotainment systems and the multimedia

components it interacts with

Running mm-control (p. 13)Starting mm-control with specific

command options during bootup

mm-control command line (p. 19)The syntax of the command line for

starting mm-control

Setup and Command Monitoring (p. 23)The procedure used by mm-control to

set up its PPS interface and start listening

for media commands

Copyright © 2014, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish

technical terms. In general, the conventions we use conform to those found in IEEE

POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl –Alt –DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View .

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or

useful.

Cautions tell you about commands or procedures that may have unwanted

or undesirable side effects.

Warnings tell you about commands or procedures that could be dangerous

to your files, your hardware, or even yourself.

6 Copyright © 2014, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we use a forward slash (/) as a delimiter in all pathnames,

including those pointing to Windows files. We also generally follow POSIX/UNIX

filesystem conventions.

Copyright © 2014, QNX Software Systems Limited 7

Typographical conventions

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website

(www.qnx.com). You'll find a wide range of support options, including community

forums.

8 Copyright © 2014, QNX Software Systems Limited

About This Guide

http://www.qnx.com

Chapter 1
Multimedia Controller Overview

The multimedia controller service, mm-control, listens through the Persistent

Publish/Subscribe (PPS) service for commands sent by media applications and then

invokes the appropriate platform components to carry out the requested media

operations.

The mm-control service provides a middle layer between the car system's HMI and

the lower-level multimedia services that access media content on devices and manage

playback. By providing this middle layer, the QNX CAR platform abstracts several

components into one controller that supports many types of media operations.

HMI applications can write media commands (encoded as JSON objects) into the PPS

control object monitored by mm-control and then read the results of those commands

through the same PPS object, after mm-control has processed those commands.

The QNX CAR platform includes the following components (multimedia services) that

continuously listen for and execute commands forwarded by mm-control:

• Digital Media Controller client (dmcclient): one of many DLNA services, this

component processes commands (e.g., play, pause, seek) that control playback

on DMS devices paired with the in-car system

• mm-trkmgr: the multimedia tracksession manager, which creates and deletes

tracksessions, and updates information on the tracks within a tracksession

• mm-renderer: the low-level media engine, which starts and stops the media flow,

and controls the playback speed, position, and repeat mode

Copyright © 2014, QNX Software Systems Limited 9

Deciding whether to run mm-control

You can choose whether or not to run mm-control in your car system. The

mm-control service is a convenience feature that allows you to issue a default set

of media commands through PPS. But you can replace mm-control with your own

PPS-based service or write applications that access the lower-level multimedia services.

By default, mm-control is launched during bootup by the System Launch Monitor

(SLM) utility. To prevent mm-control from being started, you can edit the SLM

configuration file (see the Preventing mm-control from running (p. 16) section).

When to use mm-control

You should use mm-control if you want to:

• simplify your applications by using a built-in service that processes commands for

many types of media operations; this way, you don't have to write your own

command-processing service or learn the APIs of multiple special-purpose

components

• send declarative commands, compactly encoded in JSON, through PPS to perform

media operations in one step

• read the results of media operations consistently and easily, by examining the id

and err attributes in the JSON data sent through PPS

When not to use mm-control

You shouldn't use mm-control, but instead use an alternative mechanism for handling

media operations if you want to:

• perform media operations not supported by mm-control, such as adjusting the

playback volume or changing playlists without interrupting playback

• reduce your system load by running fewer multimedia services; for example, if your

applications are designed to use only mm-renderer's features to play content

from only USB devices, you don't need to run mm-trkmgr or any of the DLNA

services

There are three alternatives to using mm-control. You can:

• write a replacement service that interprets PPS commands and invokes the

lower-level multimedia services to execute those commands

• write applications in HTML5 and use the HTML5 audio and video extensions to

manage playback

• write applications in C and directly call the APIs of individual multimedia services

10 Copyright © 2014, QNX Software Systems Limited

Multimedia Controller Overview

To use Media Player when you're not running mm-control, you must modify

the application so it uses one of the mechanisms listed in the first two

alternatives.

Writing a replacement for mm-control

You can write your own middle layer for processing media commands sent by HMI

applications written in HTML5.

A middle-layer component with a PPS interface is an easy design option because the

QNX CAR platform includes the JNEXT PPS extension, which provides JavaScript

functions for accessing PPS objects. Using this provided extension saves you from

writing your own extension that wraps the API calls to native (i.e., nonweb) applications

in JavaScript.

For an example of accessing PPS by using JNEXT, see the Media Player code, located

in /apps/MediaPlayer.testDev_MediaPlayer49ba23c5/native/.

Writing applications that use the HTML5 media extensions

You can write HMI applications that use the standard HTML5 audio and video

extensions for media operations. This lets you avoid using a middle layer or writing

any JNEXT extensions.

The web browser in the HMI uses the HTML5 audio and video extensions to play media

files. These extensions are part of a webkit that transparently invokes mm-renderer

to manage media playback.

Writing applications that directly access multimedia services

If your system design requires that you program in C, you can write HMI applications

that directly access individual multimedia services instead of sending PPS commands

through a middle layer. With this design, your code can call the API functions of the

mm-trkmgr, mm-renderer, and DLNA services, and then read the return codes and

error information sent back by these APIs to interpret the results of media operations.

Copyright © 2014, QNX Software Systems Limited 11

Deciding whether to run mm-control

mm-control components

The mm-control service exposes several media-management features in one collection

of PPS commands. Applications specify commands by stating the operation name

followed by the data needed for the operation.

The operation name consists of multiple words: the first word is the command category

and the remaining words refer to the specific action to perform. The command category

determines which mm-control object type the command affects. Separate subsystems

process commands targetted to each of the following object types:

• outputs: outputs provide destinations for media playback; destinations can be audio

or video devices

• zones: zones group outputs together for convenience; for example, you could define

one zone for outputting video content and another zone for outputting audio content

• tracksessions: tracksessions manage ordered track collections that you can provide

to a player; each tracksession stores a start index and an end index as well as the

URLs to the source files of its tracks

• players: players control media flows from an input to one or many outputs; each

player operates independently of the others, meaning the playback commands sent

to it affect only its own media flow

All information on outputs and zones is maintained in internal data structures, so the

commands that configure these types of objects don't entail communicating with other

multimedia services. But the commands affecting tracksessions and players do require

communicating with mm-trkmgr, mm-renderer, and possibly other multimedia

services (depending on the device type). When processing commands in either of these

last two categories, mm-control uses either PPS objects or API calls to invoke the

multimedia services necessary to carry out the command.

See the /pps/services/mm-control/control entry in the PPS Objects

Reference for full details on the command message format and the commands

supported by each of the mm-control components.

12 Copyright © 2014, QNX Software Systems Limited

Multimedia Controller Overview

Chapter 2
Running mm-control

Client applications don't need to explicitly start the mm-control service before

performing media operations. The QNX CAR platform uses the System Launch Monitor

(SLM) service to start mm-control during bootup; this ensures mm-control is running

when the HMI loads and users begin interacting with its applications. For recovery

purposes, applications can start mm-control manually.

Starting mm-control with specific command options during bootup

SLM automates process management by launching processes in an order that respects

their interprocess dependencies. The list of processes to launch and their properties,

including their command-line arguments and interprocess dependencies, is written

in a configuration file. During bootup, SLM reads this file and carries out its instructions

for starting processes.

Using SLM to start mm-control ensures that the system is ready to process media

commands when the HMI finishes loading. For more information on SLM, refer to

“System Launch and Monitor (SLM)” in the System Services Reference.

SLM is preconfigured to start mm-control with specific command options, but you

can specify whatever command options you want.

To change the command options passed by SLM to mm-control:

1. From a command console connected to your car system, navigate to and open the

SLM configuration file, whose default path is: /etc/slm-config-all.xml.

2. In the configuration file, locate the component that specifies the properties for

mm-control.

This component is the <SLM:component> XML object with the name "mmcon

trol".

3. Change the value of the <SLM:args> tag in the "mmcontrol" component to

hold the new set of command-line options to pass to mm-control at startup.

For the full list of command-line options, see the mm-control command line (p.

19) section.

4. Save the changes to the SLM configuration file and return to the console.

5. If you want the new configuration to take effect immediately, enter reboot in the

console.

The system reboots and the SLM utility relaunches all the processes, including

mm-control, with the command options specified in the configuration file. When

the system finishes reloading, mm-control is running with the new configuration.

Copyright © 2014, QNX Software Systems Limited 13

If you don't reboot after changing the configuration file, mm-control continues

to run with its previous configuration until you shut down the system and restart,

at which point the new command options take effect.

14 Copyright © 2014, QNX Software Systems Limited

Running mm-control

Restarting mm-control manually

An application can restart mm-control with an explicit command if the service has

unexpectedly stopped and if the application can't continue without support for media

operations.

The exact conditions that require a client application to restart mm-control are:

• the mm-control process has terminated abnormally;

• the client must perform media management tasks that require the use of

mm-control; and

• the car infotainment system can't be rebooted to restart mm-control with SLM

because doing so would be too disruptive to the user.

To restart mm-control manually, your application must:

1. Confirm that mm-control isn't already running by checking the list of active

processes with the pidin or ps command.

2. Confirm that the pps, io-audio_mcbsp, audioman, mm-renderer, and

mm-trkmgr processes are already running by checking the same list of active

processes.

The mm-control process depends on all five of these other services, so if any

one is not running, that service must be started; otherwise, mm-control won't

run properly.

3. Send the command line for running mm-control with the desired command

options to the OS, using the system() or spawn() system call.

The OS tries to run mm-control and reports the operation outcome to sloginfo.

For details on the system calls that send commands to the OS, see the system()

or spawn() section in the C Library Reference. For the full list of command-line

options, see the mm-control command line (p. 19) section.

If sloginfo shows no error, mm-control is running again, so your application can

resume sending PPS commands to the service to perform media operations.

Your car infotainment system should run only one instance of mm-control, so separate

media applications must coordinate with each other to avoid redundantly starting

mm-control.

Copyright © 2014, QNX Software Systems Limited 15

Restarting mm-control manually

Preventing mm-control from running

By default, mm-control is running on QNX CAR systems. If you decide to use a

different mechanism for processing media commands, you can prevent SLM from

launching mm-control during bootup by editing the SLM configuration file.

The version of the Media Player application shipped with the QNX CAR

platform won't function properly if you don't run mm-control. To use

Media Player without mm-control, you must modify the application to

use either a replacement service or the HTML5 media extensions to execute

media operations. Both of these scenarios are explained in the Deciding

whether to run mm-control (p. 10) section.

To prevent SLM from launching mm-control:

1. From a command console connected to your car system, navigate to and open the

SLM configuration file, whose default path is: /etc/slm-config-all.xml.

2. In the configuration file, locate the component that specifies the properties for

mm-control.

This component is the <SLM:component> XML object with the name "mmcon

trol".

3. Disable the component by commenting it out (using the XML syntax of <!-- and

-->) or by deleting it from the file.

4. Save the changes to the SLM configuration file.

In all subsequent bootups of the car system, mm-control won't be started.

16 Copyright © 2014, QNX Software Systems Limited

Running mm-control

mm-control SLM specification

SLM uses an XML configuration file to store the list of processes to be automatically

started and their properties. In QNX CAR systems, mm-control and its prerequisite

and dependant programs are listed in the SLM configuration file. You can change this

configuration file to run mm-control with different command options.

The following excerpt from the SLM configuration file shows some of the property

settings for mm-control:

<SLM:component name="mmcontrol">
 <SLM:command>mm-control</SLM:command>
 <SLM:args>-v -c /etc/mm-control.cfg</SLM:args>
 <SLM:waitfor wait="pathname">
 /pps/services/mm-control/control</SLM:waitfor>
 <SLM:depend>mmtrkmgr</SLM:depend>
 <SLM:depend>mmrenderer</SLM:depend>
</SLM:component>

Here, the name "mmcontrol" assigned to the <SLM:component> XML object is

just an internal label used within the configuration file. This label differs from the

actual process name of mm-control, which is provided in the <SLM:command> tag.

Command-line arguments

The <SLM:args> tag lists the command-line arguments. By default, one level of

verbosity (-v) and the path for the included configuration file are specified, but you

can change the value of <SLM:args> to use different command-line arguments. The

new settings take effect after you reboot the system and SLM relaunches the service.

See Running mm-control (p. 13) for instructions on changing the command settings

for mm-control.

Workflow

The <SLM:depend> objects list which processes must be running before mm-control

can be started. Some programs that are prerequisites to mm-control have their own

prerequisites. For instance, mm-renderer requires audioman to be running because

the former service uses the audio manager library. The interprocess dependencies

between mm-control and the other programs it uses make up a complex workflow

of processes.

The <SLM:waitfor> object specifies that the mm-control service must create a

PPS object at the path matching the <SLM:waitfor> tag value before SLM can start

any processes that depend on mm-control. Because the PPS service must be running

for mm-control to create its PPS object, there's an indirect process dependency of

mm-control on pps.

Copyright © 2014, QNX Software Systems Limited 17

mm-control SLM specification

The following is an illustration of the process workflow subsection closest to

mm-control:

mm-control

mm-renderermm-trkmgr

io-audio
_mcbsp

audioman

pps

Figure 1: Workflow of mm-control and related processes

In Figure 1 (p. 18), the solid lines represent direct process dependencies, which are

specified in <SLM:depend> objects, and the dotted line represents an indirect process

dependency, which is specified in a <SLM:waitfor> object.

18 Copyright © 2014, QNX Software Systems Limited

Running mm-control

mm-control command line

Start multimedia controller service

Synopsis:

mm-control [-b] [-p priority] [-c config_file] [-v]

Options:

-b

Run the mm-control process in the foreground. This option is handy for

debugging because it makes mm-control send log messages to the standard

error in addition to sloginfo.

By default, mm-control runs in the background.

-p priority

Set the priority of the mm-control process. When your system is busy

running many applications, the priority level can have a considerable impact

on the turnaround time for servicing media operation requests.

The valid range for priority settings is 1 to 63; the default setting is 15.

-c config_file

The path of the configuration file, which defines the initial outputs and

zones.

A configuration file is included with mm-control, located at

/etc/mm-control.cfg.

-v

Increase output verbosity. Messages are written to sloginfo. The -v option

is cumulative, so you can add several v's to increase verbosity, up to five

levels.

Output verbosity is handy when you're trying to understand the operation of

mm-control. However, when lots of -v arguments are used, the logging

becomes quite significant and can change timing noticeably. The verbosity

setting is good for systems under development but probably shouldn't be

used in production systems or during performance testing.

Copyright © 2014, QNX Software Systems Limited 19

mm-control command line

Description:

The mm-control command starts the multimedia controller service, which listens

for commands sent through the PPS service and then invokes the necessary platform

components to carry out the requested media operations. Each time a command is

written to the PPS control object (/pps/services/mm-control/control),

mm-control verifies the syntax of the command and if it's valid, writes instructions

to PPS or makes API calls to invoke the necessary multimedia services to execute the

command.

The outcomes (results) of media operations are written to the same PPS object so that

client applications can read that object to get those results.

Through mm-control command options, you can name the configuration file used

for defining initial outputs and zones, enable logging, and set process options such

as the priority level. To change the command-line arguments passed to mm-control,

you must modify the SLM configuration file.

mm-control configuration file

The mm-control configuration file lets you define a default set of outputs and zones.

This data is specified in JSON format, which provides a compact way of expressing

lists of available playback destinations. At startup, mm-control reads the configuration

file and stores its information in internal data structures.

Defining an initial set of outputs and zones ensures media applications such as Media

Player have default destinations for outputting media content during playback.

QNX CAR systems include an mm-control configuration file, whose full path is:

/etc/mm-control.cfg. You can change the initial set of outputs and zones either

by modifying the included configuration file or by creating another configuration file.

When using a different file, you must direct mm-control to that file by using the -c

command option, as explained in the mm-control command line (p. 19) section.

The full contents of the included file look like this:

{
 "outputs":[
 {
 "cabin":{
 "url":"audio:default",
 "type":"audio"
 }
 },
 {
 "rear":{
 "url":"snd:pcmPreferredpb",
 "type":"audio"
 }
 },
 {
 "output2":{
 "url":"screen:?dstx=320&dsty=85&zorder=100\
 &dstw=460&dsth=259",

20 Copyright © 2014, QNX Software Systems Limited

Running mm-control

 "type":"video"
 }
 }
],
 "zones":[
 {
 "audio":[
 "cabin"
]
 },
 {
 "video":[
 "cabin",
 "output2"
]
 }
]
}

This configuration defines separate audio outputs for the front and rear speakers of

the car, and a video output with the specified screen location and dimensions. Separate

zones for outputting audio content and video content are also defined. Although the

rear speakers aren't used in any of the default zones, you could use them as a

destination in media playback.

Copyright © 2014, QNX Software Systems Limited 21

mm-control command line

Chapter 3
Setup and Command Monitoring

At startup, mm-control parses its command-line options and a configuration file (if

specified), which lists the default outputs and zones for media playback. The

mm-control service then creates and begins monitoring a Persistent Publish/Subscribe

(PPS) object, to accept commands from client applications for performing media

operations.

These setup tasks are performed in an automated, ongoing procedure. Understanding

this procedure is necessary if you want to write a replacement service for mm-control

or write your own media applications that use mm-control.

The mm-control process performs the following setup steps:

1. Command-line and configuration file parsing

At startup, mm-control parses its command-line options, which may define:

• the path to the configuration file, which defines the default outputs and zones

available for media playback

• process metrics, including the scheduling priority level and a flag for running

in the background

• the verbosity level, which is useful for debugging

When mm-control learns the path of the configuration file, the service immediately

parses that file, verifying that its contents are in proper JSON format. If so,

mm-control builds up lists of default outputs and default zones by copying the

data from the entries in the outputs and zones list objects found in the

configuration file into internal arrays.

If the file contents are not properly formatted, mm-control reports an error in

sloginfo and skips the step of setting up a default set of outputs and zones.

2. PPS interface setup

The mm-control process calls open() to create a PPS control object

(/pps/services/mm-control/control) that provides a mechanism for client

applications to issue media commands. This PPS object is opened in delta mode,

which allows any process reading the object (mm-control or an HMI application

monitoring media operations) to receive only the changed object content when the

object is updated. The mm-control process then calls read() on the PPS control

object; this call blocks until the object is updated by another process.

For information on opening a PPS object with the delta and wait options set,

which is necessary to achieve this behavior, see the “Pathname open options”

section in the QNX PPS Developer's Guide.

Copyright © 2014, QNX Software Systems Limited 23

3. Media command processing

When a client application writes a command into the PPS control object, the read()

call unblocks and returns the new object content, which should contain a

syntactically valid command. If so, the appropriate mm-control subsystem then

processes the command and writes its outcome to the PPS control object. The

client that issued the command can then read the outcome from this object.

For details on how mm-control parses, executes, and reports the outcome of a

command, see Media command processing (p. 25).

After processing a command, mm-control issues another call to read() to resume

monitoring the PPS control object for new commands. Thus, this third step is

repeated each time a command is issued.

The mm-control service runs continuously, so client applications can issue media

commands and read their outcomes through PPS at any time. If the mm-control

process terminates unexpectedly, an application can restart the service manually to

restore support for media operations.

24 Copyright © 2014, QNX Software Systems Limited

Setup and Command Monitoring

Media command processing

The mm-control service monitors its PPS control object constantly. When a client

writes a command to this PPS object, mm-control checks the command syntax and

if it's valid, invokes other multimedia services to perform the requested media operation.

When these services report that the operation is complete, mm-control writes the

operation's outcome to the same PPS object.

We recommend that any PPS-based service that you write to replace mm-control

follow the procedure and design described here.

The mm-control service consists of a PPS communications layer and several

subsystems that each manage a different set of media operations. When a client

application writes a new command to the PPS control object, these mm-control

components process the command by performing the following steps:

1. Reading new PPS object content

The read() system call returns the new content of the PPS control object to the

mm-control service. The service's PPS layer searches this content for the msg

and dat attributes; if either one is missing, the service logs an error and stops

processing the command.

2. Dispatching appropriate subsystem

If the command written to PPS has the necessary attributes, mm-control reads

the operation name stored in the msg attribute. The first word in the operation

name refers to the command category, which must be one of the following:

• output

• zone

• trksession

• player

The commands in each of these categories operate on different object types, as

explained in mm-control components (p. 12). Based on the command category,

mm-control invokes the appropriate subsystem to examine the remaining words

in the operation name.

If the operation name doesn't begin with any of the four words listed above or if

its remaining words don't refer to any action supported by the selected subsystem,

mm-control logs an error and stops processing the command.

3. Data and state validation

The mm-control subsystem that's processing the command examines the dat

attribute to verify that the client provided all the necessary data parameters, and

then verifies that the parameter values and the current playback state are valid for

Copyright © 2014, QNX Software Systems Limited 25

Media command processing

the requested operation. For example, when issuing the “player_play” command,

a client must provide a player name that matches one of the entries in the

mm-control players list. Also, the playback state, which is also stored by

mm-control, must be IDLE, PAUSED, or STOPPED.

If the validity check for the data and the playback state fails, mm-control logs

an error and stops processing the command.

4. Invoking lower-level multimedia services

The lower-level multimedia services aren't needed to carry out any commands in

the output and zone categories; for these commands, mm-control skips this

step.

When processing trksession or player commands, mm-control either writes

to PPS objects or makes API calls to invoke the lower-level multimedia services to

carry out the requested media operation. For instance, in response to the “play

er_set_params” command, the player subsystem examines the type attribute

found in the content read from the PPS control object. Based on this attribute's

value (e.g., input, track), the subsystem then calls the mm-renderer API

function that sets the specified type of parameters (e.g., mmr_input_parameters(),

mmr_track_parameters()).

For the full list of supported media commands, shown by category, see the

/pps/services/mm-control/control entry in the PPS Objects Reference.

5. Updating internal data structures

The mm-control subsystem that processes the command checks the return codes

of all API function calls. After each successful call, the subsystem updates the

internal data structures as necessary. For example, the mmr_set_speed() returns

0 after the “player_set_speed” command has been successfully executed. In

response, the player subsystem updates the speed setting in the data structure

that holds information on the player indicated by the command's data.

For commands that don't require using any lower-level multimedia services (e.g.,

“output_create” and “zone_attach_outputs”, the relevant subsystem

simply updates the lists of media resources available for playback, based on the

requested operation.

6. Reporting operation outcome

The last command-processing activity done by mm-control is to write the outcome

(result) of the media operation into the PPS control object.

The operation name is echoed in the res attribute. Any data describing the new

playback state is encoded in JSON format and stored in the data attribute; for

instance, after executing the “player_next_track” command, mm-control

reports the track ID, file ID, and URL for the newly selected (and now playing)

track. The error code is written to the err attribute. If this code is 0, then no error

26 Copyright © 2014, QNX Software Systems Limited

Setup and Command Monitoring

has occurred. Otherwise, the errstr attribute contains a brief description of the

error encountered.

Clients can retrieve the results as soon as mm-control updates the PPS control

object by using delta mode and blocking read() calls, identical to how mm-control

reads this same PPS object.

Copyright © 2014, QNX Software Systems Limited 27

Media command processing

Index

C

changing mm-control command options 13
command monitoring and execution 23
command outcome reporting 25
command parsing and execution 25
command processing procedure 23, 25
command syntax 19

mm-control 19

D

description 20
mm-control 20

Disabling mm-control 16

M

mm-control command line 19
mm-control configuration file 20
mm-control prerequisites 17
mm-control setup condition 17
mm-control SLM specification 17
mm-control usage 19
mm-control workflow 17

O

options 19
mm-control 19

P

Preventing mm-control from running 16

R

restarting mm-control from an application 15
restarting mm-control manually 15

S

SLM configuration file 17
starting mm-control during bootup 13
starting mm-control with SLM 13
starting the multimedia controller service 19
System Launch Monitor (SLM) service 13

T

Technical support 8
Typographical conventions 6

Copyright © 2014, QNX Software Systems Limited 29

Multimedia Controller Configuration Guide

30 Copyright © 2014, QNX Software Systems Limited

Index

	Table of Contents
	About This Guide
	Typographical conventions
	Technical support

	Multimedia Controller Overview
	Deciding whether to run mm-control
	mm-control components

	Running mm-control
	Restarting mm-control manually
	Preventing mm-control from running
	mm-control SLM specification
	mm-control command line
	mm-control configuration file

	Setup and Command Monitoring
	Media command processing

	Index

