
System Services Reference

QNX® SDK for Apps and Media 1.1

©2015, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: April 01, 2015

Contents
About This Reference..5

Typographical conventions..6

Technical support...8

Chapter 1: Application Launcher (launcher)...9

Chapter 2: Audio Management...11

Chapter 3: Authorization Manager (authman)..13

Chapter 4: Camera Video (rearview-camera)...21

Chapter 5: Geolocation..33

Chapter 6: Image Generation Utilities ..35
diskimage..36

gen-ifs.py..47

gen-osversion.py..49

mkimage.py..51

mksysimage.py..53

mktar.py..56

Chapter 7: Keyboard (keyboard-imf)...59

Chapter 8: Network Manager (net_pps)...63

Chapter 9: Shutdown (coreServices2)..65

Chapter 10: System Launch and Monitor (SLM)...69

Index...71

System Services Reference

Contents

About This Reference

The System Services Reference lists the main services available in the QNX SDK for Apps and Media

(also referred to as the Apps and Media SDK). This reference describes each of these services and,

where applicable, how to configure and run them.

See:To find out about:

Application Launcher (launcher) (p. 9)Launching apps

Audio Management (p. 11)Routing audio streams and managing the behavior

of concurrent audio streams

Authorization Manager (authman) (p. 13)Authorizing access to services and resources

Camera Video (rearview-camera) (p. 21)Accessing camera video

Geolocation (p. 33)Determining geo-coordinates

Image Generation Utilities (p. 35)Generating images (mksysimage.py and other

utilities)

Keyboard (keyboard-imf) (p. 59)Managing the on-screen and USB keyboards

Network Manager (net_pps) (p. 63)Setting up networking

Shutdown (coreServices2) (p. 65)Shutting down

System Launch and Monitor (SLM) (p. 69)Managing the launch order of processes at startup

Copyright © 2015, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In

general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have unwanted or

undesirable side effects.

WARNING: Warnings tell you about commands or procedures that could be dangerous to your

files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited6

About This Reference

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those

pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited 7

About This Reference

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qnx.com).

You'll find a wide range of support options, including community forums.

Copyright © 2015, QNX Software Systems Limited8

About This Reference

http://www.qnx.com

Chapter 1
Application Launcher (launcher)

Take launch requests from the HMI and check app permissions with the Authorization Manager

Synopsis:

launcher [-b]

[-k]

[-l]

[-m app_mem_limit]

[-p path prefix]

[-s service prefix]

[-t num_apps]

[-U uid[:gid,sgid,...]]

[-v]

project_name

Runs on:

QNX Neutrino

Options:

-b

Disable background launch (i.e., launch in the foreground).

-k

Disable background verify.

-l

Disable lock of memory pages for launcher.

-m app_mem_limit

RLIMIT_FREEMEM rlim_cur value (e.g., 970 is 97.0%).

-p path prefix

Location of target root (default is /).

-s service prefix

Location of target pps (default is /pps/services/launcher).

-t num_apps

Number of most-used apps to batch-verify before starting window manager.

Copyright © 2015, QNX Software Systems Limited 9

-U uid [:gid , sgid ,...]

Set explicit uid and optionally gid and any number of sgids.

-v

Increase output verbosity. The -v option is cumulative; each additional v adds a level of

verbosity.

Description:

The launcher service acts as a kind of go-between, taking requests from the HMI to launch an app

while at the same time checking with the Authorization Manager (p. 13) (authman) to confirm that

the app has the appropriate permissions to do what it wants.

The service communicates with the rest of the system using the /pps/services/launcher/control object.

For more information about PPS objects, see the “PPS Objects Reference ”.

PPS objects:

To launch an app, the launcher service echoes a start command to the launcher control object.

This command contains the application's ID string, display parameters, and a numeric identifier:

echo "msg::start\ndat::application_id,display_parameters\nid:: ID_number"

> /pps/services/launcher/control

You can manually launch apps by issuing the same start command. In this case, we strongly

recommend that you provide the WIDTH and HEIGHT parameters to define the dimensions of

the app display area (in pixels). These parameters ensure that the app displays correctly.

After the app starts, the service stores the process ID (PID) in the response message, which it writes

to the same object. For information about working with this object, see the

“/pps/services/launcher/control” entry in the PPS Objects Reference.

Copyright © 2015, QNX Software Systems Limited10

Application Launcher (launcher)

Chapter 2
Audio Management

The QNX SDK for Apps and Media uses the audio manager to route audio streams to output devices

and to manage the behavior of concurrent audio streams.

Overview:

The QNX SDK for Apps and Media supports diverse audio stream types (sound effects, ringtones, media

from a media player, etc.). Each audio stream type must be routed to the most appropriate output

device (speakers, headphones, etc.). When two or more audio streams request access to an output

device, applications must know which audio stream takes priority, and what should be done with the

other audio streams so that:

• the audio stream with the highest priority takes precedence and has access to the preferred output

device(s)

• other audio streams are attenuated or muted, as required by the system configuration

• media playback is stopped or paused when an audio stream is “ducked” in favor of a higher priority

audio stream, and restarted when appropriate

Applications implemented using QNX SDK for Apps and Media should use the audio manager to route

audio streams to their preferred output devices, and based on the configuration, attenuate or mute

audio streams when higher-priorty audio stream types open. The audio manager doesn't pause or stop

audio playback. For example, the audio manager may mute media playback when the telephone rings,

but the media will continue playing. Applications should use the Now Playing service to manage pausing

and stopping playback.

Audio manager:

The audio manager and its library of functions and data structures provide:

• automatic routing, and manual routing of the PCM preferred path

• audio stream type identification

• audio concurrency policy (ducking) management

• audio device monitoring and mounting (e.g., headset, A2DP, HDMI)

For more information about using the audio manager, see Audio Manager Library Reference.

PPS objects:
The audio manager uses the PPS objects listed below. For information about these objects, see the

relevant pages in the PPS Objects Reference.

• /pps/services/audio/audio_router_control

• /pps/services/audio/audio_router_status

• /pps/services/audio/control

• /pps/services/audio/devices/

• /pps/services/audio/status

• /pps/services/audio/types/

• /pps/services/audio/voice_status

Copyright © 2015, QNX Software Systems Limited 11

Chapter 3
Authorization Manager (authman)

Indicate whether a process has access to requested system services or resources

Synopsis:

authman [-b] [-c] [-U uid[:gid]] [-v]

Runs on:

QNX Neutrino

Options:

-b

Disable background launch (i.e., launch in the foreground).

-c

Specify the configuration file to use for running authman. The default is

/etc/authman/authman.cfg.

-U uid [:gid]

Run with the specified credentials when possible, to avoid running as root all the time.

When started, authman runs as root to perform privileged operations. If you use the -U

option, the service drops its credentials to the user ID (uid) and the group ID (gid), if it's

provided. The argument format must match the format in the /etc/passwd and /etc/group
files.

-v

Increase output verbosity. The -v option is cumulative; each additional v increases the

level of verbosity, up to three levels (-vvv).

Description:

The Authorization Manager (authman) is a resource manager that handles requests from other processes

to access system services they may need, such as the PPS filesystem, system paths, permissions, or

OS system calls. The authman service uses a set of capabilities to protect system services from

unauthorized use. Capabilities specify the apps that can use a particular service.

Although authman is responsible for determining whether an app can use the services it wants to use,

the app doesn't send requests directly to authman. Instead, the Application Launcher (p. 9)

(launcher) does this on the app's behalf. When asked to launch an app, the launcher process asks

authman to confirm that the app has permission to use the requested capabilities.

Launcher is responsible for handling situations when the app isn't allowed access to the requested

resources. If Launcher allows the app to run without certain capabilities, the app is responsible for

handling how to run without having access to all the resources that it requires.

Copyright © 2015, QNX Software Systems Limited 13

The authorization process is as follows:

1. When an app is packaged, its MANIFEST.MF file contains any capabilities that were listed in the

<action> element in the bar-descriptor.xml file.

2. When it receives a request to launch an app (e.g., from the HMI), the launcher process reads

the app's MANIFEST.MF file for the requested capabilities (e.g.,

Entry-Point-System-Actions: access_shared).

3. The launcher process asks authman to confirm that the app is entitled to do what it wants to

do.

4. The authman process checks the sys.res file to see if the app has an allow permission for each

requested capability.

5. If authman returns true for the capability request, launcher starts the app and the app can

access all the resources it needs. If authman returns false, launcher can still start the app, but

the app must run with fewer resources.

Files used for authorization

The following files are used when the system attempts to launch an app:

DescriptionFile

A configuration file that accompanies the app's BlackBerry ARchive (BAR) file,

which contains all the app's code and resources. The bar-descriptor.xml file lists

/apps/name /native/bar-descriptor.xml

an app's assets, window attributes, capabilities (given in the <action> element),

and more. This file is primarily used by the tools, which use its information to

generate the manifest file, MANIFEST.MF.

Generated during packaging, the MANIFEST.MF file contains various identifiers

for the app, as well as the capabilities it wants to access (e.g.,

access_internet).

/apps/name /META-INF/MANIFEST.MF

Lists all the capabilities and their associated ACL (access control list) filesystem

permissions. The authman process reads this file to determine whether an app

has the permissions it needs.

/etc/authman/sys.acl

Lists the available system capabilities and the apps that are entitled to use them.

The authman process checks this file before authorizing an app to be launched.

/etc/authman/sys.res

Format for the sys.acl file

This file lists all the available capabilities, along with the filesystem permissions for particular paths

that apps may use. These paths are typically PPS directories, but you can specify any paths.

To ensure your authorization rule changes are permanent, modify the sys.acl file on your host

or development system. This file is found in $QNX_DEPLOYMENT_WORKSPACE/target/etc/authman/.
Any changes made to the sys.acl copy on the target are lost when you rebuild and redeploy

the image. You should refer to the Getting Started guide for the value of the

QNX_DEPLOYMENT_WORKSPACE variable.

Copyright © 2015, QNX Software Systems Limited14

Authorization Manager (authman)

If a capability isn't listed in this file but an app requests that capability, the app is given access

to it, based on the default authman behavior. Keep this default behaviour in mind to properly

secure your system.

To define a capability, you must list its name on a separate line and list any actions that apply to it

on subsequent lines, which must be indented. The general format is as follows:

capability_name

ACTION flags [arguments]*

...

The capability_name field is a string that stores the capability name. The authman service supports

these actions:

ACL (Access Control List)

Assigns permissions to paths accessible with that capability

MAC (Macro)

Invokes a macro, which is a group of actions

PAB (Procmgr Ability)

Defines procmgr abilities, which control the operations that applications are permitted to

do (if they're granted the enclosing capability)

An action can be followed by certain flags, depending on the action. The authman service supports

these flags:

opt

Indicates the action is optional, meaning if it fails, the other actions for the capability can

still be applied. Without this flag, failure of the action causes authman to roll back the

entire capability.

override_gid

Apply the action to this group ID (GID) instead of the app's GID. Overriding the GID on an

action is useful when a service needs to create internal processes with unique GIDs.

Access control lists

Each access control list (ACL) action applies a permissions mask to a particular path:

capability_name

ACL [opt] group_mode[:other_mode] [path]

where:

opt

Specifies that this ACL is optional to the capability. If this option isn't used and the path

subsequently specified isn't available, the permission is rolled back. The opt string is useful

when a path might not be present. For example, when a PPS object gets created later.

Copyright © 2015, QNX Software Systems Limited 15

Authorization Manager (authman)

group_mode[:other_mode]

Specifies group and optionally, other permissions for the path that follows. Each mode can

contain any combination of the read (r), write (w), and execute (x) permissions.

By default, authman clears all the other bits to control path access strictly by group, but

you can retain those bits by defining them in this flag. This option is useful for retaining

execute permissions on a directory when a write ACL is applied. It's also useful for making

a file readable for everyone, but writeable only by the ACL.

path

Provides the filepath or directory to access. It's common to point to a PPS object path, but

it can be any filepath or location.

For example:

read_geolocation

ACL opt rw /pps/services/geolocation/control

ACL rw /pps/services/geolocation/status

The entry above indicates that any app that wants to use the read_geolocation capability has read

and write permissions on the /pps/services/geolocation/control and /pps/services/geolocation/status
objects. If /pps/services/geolocation/control doesn't exist, access to /pps/services/geolocation/status
still applies, provided it's available.

Macros

You can define macros to group actions together and to reuse them in multiple capabilities and for

many GIDs. A macro must be defined before its first usage in a capability (i.e., earlier in the

configuration file), as follows:

macro macro_access_deviceproperties_private

ACL x /pps/services/private

ACL r /pps/services/private/deviceproperties

The entry above defines the macro_access_deviceproperties_private macro, which groups

two ACL actions. These actions allow apps to navigate to the /pps/services/private directory (by assigning

it the x permission) and to read the /pps/services/private/deviceproperties file (by assigning it the r

permission).

You can use the MAC action to invoke actions from another capability as follows:

read_device_identifying_information

MAC macro_access_deviceproperties_private

MAC macro_access_device_properties

The read_device_identifying_information capability performs the actions in the

macro_access_deviceproperties_private and macro_access_device_properties

macros. Although not shown here, the opt flag can be specified for a MAC action; this way, if any

action in the referenced macro fails, the other capability actions can still be applied. You can also use

the override_gid flag to apply a GID to the multiple paths defined by the ACLs within a macro.

Copyright © 2015, QNX Software Systems Limited16

Authorization Manager (authman)

When using macros, you must be careful not to create duelling capabilities, which occur when

two capabilities apply an ACL to the same path. This causes problems because if one ACL

grants access to a path while the other ACL denies access, the capability that was processed

last is the winner.

Procmgr abilities

Procmgr abilities are process-manager settings that control which operations are permitted for a

particular process. When given these abilities, a process obtains functionality normally restricted to

root.

Using PAB actions, you can define procmgr abilities for a capability as follows:

capability_name

PAB ability_name inheritance_flag

[sr1_low-sr1_high [... sr5_low-sr5_high]]

The ability_name string following the PAB keyword indicates the ability being granted. The abilities

supported by the Apps and Media SDK are listed in the procmgr_ability() description found in the QNX

Neutrino C Library Reference. Note that this list provides the numeric constants that can be passed

to the library function; in the sys.acl file, however, you must refer to abilities by using strings. The

string name for an ability is the name of its numeric constant without the PROCMGR_AID_ prefix. Also,

authman reads the ability strings in a case-insensitive manner. This means you can use child_newapp

in sys.acl to refer to the ability represented by PROCMGR_AID_CHILD_NEWAPP.

The inheritance_flag must be either inherit_yes (to ensure this new ability setting is inherited by

child processes) or inherit_no (to ensure the setting isn't inherited, which is the default behavior).

Depending on the ability, you can define one or more value subranges (in the srN_low and srN_high

fields). The units and meaning of these values are specific to the ability. For example, the

PROCMGR_AID_SPAWN_SETGID and PROCMGR_AID_SPAWN_SETUID abilities accept lower and

upper bounds on the GIDs or UIDs that a process can assign to a child process. The

PROCMGR_AID_MEM_LOCK ability locks a range of the process address space into physical memory;

in this case, the range arguments specify the start and end addresses.

The following capability rule defines multiple abilities that have different inheritance and subrange

values:

is_launch_delegate

PAB setuid inherit_yes 1-2147483647

PAB setgid inherit_yes 1-2147483647

PAB child_newapp inherit_no

PAB pathspace inherit_no

The PAB statements shown above assign abilities to applications granted the is_launch_delegate

capability. These applications can then assign any UID or GID to their child processes, as indicated

by the maximum numeric range given for the setuid and setgid abilities. They can also create a

new application ID for a child process (as indicated by child_newapp), and add items to the kernel

pathname prefix space (as indicated by pathspace).

Copyright © 2015, QNX Software Systems Limited 17

Authorization Manager (authman)

Format for the sys.res file

This file is used to restrict authorization—only the particular apps listed under each available capability

can use that capability.

To ensure your authorization rule changes are permanent, modify the sys.res file on your host

or development system, for the reason explained in the sys.acl file description.

If a capability is defined in the sys.acl file but not listed in sys.res, an app requesting that

capability is automatically granted access to it (effectively allow *). It's important to remember

this default behavior to properly secure your system.

The format to define access to a capability is as follows:

capability_name

[allow|deny] [application-name|application-name*|*]

capability

Here's an example of how to allow any apps to use the access_internet capability:

access_internet

allow *

In the example above, any is indicated by the wildcard (*).

Conversely, if you want specific apps to access a capability, you can define a whitelist. A whitelist

gives access or privileges to those that are listed, but denies access to all other apps or processes. You

can specify apps and processes using a partial name and wildcard (*) or using a full name. The names

of apps can be determined when you install them on the target. For example, the following specification

grants the access_special_info capability to apps with names beginning with mybrowser (e.g.,

mybrowser_one) and to an app with the full name mydemo.testDev_emodemod448125f :

access_special_info

deny *

allow mybrowser*

allow mydemo.testDev_emodemod448125f

Predefined capabilities

After a capability is granted, it allows an app to use a service that would be otherwise restricted. This

consideration is important when you are designing capabilities for your system. You can define any

number of capabilities. In addition, your host and target image may come with predefined capabilities

that you can use and build into your image. Here are the capabilities provided for the QNX SDK for

Apps and Media:

DescriptionCapability

Do not use in production systems. This capability is used for the

Cordova PPS Demo sample, which shows how to restrict application

access_demo

access to a PPS object and how to define a whitelist. For information

Copyright © 2015, QNX Software Systems Limited18

Authorization Manager (authman)

DescriptionCapability

about this permission, see “Adding a permission to access a PPS

object” in the HTML5 Developer's Guide.

Use the internet connection from a Wi-Fi, wired, or other type of

connection to access locations that are not local on the target.

access_internet

Read and write files shared between applications that run on the

target.

access_shared

Access restricted Audio Manager capabilities that include, but aren't

limited to, adjusting volume and voice configuration features. For

more information, see the functions in the Audio Manager API.

audio_manager_access

Configure system-level functionality, such as network settings,

restarting, or shutting down of the target.

configure_system

Read the target's current location. This location is determined based

on the assigned IP address.

read_geolocation or

access_location_services

The capabilities listed below may be found in the sys.acl and sys.res files installed on your host. These

capabilities are required for authman to function correctly but are for internal use only. Don't remove

any of the permissions below, as it may cause undefined behavior:

• access_bbid

• access_pimdomain_enterprisecalllogs

• access_pimdomain_enterprisecontacts

• access_pimdomain_personalcontacts

• access_remote_framewriter

• access_social_lookup

• access_sys

• allow_app_purchase

• apkruntime

• is_apkruntime_launch_delegate

• is_launch_delegate

• list_pimdomain_enterpriseaccounts

• list_pimdomain_personalaccounts

• manage_cert

• play_audio

• post_notification

• read_device_identifying_information

• record_audio

• request_pim_session

• run_air_native

• set_audio_volume

• use_camera

• use_installer

Copyright © 2015, QNX Software Systems Limited 19

Authorization Manager (authman)

Configuration file

The authman configuration file provides additional controls for enabling access to system services,

based on process permissions and capability names. For instance, you can define client whitelists to

restrict the commands that client applications can issue to authman. These commands provide dynamic

updates to your security configuration, such as setting and deleting capabilities for applications.

Each whitelist names the commands that clients with a certain set of credentials (i.e., process

permissions) can use. Entries in this configuration section have the following form:

username= <username>, ["default"|override_uid], ["default"|override_gid],

<cmd_1>, <cmd_2>, ..., <cmd_N>

When "default" is given for the UID or GID, the permission setting in /etc/passwd is used. You can

override the permissions by defining the override_uid and/or override_gid values. Consider this excerpt:

[client_whitelist]

USERNAME UID GID CMDS LIST

username= apps, default, 0, chkcap

This command ensures that clients with the username apps, running with their default UID and a GID

of 0, can issue the chkcap command to the authman service.

You can also whitelist the paths that can be affected by rule files loaded at runtime. The owner of a

capability prefix, which is used to represent a capability category, can send the load command to

authman to dynamically load, from an .acl or a .res file, a set of capability-based pathname permissions

or application access settings. In the configuration file, each whitelist statement contains a capability

prefix followed by a path. The statement ensures that only those apps with a dynamically loaded

capability that begins with the stated prefix can access the path that follows. Apps without capabilities

based on this prefix can't access the path.

The default configuration file defines these prefix-based paths:

[capability_prefix_paths]

prefix=cds, /pps/services/networking/control

prefix=cds, /pps/services/networking/status

prefix=cds, /pps/services/networking/proxy

prefix=cds, /pps/services/wifi/status

These settings ensure that only apps that are granted capabilities with the cds prefix at runtime can

access the stated PPS paths. The advantage of defining such whitelists is that they let you constrain

the paths affected by certain capabilities without requiring someone with system expertise to review

the rule files to ensure that they meet security requirements. Likewise, these files only define access

settings and pathname permissions, for security reasons.

Copyright © 2015, QNX Software Systems Limited20

Authorization Manager (authman)

Chapter 4
Camera Video (rearview-camera)

Allow access to the video stream for the camera (connected using USB or directly to the target board)

Syntax:

rearview-camera -bsize=dimensions

[-actvid-hsync=actvid]

[-adaptive-dei-int-mode=mode]

[-adaptive-dei-motion-mode=admode]

[-brightness= level]

[-clock-pol=polarity]

[-color-test=colortesttype]

[-contrast= level][-cpos=coordinates]

[-csize=dimensions]

[-data-bus-width=buswidth]

[-device=deviceid]

[-display=displayid][-ddr-clk=clock]

[-dmode=deinterlacemode]

[-edma-chan=channel]

[-fid-pol=polarity][-fill=buffmem]

[-format=bufferformat]

[-frame-count=count][-frame-rate= rate]

[-hsync-pol=polarity][-hue=color]

[-interface-type= itype]

[-nbufs=numbuffers] [-nlanes= lanes]

[-norm=vstandard]

[-parent-zorder=zorder]

[-pipeline=pipelineid]

[-pos=coordinates] [-prio= tpriority]

[-quit-if-no-video] [-saturation= level]

[-sensor-clk-mode=mode]

[-sfsize=dimensions][-size=dimensions]

[-spos=coordinates] [-ssize=dimensions]

[-source= index] [-source-type=sourcetype]

[-sync-type=stype]

[-verbosity] [-video-info=vidinfo]

[-vsync-pol=polarity]

Runs on:

QNX Neutrino

Copyright © 2015, QNX Software Systems Limited 21

Options:

-brightness= level

An integer value in the range of -128–127 that specifies the brightness level to use for

capturing video.

-bsize=dimensions

(Required) A pair of integers that specifies the dimensions of the buffers. The dimensions

are delimited by an x. For example, 1024x800. The same buffer size is used to capture

video and render display.

-clock-pol=polarity

An integer value that controls whether the clock polarity is inverted for capturing video. You

can use the following values to specify polarity:

• 1 — Polarity is inverted.

• 0 — Polarity is not inverted.

• -1 — Don't set polarity. Use the default polarity set on the camera.

-color-test=colortesttype

An integer value that represents a color test. The colors are tested for the camera. The color

test type can be one of the following values:

• 1 — Test the contrast.

• 2 — Test the brightness.

• 3 — Test the saturation.

• 4 — Test the hue.

-contrast= level

An integer value in the range of -128–127 that specifies the level of contrast to use for

capturing video.

-cpos=coordinates

A pair of integers that specifies the position to crop the captured video. The X and Y

coordinates are delimited using a comma (,). For example 10,10.

-csize=dimensions

A pair of integers that specifies the crop size to use for the captured video. The dimensions

are delimited by an x. For example, 790x593.

-data-bus-width=buswidth

An integer that specifies the width of the data bus for a parallel interface to use for capturing

video.

-device=deviceid

An integer that specifies the index of the device to use for capturing video.

Copyright © 2015, QNX Software Systems Limited22

Camera Video (rearview-camera)

-display=displayid

A string that represents a numeric value or a display type. As a numeric value, it's used to

represent the display ID. As a string value, it represents the display type using one of these

values, which are case-sensitive:

internal

An internal connection type to the display.

composite

A composite connection type to the display.

svideo

An S-Video connection type to the display.

YPbPr

The YPbPr signal of the component connection.

rgb

The RGB signal of the component connection.

rgbhv

The RBGHV signal of the component connection.

dvi

A DVI connection type to the display.

hdmi

An HDMI connection type to the display.

other

A connection type to the display which is one other than internal, composite,

S-Video, component, DVI, HDMI, or DisplayPort.

-dmode=deinterlacemode

A string that specifies the de-interlace mode to use for the captured video. The mode can

be specified using one of the following values, which are case-sensitive:

adaptive

Use motion adapative de-interlacing mode.

For Texas Instruments Jacinto 6 and Freescale i.MX6x SABRE Smart

Device targets, setting this value causes the motion-adaptive de-interlacer

(hardware) to be used.

bob

Use BOB de-interlacing mode.

Copyright © 2015, QNX Software Systems Limited 23

Camera Video (rearview-camera)

bob2

Use alternate BOB de-interlace mode.

none

Don't de-interlace the video. This value is used if this option isn't set.

weave

Use WEAVE de-interlace mode.

weave2

Use alternate WEAVE de-interlace mode.

-fid-pol=polarity

An integer that controls whether the field ID polarity signal is inverted for captured video.

You can use the following values to specify polarity:

• 1 — Polarity is inverted.

• 0 — Polarity is not inverted.

• -1 — Don't set polarity. Use the default polarity set on the camera.

-fill=buffmem

An integer that specifies what the buffer is initialized with.

-format=bufferformat

A string that specifies the buffer format. If this option isn't set, the default format is yvyu.

The format can be specified using one of the following values, which are case-sensitive:

rgb888

RGB888 format.

uyvy

UYVY format.

yuy2

YUY2 format.

yvyu

(default) YVYU format.

-frame-count=count

An integer that specifies the total frame count to be captured by the camera.

-frame-rate= rate

A float that specifies the expected frame rate (in frames per second) for capturing video.

Copyright © 2015, QNX Software Systems Limited24

Camera Video (rearview-camera)

-hsync-pol=polarity

An integer that controls whether the horizontal sync polarity is inverted. You can use the

following values to specify polarity:

• 1 — Polarity is inverted.

• 0 — Polarity is not inverted.

• -1 — Don't set polarity. Use the default polarity set on the camera.

-hue=color

An integer in the range of -128–127 that specifies the color used for capturing video.

-interface-type= itype

A string that specifies the type of interface used by the camera. The following values can

be used, which are case-sensitive:

csi2

The interface is a MIPI CSI2 interface.

parallel

The interface is parallel.

-nbufs=numbuffers

An integer that specifies the number of buffers created by the application. You should

allocate at least four buffers, but if you are using adaptive de-interlacing mode (specified

using the -dmode option), allocate at least ten buffers.

If this option isn't set, ten buffers are allocated when adaptive de-interlacing is used;

otherwise, four buffers are allocated.

-nlanes= lanes

An integer that specifies the number of CSI2 data lanes to be used for the camera.

-norm= vstandard

A string that specifies to use a National Television System Committee (NTSC), Phase

Alternating Line (PAL), or Sequential Color with Memory (SECAM) video standard. For more

information about:

• NTSC, see https://en.wikipedia.org/wiki/NTSC

• PAL, see https://en.wikipedia.org/wiki/PAL

• SECAM, see https://en.wikipedia.org/wiki/SECAM

The following video standard to capture video with can be specified using these values,

which are case-sensitive:

NTSC_M_J

Standard used in United States and Japan.

Copyright © 2015, QNX Software Systems Limited 25

Camera Video (rearview-camera)

https://en.wikipedia.org/wiki/NTSC
https://en.wikipedia.org/wiki/PAL
https://en.wikipedia.org/wiki/SECAM

NTSC_4_43

A pseudo-color system that transmits NTSC encoding (not a broadcast format).

PAL_M

PAL format that uses 525 lines and 59.94 fields per second; this video standard

is used in Brazil.

PAL_B_G_H_I_D

PAL format using 625 lines and 50 fields per second with various signal

characteristics and color encodings.

PAL_COMBINATION_N

PAL format with narrow bandwidth that's used in Argentina, Paraguay, and

Uruguay.

PAL_60

Multi-system PAL support that uses 525 lines and 60 fields per second (not a

broadcast format).

SECAM

Video standard used mainly in France.

-parent-zorder= zorder

An integer that specifies the z-order of the parent window. The video rendering window is

an embedded window (child) of the parent window.

-pipeline=pipelineid

An integer that specifies the WFD pipeline ID. When an ID is specified, it indicates to the

Screen Graphics Subsystem to use a non-composited layer on the display. The number of

pipelines vary for each hardware platform and its behavior depends on a number of factors

used by Screen. For information about the use of pipelines for composition, see

“Understanding composition” in the Screen Graphics Subsystem Developer's Guide.

-pos=coordinates

A pair of integers that specifies the position of the video window on the display. The X and

Y coordinates are delimited using a comma (,). For example, 10,10.

-prio= tpriority

An integer that specifies the priority of the capture thread relative to the original thread

priority. The default relative priority is +20.

-quit-if-no-video

Stop rearview-camera when no video input is detected. Depending on the decoder that's

used, there may be a delay in detecting whether video input has stopped.

Copyright © 2015, QNX Software Systems Limited26

Camera Video (rearview-camera)

-reenable-delay=delaytime

An integer that specifies the delay time (in milliseconds) to enable video capture after it

has stopped capturing the number of frames specified by the -frame-count= option. If

this option is not specified when the -frame-count= option is specified, a prompt appears

on command line of the target to click the Enter key to continue video capture.

-saturation= level

An integer in the range of -128–127 that specifies the intensity level of color to use for

capturing video.

-sfsize=dimensions

A pair of integers that specifies the dimensions of the source frame used for capturing video.

The dimensions are delimited by an x. For example, 720x400.

-size=dimensions

A pair of integers that specifies the dimensions of the rectangle to show the video on the

display. The dimensons are delimited using an x. For example, 720x400.

-ssize=dimensions

A pair of integers that specifiy the dimensions of the source viewport used for the captured

video. The dimensions are delimited by an x. For example, 1024x800.

-source= index

An integer that specifies the index of the device's video capture unit.

-spos=coordinates

A pair of integers that specifies the position of the source viewport. The X and Y coordinates

are delimited using a comma (,). For example, 10,10.

-ssize=dimensions

A pair of integers that specifies the dimensions of the source viewport used for the captured

video. The dimensons are delimited using an x. For example, 1024x800.

-verbosity

An integer that specifies the verbosity level for debugging.

-video-info= vidinfo

An integer that specifies the number of frames to wait before checking for the video

information, such as NTSC_M_J or PAL_M.

-vsync-pol=polarity

An integer that controls whether the vertical sync polarity is inverted. You can use the

following values to specify polarity:

• 1 — Polarity is inverted.

• 0 — Polarity is not inverted.

Copyright © 2015, QNX Software Systems Limited 27

Camera Video (rearview-camera)

• -1 — Don't set polarity. Use the default polarity set on the camera.

The following options are available only for specific platforms:

OptionsPlatform

Texas

Instruments

Jacinto 6

-actvid-hsync=actvid

An integer that specifies to use ACTVID style line capture. A value of zero or one can be

used to specify the ACTVID style. The default is negative one (-1) when this option isn't set.

-adaptive-dei-int-mode=mode

A string that specifies the interpolation mode for the adaptive de-interlacer. The mode can

be specified using one of these values, which are case-sensitive:

mode0

The interpolated field is created by line averaging from the YUV data. That is, the

interpolated line is created by averaging its top and bottom lines.

mode1

The interpolated field is created by averaging pixels from fields before and after

the current field. For example, if the current field is a top field, the interpolated

bottom field is created by averaging pixels from bottom field pictures before and

after the current field.

mode2

This mode is an edge assisted interlace mode with edges detected from the Luma

information in the frame window. Luma for missing lines are interpolated using

original Luma along the detected edge. MV from the MDT module is used to select

coefficients from a LUT on how 2D interpolation from the current field and 3D

interpolation from two fields adjacent to the current fields are blended.

mode3

The edge detection method used in this mode is similar to interpolation mode 2.

The only difference is that the edge-directed interpolation is performed on both

Luma and Chroma. Chroma is interpolated similarly according to the edge vectors

obtained based on Luma information. This value is default if this option isn't

specified.

-edma-chan=channel

An integer that specifies the enhanced direct memory access (EDMA) channel to use WEAVE2

de-interlacing. You can set a board-specific channel or use a default EDMA channel. Use a

range from 0–63 to specify a board-specific channel; otherwise, use negative one (-1) to

specify the default EDMA channel. When there's no EDMA channel specified, the default

channel is used. The default EDMA channel number is bound to the specific device and

source as follows:

• channel 6 for device 0 and source 0

• channel 7 for device 1 and source 0

Copyright © 2015, QNX Software Systems Limited28

Camera Video (rearview-camera)

OptionsPlatform

• channel 62 for device 0 and source 1

• channel 63 for device 1 and source 1

-sync-type= stype

An integer that specifies the synchronization signal type. You can set from 0–15. Alternatively,

set the value to negative one (-1) to use the default channel.

Texas

Instruments

OMAP5

-ddr-clk=clock

An integer value that specifies the dual-data rate clock (MHz) of the external CSI2 transmitter.

Freescale

SABRE i.MX6x
-adaptive-dei-motion-mode=admode

A string that specifies the motion mode for the adaptive de-interlacer. The mode can be one

of the following values, which are case-sensitive:

low

Do minimal conversion of interlaced fields to one progressive frame.

med

(Default) Use default settings for converting interlaced fields to a progressive

frame.

high

Do as much processing as required to produce higher image quality. It may

introduce some delays.

-sensor-clk-mode=mode

An integer that specifies the sensor clock mode using one of the following values:

• 0 — Gated clock.

• 1 — Non-gated clock.

• 2 — Progressive video interface CCIR 656.

• 3 — Interlaced video interface CCIR 656.

• 4 — Progressive video interface CCIR 1120 using double data rate.

• 5 — Progressive video using standard data rate.

• 6 — Interlaced video interface CCIR 1120 using double data rate.

• 7 — Interlaced video interface CCIR 1120 using standard data rate.

The following options are available only for specific video decoders:

OptionsVideo decoder

Analog Devices ADV7x -source-type= sourcetype

An integer that specifies the input source type. This option should be set when you

are setting the -source option. You can use the following source types:

Copyright © 2015, QNX Software Systems Limited 29

Camera Video (rearview-camera)

OptionsVideo decoder

• 0 — Single-ended composite (CVBS).

• 1 — Sequential Color with Memory (SECAM).

• 2 — Component interface (pCBCr).

• 3 — Differential composite (CVBS).

Description:

The rearview-camera utility starts the rearview-camera service. This service creates a parent window

and an embedded window. The embedded window joins the parent window, which is visible, so that

the camera stream can be seen on the display. After the HMI is running, it creates a window that the

embedded window can join and drops the original parent. The HMI creates an entry in a PPS object

so the rearview-camera service knows what window group to join.

To start the service manually, run the rearview-camera command located at

/base/usr/bin/rearview-camera.

In the QNX Apps and Media image, this command is run from the camera-start.sh startup script.

The service creates raw images that are encoded with the following syntax:

format -widthxheight -stride -#seqno -rearviewcapture.raw

Before you can use the rearview-camera service, the touchscreen connected to your target must be

calibrated using the calib-touch utility. After the touchscreen is successfully calibrated, you can

use calib-touch to save a configuration file to /etc/system/config/calib.

The rearview-camera service is built using Screen Graphics Subsystem to display video and is captured

using the Video Capture API Reference. For information about Screen Graphics Subsystem, see Screen

Graphics Subsystem Developer's Guide and Video Capture Library Reference.

PPS objects:

The service uses the following PPS objects:

• /pps/system/navigator/windowgroup

• /pps/system/navigator/command

The rearview-camera service joins the window group that the HMI identifies in the windowgroup object

using the rearview_camera attribute:

[n]rearview_camera::{94121bb8-4122-4dfb-8321-181eaf4c2553}

The rearview-camera service also listens to the command object and looks for either a pause or resume

action, which represents its new state:

rearview_camera:json:{"action": "pause"}

rearview_camera:json:{"action": "resume"}

Based on whether it enters the pause or resume state, the service stops or starts rendering video.

Copyright © 2015, QNX Software Systems Limited30

Camera Video (rearview-camera)

Configuration file:

The camera is called from a startup script located at /scripts/camera-start.sh. The script checks a

configuration file located at /var/etc/services-enabled. An attribute called USBCAM can be set to true

if a USBCAM is used on the target board; otherwise, it's set to false. When a USBCAM is available,

the USB version of the libcapture library should be linked to /base/usr/lib/libcapture.so.1; otherwise,

the libcapture library for the target should be linked to /base/usr/lib/libcapture.so.1.

For example, to link the USB version of the library, use the following lines in your startup script on the

target:

ln -Psf /base/usr/lib/libcapture-usb-uvc.so

/base/usr/lib/libcapture.so.1

Otherwise, link the target-specific libcapture library:

ln -Psf /base/usr/lib/libcapture-board-imx6x-sabreSMART.so

/base/usr/lib/libcapture.so.1

Examples:

To start USB camera for an existing HMI on an OMAP5432 EVM target:

rearview-camera -zorder=-1 -parent-zorder=-1 -pipeline=1 -format=yuy2

-sfsize=640x480 -bsize=640x480 -ddr-clk=384 -source=0

-nlanes=1

To start video capture with UYVY format, without any de-interlacing bound to pipeline four:

rearview-camera -format=uyvy -pipeline=4 -dmode=none -bsize=720x240

To start video capture with YVYU format and adaptive de-interlace mode using interpolation mode 3,

bound to pipeline four, and video cropping size set to 720x400:

rearview-camera -bsize=720x480 -pipeline=4 -dmode=adaptive

-adaptive-dei-int-mode=mode3 -csize=720x400

Some formats aren't supported by the service's encoding formats. For instance, FFmpeg is a format

that isn't supported and requires that you switch certain bits. You are responsible for handling the raw

format conversion. Often, this requires that you develop your own tools to convert the raw image to

another image format. For example, you might need to run the raw format through a tool as shown

here:

cat uyvy-720x480.raw | ffmpeg -vcodec rawvideo -f rawvideo

-pix_fmt uyvy422 -s 720x480 -i pipe:0

-f image2 -vcodec png uyvy-720x480.png

In this case, after you output the raw format to create an image, additional processing is required. You

may need to write a tool to handle this processing.

Copyright © 2015, QNX Software Systems Limited 31

Camera Video (rearview-camera)

Chapter 5
Geolocation

The Geolocation service provides the current location of the client based on its IP address.

Upon receipt of a location request message from the client, the Geolocation service queries

http://www.hostip.info to get the current location, based on the client's IP address. The correctness of

the result depends on the contents of the database that hostip.info provides. If the client's IP isn't in

the database, an incorrect location might be returned.

Client queries about location information can be made using the following PPS command:

(exec 3<>/pps/services/geolocation/control?wait &&

echo 'msg::location\nid::test\ndat:json:

{"period":5.0,"provider":"network","fix_type":"wifi"}' >&3 &&

cat <&3)

where:

• period specifies the interval between updates from the server. If the period is 0, only one update

is sent.

• provider specifies the type of connection. In this case, a network is used to determine the

location.

• fix_type specifies the type of connection. A value of wifi indicates that it's a valid wireless or

cable-connected network; it doesn't indicate that the connection is Wi-Fi.

The Geolocation service responds to the client in the following format in the control object:

@control

res::location

id::test

dat:json:{"accuracy":60,"latitude":45.3333,"longitude":-75.9}

The browser also uses the Geolocation service to query the location as shown above. The Geolocation

service is multithreaded and can handle requests from multiple clients at the same time.

PPS objects:

For more information about the PPS objects that the Geolocation service uses, see these entries in the

PPS Objects Reference:

• /pps/services/geolocation/control

• /pps/services/geolocation/status

Copyright © 2015, QNX Software Systems Limited 33

http://www.hostip.info

Chapter 6
Image Generation Utilities

The QNX SDK for Apps and Media includes tools to assist you with building images for your target.

The tools included with the QNX SDK for Apps and Media are in addition to those available with the

QNX Neutrino RTOS SDP. For information about the SDP utilities, see the Utilities Reference.

For information about building images, see:

• “How to create a target image” in Getting Started

• Building Embedded Systems in the QNX SDP documentation

• The BSP User Guide for your board at Foundry27

Copyright © 2015, QNX Software Systems Limited 35

http://community.qnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/BSPAndDrivers

diskimage

Create an image for a partitioned medium, such as a hard drive, SD card, or MMC

Syntax:

diskimage -c configfile -o imgfile

[-b bootstrapfile]

[-h]

[-m] [-M]

[-p] [-s number] [-v]

Runs on:

Windows, Linux

Options:

-b bootstrapfile

Use the specified bootstrap file to write to the master boot record (MBR).

-c configfile

Use the specified configuration file.

-h

Display a help message showing diskimage usage information.

-m

Don't modify Power-Safe (fs-qnx6.so) filesystems. The default is to patch all bootable

Power-Safe filesystem partitions.

-M

Modify all Power-Safe filesystems, including non-bootable partitions.

-o imgfile

Write to the specified image file.

-p

Don't pad the image to the full disk size.

-s number

Read and write up to the specified number of bytes at a time. The default size is 4096.

-v

Increase the verbosity.

Copyright © 2015, QNX Software Systems Limited36

Image Generation Utilities

Description:

The diskimage utility creates an image for a partitioned medium. The partitioned medium image

can contain any number of filesystem images. For example, Power-Safe filesystems that were created

using mkqnx6fsimg or mkqnx6fs. After an image is successfully created, it can be copied to a hard

drive, SD, or MMC. Options are available to adjust Power-Safe filesystems in the image so that they

are bootable. With this command, you can also specify the IPL file to write into the master boot record

(MBR).

You must use a configuration file to specify the disk image content and layout. The configuration file

consists of a description for the disk and any number of optional descriptions about the partitions.

There are three types of partitions you can use: primary, extended, and logical. The following constraints

apply when you use diskimage:

• The disk can have up to four primary partitions or up to three primary and one extended partition.

That extended partition can be used as a container for any number of logical partitions.

• Any logical partitions on the disk require the existence of an extended partition. When logical

partitions are used, you're not required to explicitly specify the extended partition. Regardless of

whether you do this, there can be only three primary partitions if you define logical partitions. If

no extended partition is defined but logical partitions are defined, an extended partition is

automatically created. You can't specify more than one extended partition in the configuration file.

• The extended partition must be explicitly defined when a specific partition index must be assigned

to it or the required space exceeds the defined logical partitions. For information about calculating

the size of the extended partition, see “Using extended and logical partitions (p. 40)”.

• The combined size of all logical partitions (including any overhead) should be equal to and must

not exceed the size of the extended partition.

• Filesystem images are copied to the disk image in blocks of up to 4096 bytes. You can override

this default setting using the -s option.

Overview of configuration file syntax

The configuration file uses a specific structure, syntax, and grammar. For an explanation of the

configuration structure (or contents), see “Configuration file structure (p. 37)”. For a full description

of the grammar, see “Summary of configuration file syntax (p. 42)”. The configuration file can have

these special characters:

• Whitespaces used in double quotes ("") of a string literal are interpreted as part of that string.

Whitespaces aren't allowed within numeric literals (including the suffix).

• Line breaks and spaces can occur anywhere, except in literals or tokens.

• A line feed (LF) character indicates the end of a line. Carriage return characters (CR) are silently

ignored and aren't interpreted as the end of line.

• A hash (#) character indicates the beginning of a comment. Comments can begin anywhere and

always extend to the end of the line.

• Numeric values can be specified as decimal, octal, or hexadecimal. Optionally, numeric values can

use these suffix values to indicate a factor:

• k or K to represent kilo (1024)

• m or M to represent mega (10242)

• g or G to represent giga (10243)

Configuration file structure

Copyright © 2015, QNX Software Systems Limited 37

Image Generation Utilities

The configuration file structure has two parts:

• disk configuration� (Required) A description of disk-wide parameters.

• partition definitions� (Optional) Any number of partition descriptions. The partition descriptions

specify the partitions to create, as well as the contents and characteristics (attributes) of each

partition.

The disk configuration is required in each configuration file. The configuration file defines a number

of disk attributes that mainly describe the disk's geometry. All disk attribute definitions must be

enclosed in square brackets ([]). A single pair of brackets can contain one or more attribute definitions;

multiple attribute definitions within a pair of brackets must be separated by a whitespace.

Disk attributes

The diskimage command supports the following disk attributes:

cylinders=number

(Required) Specifies the number of cylinders on the disk. The value must be in the range

of 1–4294967295 (232-1).

heads=number

(Required) Specifies the number of heads on the disk. The value must be in the range of

1–255.

sectors_per_track=number

(Required) Specifies the number of sectors on each track. The value must be in the range

of 1–63.

sector_size=number

(Optional) Specifies the number of bytes per sector. The value must be in the range of

1–4294967295 (232-1). If not specified, a default value of 512 is used.

start_at_cylinder=number

(Optional) Specifies the cylinder at which the first partition shall begin. The value must be

in the range of 0–4294967295(232-1). The default is zero.

The first track is always reserved for the MBR. Because of this, a partition beginning

at cylinder zero has sectors_per_track x (heads-1) sectors available in the

first cylinder.

The partition definitions are optional and you can specify as many as you require. You can define

primary, extended, and logical partitions using the following syntax where:

partn_idx

A unique value in the range of 1–4.

Copyright © 2015, QNX Software Systems Limited38

Image Generation Utilities

partn_file

The pathname of the file containing the filesystem image for the partition. The pathname

must be enclosed in double quotes (""), and can't exceed the host's maximum pathname

length. The file size must not exceed the partition size. For filesystems that are not

Power-Safe filesystems, the image file can be smaller than the partition (although a warning

is issued).

• Primary partition:

[partition=partn_idx boot= true| false

type=number

num_sectors=number] partn_file

Example:

Power-Safe filesystem, > 2GB, bootable

[partition=2 boot=true type=179 num_sectors=4273290] "../fsi/qnx6-1.fsi"

• Extended partition:

[extended=partn_idx num_sectors=number]

Example:

[extended=2 num_sectors=8256]

• Logical partitions:

[logical type=number

num_sectors=number

ebr_sectors=number] partn_file

Example:

Power-Safe filesystem (~500MB)

[logical type=178 num_sectors=1060290] "../fsi/qnx6-2.fsi"

Partition Attributes

The following partition attributes are supported by diskimage:

boot= true| false

(Optional) Specifies whether the partition should be marked as bootable. A boolean value

is used, where true indicates that the partition is bootable and false indicates that it

isn't. The default value is false.

Copyright © 2015, QNX Software Systems Limited 39

Image Generation Utilities

type=number

(Required) Specifies the partition type. The value must be in the range of one to 255 and

should match the type of the filesystem in the partition image file. Frequently used types

include 11/12 (DOS FAT32) and 177/178/179 (Power-Safe filesystem). For more information

about partitions and a list of partition IDs, refer to http://en.wikipedia.org/wiki/Partition_type.

num_sectors=number

(Optional) Specifies the number of sectors to allocate for the partition. The value must be

in the range of 1–4294967295 (232-1). If this attribute isn't specified, it's set to the

smallest number of sectors required for the partition’s filesystem image.

ebr_sectors=number

(Optional) Specifies the number of sectors to be reserved in front of the logical partition.

At least one sector is required for the EBR (Extended Boot Record) associated with the

partition. The value must be in the range of 1–4294967295 (232-1). If this attribute isn't

specified, exactly one track is reserved. For more information, see the sectors_per_track

disk attribute.

Using extended and logical partitions

When logical partitions are used, an extended partition is required as well. It can be defined explicitly

or created automatically by diskimage. The extended partition acts as a primary partition and serves

as a container for the logical partitions. Within the extended partition, the logical partitions are laid

out in the order in which they appear in the config file.

The total combined size of all logical partitions (including any overhead) must be less than or equal

to the size of the extended partition. To determine the space required for the extended partition, include

the following items in your calculation:

• the size of each logical partition

• each logical partition's ebr_sectors

By default, the ebr_sectors option is set to the disk's number of sectors per track. The size of the

ebr_sectors option includes the EBR and any optional padding. It's recommended that the default

of one track is used.

Attention Even though the EBR requires one sector, the entire track is allocated for it.

Copyright © 2015, QNX Software Systems Limited40

Image Generation Utilities

http://en.wikipedia.org/wiki/Partition_type

Extended
Boot Record

Padding

Logical
Partition

One sector

ebr_sectors

sectors
required

num_sectors

Figure 1: Extended boot record, padding, and logical partition

To illustrate the calculation, consider the following example:

In the following example, the specified partitions intentionally don't add up to fill the disk.

Target disk geometry

16 cylinders

32 heads

32 sectors per track

Partitions

One primary type 11 (DOS FAT32), bootable, 4096 sectors

One extended partition with:

• 1 logical type 179 (Power-Safe filesystem), 2048 sectors

• 1 logical type 178 (Power-Safe filesystem), 6144 sectors

To calculate the extended partition, use the following formula:

<sectors_per_track> /* First logical EBR */

+ <logical-type-179> /* First logical data */

+ <sectors_per_track> /* Second logical EBR */

+ <logical-type-178> /* Second logical data */

= ext_sectors

Therefore, for the example, these are the values to use in the formula:

32 /* sectors_per_track */

+ 2048 /* First logical data */

+ 32 /* sectors_per_track */

Copyright © 2015, QNX Software Systems Limited 41

Image Generation Utilities

+ 6144 /* Second logical data */

= 8256 /* size of extended partition sectors */

To define the configuration specified in the previous example, the configuration file would be:

[cylinders=16 heads=32 sectors_per_track=32]

[partition=1 boot=true type= 11 num_sectors=4096] "fat.img"

[extended=2 num_sectors=8256]

[logical boot=false type=179 num_sectors=2048] "qnx-179.img"

[logical boot=false type=178 num_sectors=6144] "qnx-178.img"

However, if you wanted to presume that the three filesystem images are full-sized, you can use a more

simplified syntax:

[cylinders=16 heads=32 sectors_per_track=32]

[partition=1 boot=true type=11] "fat.img"

[logical type=179] "qnx-179.img"

[logical type=178] "qnx-178.img"

Summary of configuration file syntax

The following excerpt explains the configuration file grammar:

Configuration file

config_file : disk_cfg+ partn_def*

Disk configuration

disk_cfg : '[' disk_attr+ ']'

Disk attributes

disk_attr : 'cylinders' '=' uint

| 'heads' '=' uint

| 'sectors_per_track' '=' uint

| 'sector_size' '=' uint

| 'start_at_cylinder' '=' uint

Partition definition

partn_def : primary_partn_def

| extended_partn_def

| logical_partn_def

Primary partition definition

primary_partn_def :

'[' 'partition' '=' partn_idx ppartn_attr* ']'

partn_file

Extended partition definition

extended_partn_def :

Copyright © 2015, QNX Software Systems Limited42

Image Generation Utilities

'[' 'extended' '=' partn_idx epartn_attr* ']'

Logical partition definition

logical_partn_def :

'[' 'logical' lpartn_attr* ']' partn_file

Partition index

partn_idx : uint

The primary partition attributes

ppartn_attr : boot_attr

| type_attr

| nsec_attr

The extended partition attributes

epartn_attr : nsec_attr

The logical partition attributes

lpartn_attr : boot_attr

| type_attr

| nsec_attr

| esec_attr

The boot attribute

boot_attr : 'boot' '=' bool

The type attribute

type_attr : 'type' '=' uint

The num_sectors attribute

nsec_attr : 'num_sectors' '=' uint

The ebr_sectors attribute

esec_attr : 'ebr_sectors' '=' uint

Partition file

partn_file : string

The boolean definition

bool : 'true'

| 'false'

Unsigned integer

uint : '0' [0-7]+ sfx?

| '0x' [0-9a-fA-F]+ sfx?

Copyright © 2015, QNX Software Systems Limited 43

Image Generation Utilities

| [1-9][0-9]* sfx?

Factors that can be used to with integers.

sfx : [kKmMgG]

string values must be enclosed within double quotes ("")

string : '"' [^"]* '"'

Examples:

Create an image

diskimage –c mydisk.cfg –o mydisk.img

Create an image and specify a primary boot loader (IPL)

diskimage -c mydisk.cfg

-b C:\qnx660\target\qnx6\x86\boot\sys\ipl-diskpc1

-o mydiskipl.img

Configuration file for three primary partitions

An example for a disk with three primary partitions, one DOS FAT32 and two Power-Safe filesystems.

It's targeted at a disk geometry of 974/255/63 (cylinders/heads/sectors). The configuration file expects

the filesystem images to reside in the directory ../fsi.

[cylinders=974]

[heads=255]

[sectors_per_track=63]

DOS FAT32

[partition=1

boot=false

type=11

num_sectors=963837

] "../fsi/fat32.fsi"

First Power-Safe filesystem, >2GB, bootable

[partition=2

boot=true

type=179

num_sectors=4273290

] "../fsi/qnx6-1.fsi"

Second Power-Safe filesystem

[partition=3

boot=false

type=178

num_sectors=1060290

] "../fsi/qnx6-2.fsi"

Copyright © 2015, QNX Software Systems Limited44

Image Generation Utilities

Configuration file for two primary and two logical partitions

An example for a disk with two primary and two logical partitions. The primary partitions are DOS

FAT32 and Power-Safe filesystems. Both logical partitions are Power-Safe filesystems. The extended

partition uses slot 3 in the MBR. The resulting image is intended for a disk geometry of 4096/64/32

(cylinders/heads/sectors), which can represent an eMMC. The configuration file expects the filesystem

images to reside in the directory ../fsi.

[cylinders=4096 heads=64 sectors_per_track=32]

DOS FAT32 (~480MB)

[partition=1

type=11

num_sectors=963837

] "../fsi/fat32.fsi"

Primary Power-Safe filesystem, >2GB, bootable

[partition=2

boot=true

type=179

num_sectors=4273290

] "../fsi/qnx6-1.fsi"

[extended=3]

Power-Safe filesystem (~500MB)

[logical

type=178

num_sectors=1060290

] "../fsi/qnx6-2.fsi"

Power-Safe filesystem (~500MB)

[logical

type=177

num_sectors=1060290

] "../fsi/qnx6-3.fsi"

Exit status:

0

Zero is returned when the command completes without errors.

1

One is returned when an error occurs while running the command. Possible errors include

but aren't limited to:

• the configuration file wasn't specified

• the configuration file couldn't be read

Copyright © 2015, QNX Software Systems Limited 45

Image Generation Utilities

• there were syntax errors in the configuration file

Caveats:

None.

Copyright © 2015, QNX Software Systems Limited46

Image Generation Utilities

gen-ifs.py

Perform setup activities and then run mkifs to include IFS files in an image. The mksysimage.py

(wrapped by mksysimage.sh (Linux) or mksysimage.bat (Windows)) calls this command. You

shouldn't call this command on its own.

Syntax:

gen-ifs.py [-o] output [options]

Runs on:

Windows, Linux. Must be run using Python 2.7.5.

Options:

-c, --config

Read the specified IFS configuration file.

-d defaultifs , --default-ifs=defaultifs

Specify which IFS file is the default IFS (qnx-ifs).

--defaults

Include default directories in the search path.

-f buildfile , --input=buildfile

Include the specified input file.

-h, --help

Show the help that describes how to use this command.

-N--no-defaults

Don't include default directories in the search path.

-o imagefile , --output= imagefile

Write to the specified IFS file.

-P productname boardname , --product=productname boardname

Specify the product name and the board name. The entries that can be used for productname

are the names of the subdirectories found in $QNX_DEPLOYMENT_WORKSPACE/target/product/
and the possible entries for boardname are found in $QNX_DEPLOYMENT_WORKSPACE/
target/product/productname /boards/. You should refer to the Getting Started guide for the

value of the QNX_DEPLOYMENT_WORKSPACE variable.

--output-path

Write IFS(s) to the specified location.

Copyright © 2015, QNX Software Systems Limited 47

Image Generation Utilities

-r directory , --root=directory

Include the specified directory as a root directory.

-v, --verbose

Increase verbosity.

Description:

The gen-ifs.py script defines MKIFS_PATH for the specified board type, locates and concatenates

the specified buildfiles, and then runs mkifs to include the IFS files in an image. Don't use the

gen-ifs.py script on its own. Instead, you should run mksysimage.py (p. 53), which calls the

gen-ifs.py script.

An IFS is a bootable image filesystem that contains the procnto module, your boot script, and possibly

other components such as drivers and shared objects. To create the IFS files to include in the final

target image, gen-ifs.py calls the mkifs utility.

If you generate only a single IFS (.ifs) file, then you need to specify just the -o and -f options.

However, if you want to generate multiple .ifs files, then you must specify at least the -c, -d,

and --output-path options.

The following example uses the omap5uevm platform and creates an .ifs file. The information in the

resulting file is used by the image-generation script mksysimage.py (p. 53).

Exit status:

0

The setup activities and inclusion of the IFS image files completed successfully.

>0

An error occurred.

Caveats:

None.

Copyright © 2015, QNX Software Systems Limited48

Image Generation Utilities

gen-osversion.py

Generate the /etc/os.version file based on build environments. The mksysimage.py (wrapped by

mksysimage.sh (Linux) or mksysimage.bat (Windows)) calls this command. You shouldn't call

this command on its own.

Syntax:

gen-osversion.py [options] ... <platform>.<variant>

Runs on:

Windows, Linux. Must be run using Python 2.7.5.

Options:

--branch=BRANCH

Specify the branch to build.

-d GENERATIONDATE, --date=GENERATIONDATE

Specify the date entry. If this option isn't specified, the current time is used.

-h, --help

Show the help that describes how to use this command.

-n BUILDNUM, --build-number=BUILDNUM

Specify the build number. If this option isn't specified, the value in the BUILD_NUMBER

environment variable is used.

-q, --quiet

Prevent output.

-p, --additionalParameters

Include additional parameters using the following notation <parameter>=<value>.

-P PRODUCT BOARDNAME, --product=PRODUCT BOARDNAME

Specify the product name and the board name. The entries that can be used for productname

are the names of the subdirectories found in $QNX_DEPLOYMENT_WORKSPACE/target/product/
and the possible entries for boardname are found in $QNX_DEPLOYMENT_WORKSPACE/
target/product/productname /boards/. You should refer to the Getting Started guide for the

value of the QNX_DEPLOYMENT_WORKSPACE variable.

-r REVISION, --revision=REVISION

Specify the revision of the image that's being built.

-s IMAGESCRIPT, --image-script=IMAGESCRIPT

Specify the script that was used to generate the image.

Copyright © 2015, QNX Software Systems Limited 49

Image Generation Utilities

-u BUILDURL, --build-url=BUILDURL

Specify the build URL. If this option isn't specified, the value in the BUILD_URL environment

variable is used.

--variant VARIANT

Specify the variant of the image that's being built.

-v, --verbose

Increase verbosity.

Description:

The gen-osversion.py utility to generates the os.version file based on the build environment. Don't

use the gen-osversion.py script on its own. Instead, use the mksysimage.py (p. 53) script,

which calls the gen-osversion.py script.

Exit status:

0

The OS version file was generated successfully.

>0

An error occurred.

Caveats:

None.

Copyright © 2015, QNX Software Systems Limited50

Image Generation Utilities

mkimage.py

Generate an image from existing .tar files. The mksysimage.py (wrapped by mksysimage.sh (Linux)

or mksysimage.bat (Windows)) calls this command. You shouldn't call this command on its own.

Syntax:

mkimage.py [-o] outputpath ... [options]

Runs on:

Windows, Linux. Must be run using Python 2.7.5.

Options:

-b bootloader , --bootloader=bootloader

Add the specified bootloader file to the master boot record (MBR).

-c configfile , --config=configfile

Use the specified configuration file. See “Configuration file for mkimage.py” in the Getting

Started guide.

-h, --help

Show the help that describes how to use this command.

-m

Don't modify the bootable QNX6 filesystem.

-o output , --output=output

Write to the specified image file.

-t tarfilepath , --tar_path= tarfilepath

Specify the path to the .tar files.

--tars tarfile1 [tarfile2 ...]

Specify a list of .tar files.

-v, --verbose

Specify the verbosity, up to a maximum of 4 levels.

Description:

The mkimage.py script creates an image from the .tar files, which are generated by mktar.py. Don't

use the mkimage.py script on its own. Instead, you should run the mksysimage.py (p. 53) script,

which calls the mkimage.py script.

Copyright © 2015, QNX Software Systems Limited 51

Image Generation Utilities

The process used by mkimage.py to create an image is as follows:

1. Extract the contents of the input .tar files to a temporary location and from these contents, generate

the buildfiles (.build), which list the files in the partitions.

2. Call mkxfs to use the buildfiles to generate the partition image (.image) files.

3. Call diskimage to combine the .image files into the disk image.

Exit status:

0

An image file was generated successfully.

>0

An error occurred.

Caveats:

None.

Copyright © 2015, QNX Software Systems Limited52

Image Generation Utilities

mksysimage.py

Create an image of the platform and generate supporting files, such as .ifs and .tar

Syntax:

mksysimage.py [-o output] [options]... [board_name.external]

Runs on:

Windows, Linux. Must be run using Python 2.7.5.

Options:

-c, --mksysimage-config-file

Specify the configuration file used for the mksysimage.py utility.

-f, --force

Force the overwriting of existing .tar files.

-g, --osversion-content

Specify any additional content for the os.version file.

-G, --no-gen, --no-generation

Run only mktar.py and the imaging components.

--gen-ifs-options

Specify the options for gen-ifs.py (see gen-ifs.py --help).

-h, --help

Show the help that describes how to use this command.

--image-config-path= IMAGE_CONFIG_PATH

Specify the path of the configuration files for mkimage.py.

-k MKIMAGE_OPTIONS , --mkimage-options=MKIMAGE_OPTIONS

Specify the options for mkimage.py (see mkimage.py --help).

-m MKTAR_OPTIONS , --mktar-options=MKTAR_OPTIONS

Specify the options for mktar.py (see mktar.py --help).

--no-gen-ifs

Don't generate .ifs files.

--no-mkimage

Don't run the mkimage.py part of the process.

Copyright © 2015, QNX Software Systems Limited 53

Image Generation Utilities

--no-mktar

Don't run the mktar.py part of the process.

--no-gen-osversion

Don't generate an os.version file.

-o OUTPUT_PATH , --output-path=OUTPUT_PATH

Write .image and .tar files to the specified path. If the -t option is specified, the .tar files

are written to that path instead.

-p, --keep-partition-images

Keep the partition images.

-P PRODUCT , --product=PRODUCT

Specify the name of the product. You can set the QNX_PRODUCT environment variable to

specify the default product to use when this option isn't specified.

-q, --quiet

Prevent any output.

-Q QT_PATH , --qt=QT_PATH

Specify the location where Qt is installed on the host computer. You can set the QNX_QT

environment variable to specify the default location to use when this option isn't specified.

-t, --tar-file-path

Read and write .tar files to and from the specified path.

-v, --verbose

Increase the verbosity.

-w QNX_DEPLOYMENT_WORKSPACE , --workspace=QNX_DEPLOYMENT_WORKSPACE

Specify the path to the QNX_DEPLOYMENT_WORKSPACE. This workspace is where you

deployed the assets required to build the image.

You should refer to the Getting Started guide for the value of the

QNX_DEPLOYMENT_WORKSPACE variable.

Description:

The mksysimage.py utility is a Python script that invokes other utilities to generate tar files and

images for each platform. The script is located at $QNX_DEPLOYMENT_WORKSPACE/infra/utils/scripts. You

should refer to the Getting Started guide for the value of QNX_DEPLOYMENT_WORKSPACE.

By default, mksysimage.py reads a configuration file from: $QNX_DEPLOYMENT_WORKSPACE/infra/product/
AnM/boards/platform .ext/mksysimage/platform -mksysimage.cfg

This configuration file defines the tar files and images created during the image-generation process.

The image variants for each platform are defined within the configuration file. By default, for each

image variant, mksysimage.py generates two tar files and one image. The tar file platform -os.tar

Copyright © 2015, QNX Software Systems Limited54

Image Generation Utilities

contains two QNX filesystems that include all files except MLO and IFS files. The tar file

platform -dos- image_variant contains a FAT16 filesystem that includes all bootup files, such as MLO and

IFS files. The final generated image includes these two tar files.

You can change the default configuration file associated with mksysimage.py. The default file is

located at: $QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards/platform .ext/mksysimage/
platform -mksysimage.cfg

You can also specify your own file by using the -c option in mksysimage.py. Setting this option will

enable you to further customize your tar files and images. For more information about changing the

mksysimage.py configuration, see “Configuration file for mksysimage.py” in Getting Started. If

you want mksysimage.py to skip some steps of the image-generation process and generate only

certain types of intermediate files, see “Troubleshooting tips” in the same guide.

Examples:

To run mksysimage.py, you need to specify the platform, its variant, and the output path.

The following example reads the default configuration file for the omap5uevm platform and creates

three images and their corresponding .tar files in the specified output path called /tmp:

$QNX_DEPLOYMENT_WORKSPACE/infra/utils/scripts/mksysimage.py

-o /tmp/ omap5uevm.external

Exit status:

0

The specified image file was created successfully.

>0

An error occurred.

Caveats:

None.

Copyright © 2015, QNX Software Systems Limited 55

Image Generation Utilities

mktar.py

Create a .tar file containing a filesystem for a specified board variant. The mksysimage.py (wrapped by

mksysimage.sh (Linux) or mksysimage.bat (Windows)) calls this command. You shouldn't call

this command on its own.

Syntax:

mktar.py [-o output] [options] ... [board_name_argument]

Runs on:

Windows, Linux. Must be run using Python 2.7.5.

Options:

--bars

Include new-style (BAR) applications (implies --no-defaults)

--compress

Use the given compression method: auto (default), none, gzip, or bzip2.

--cpu CPUDIR

Set the system architecture (e.g., \"armle-v7\").

-f SETNAME , --fileset=SETNAME

Include the specified fileset.

--help

Display a help message showing mktar usage information.

--no-defaults

Don't include the board's default filesets or applications.

-o OUTPUT , --output=OUTPUT

Write to the specified output file.

-p, --package

Include the given package (implies --no-defaults).

--prefix PREFIX

Prefix each path with the specified string.

--profile

Specify the profile XML file. If it's not specified, the file name is profile.xml.

Copyright © 2015, QNX Software Systems Limited56

Image Generation Utilities

-P PRODUCT BOARDNAME , --product=PRODUCT BOARDNAME

Specify the name of the product and the board. The entries that can be used for productname

are the names of the subdirectories found in $QNX_DEPLOYMENT_WORKSPACE/target/product/
and the possible entries for boardname are found in $QNX_DEPLOYMENT_WORKSPACE/target/
product/productname /boards/.

You should refer to the Getting Started guide for the value of the

QNX_DEPLOYMENT_WORKSPACE variable.

-Q QT_PATH, --qt=QT_PATH

Specify the location where Qt is installed on the host computer. You can set the QNX_QT

environment variable to specify the default location to use when this option isn't specified.

-s, --symbols

Search in the runtime-symbols/ folder for the unstripped binaries.

-v, --verbose

Increase verbosity.

-z

Compress with gzip.

Description:

The mktar.py utility creates a .tar file containing the filesets listed in the board-specific profile,

resulting in proper ownership and permissions. Don't use the mktar.py script on its own. Instead,

use the mksysimage.py (p. 53) script, which calls the mktar.py script. To create a .tar file with

no image, you can call the mksysimage.py (p. 53) script with the --no-mkimage option to create

.tar files and no image.

If you use mktar.py without specifying the profile option --profile, then by default, the

mktar utility will use the file profile.xml located in /boards/board .external.

The mktar script uses Python's tarfile module to generate a .tar file with the appropriate

permissions. The list of included files is determined by a board profile, which is stored as profile.xml
in the board directory, whose path is:

$QNX_DEPLOYMENT_WORKSPACE/target/boards/omap5uevm/profile.xml.

For more information and for details about dependencies, see the file located at:

$QNX_DEPLOYMENT_WORKSPACE/infra/utils/pymodules/qnx/config.py

You can overwrite the default profile by using the --profile option. The -vvv option shows the

search path used to find files. The typical search path is implemented in the file

$QNX_DEPLOYMENT_WORKSPACE/infra/utils/pymodules/qnx/path.py:get_stage_locator.

For more information about how the paths are searched, see “Understanding search paths” in Getting

Started.

Copyright © 2015, QNX Software Systems Limited 57

Image Generation Utilities

Exit status:

0

A .tar file was generated successfully.

>0

An error occurred.

Caveats:

None.

Copyright © 2015, QNX Software Systems Limited58

Image Generation Utilities

Chapter 7
Keyboard (keyboard-imf)

Display and manage the on-screen keyboard

Syntax:

keyboard-imf [-d device] [-U group:user]

Runs on:

QNX Neutrino

Options:

-d

The display required for the board (see “Display types (p. 61)” below).

-U UID:GID

The user ID and the group ID under which to run keyboard-imf.

Description:

The keyboard-imf service acts as an intermediary between keyboard-dependent applications and

underlying keyboard services. For instance, the keyboard service works with the keyboard provided by

the HMI to display and manage the on-screen keyboard, or with a physical keyboard to enable input

from that keyboard.

The keyboard service lets applications communicate with the on-screen keyboard through PPS objects.

It allows them to:

• show and hide the keyboard

• know the keyboard height (in pixels) so they can, if necessary, adjust their displays to fit into the

remaining available screen area

• accept text entries and know how many characters have been entered

Interaction of HMI, keyboards, and applications

The diagram below shows how keyboard-imf interacts with the HMI virtual keyboards:

• The HMI virtual keyboards (HTML inside the Navigator, or Qt standalone) create the

/pps/system/keyboard/control and /pps/system/keyboard/status PPS objects, and publish their

activities to them.

• The keyboard-imf service subscribes to these objects to be able to receive information from the

HMI.

• The keyboard-imf service creates the /pps/services/input/control PPS object, to which it publishes

information received from the HMI and the applications. This object is for internal communication

between keyboard-imf and the HMI; other components and applications don't need to publish

or subscribe to this object.

Copyright © 2015, QNX Software Systems Limited 59

• Applications, such as Weblauncher and Qt runtime, subscribe to /pps/services/input/control to learn

about keyboard presence, height, etc., and publish information, such as the user input and the

number of characters entered.

/pps/system/keyboard/status

/pps/system/keyboard/control

/pps/services/input/control

HMI
keyboards

Q W E R T Y U I O P
A S D F G H J K L
Z X C V B N M

?123 , .

Q W E R T Y U I O P
A S D F G H J K L
Z X C V B N M

?123 , .

HTML
(part of Navigator)

Qt
(standalone)

keyboard-imf

QNX
Screen

Q W E R T Y U I O P
A S D F G H J K L
Z X C V B N M

?123 , .

Physical keyboard

Application input

Uncle Misha and the
Fat Cats:
“Heartless”, “Vixen”

Qt runtime

Tio Misha y los Gatones:
“Sin corazón”, “La zorra”

Weblauncher

Create

Create

Figure 2: Keyboards, keyboard-imf and applications.

Physical keyboard

To use a physical keyboard (connected through a USB port), you need to:

• Configure the globals input parameter in the Screen configuration file (graphics.conf) to accept

input from a physical keyboard. For more information, see “Configuration parameters for globals”
in the Screen Graphics Subsystem Developer's Guide.

• Make sure that your system has the language-specific key-mapping files for the languages you will

support. These files should be in the /usr/share/keyboard/ directory.

• Set the HAS_SOFTWARE_KEYBOARD environment variable to true or false on the target. You can

use the variable to change your application's behavior. For example, the Browser app resizes to

move the URL bar above the software keyboard if the environment variable is set to true. Conversely,

if the variable is set to false, the Browser app doesn't resize.

You can set the environment variable in the /scripts/env.override.variant file.

For more information about how keyboard-imf interacts with applications and underlying keyboard

services, see “Interaction of HMI, keyboards, and applications (p. 59)”.

Copyright © 2015, QNX Software Systems Limited60

Keyboard (keyboard-imf)

Display types:

The -d option must be set for your board's display. For OMAP5432 boards, set it to hdmi; for SABRE

Smart Device boards, set it to internal. Possible display types are listed in the

/etc/system/config/graphics.conf configuration file. When you are configuring your system, you will

need to edit this file and enter the display type(s) supported on your board, as well as other graphics

configuration values.

For more information about the /etc/system/config/graphics.conf configuration file and how to configure

it, see the chapter “Screen Configuration” in the Screen Graphics Subsystem Developer's Guide.

PPS objects:

The HMI keyboard service creates these PPS objects to communicate with keyboard-imf:

• /pps/system/keyboard/control

• /pps/system/keyboard/status

In addition, the keyboard-imf service creates this PPS object:

• /pps/services/input/control/

This object is for internal communication between keyboard-imf and the HMI; other components

and applications don't need to publish or subscribe to this object.

Copyright © 2015, QNX Software Systems Limited 61

Keyboard (keyboard-imf)

Chapter 8
Network Manager (net_pps)

PPS interface to the network manager

Syntax:

net_pps [-A addr:port] [-a]

[-c file] [-d] [if0...] [-m]

[-P script] [-p prefix] [-r name [if0...]]

[-S uid] [-s] [-u] &

Runs on:

QNX Neutrino

Options:

-A addr:port

Proxy to publish to when proxy authentication is required.

-a

Automatically configure any discovered interfaces when the link state indicates that the

interfaces are connected.

-d

Enable debug messages (to stdout).

if0...

Specify prioritized list of interfaces to be considered for multihomed operation, preference

of default routes, confstr resolver configuration, etc.

-m

Use multipath routes.

-P script

Specify the script to run for updating proxy settings.

-p prefix

Add this prefix to all executable paths. This has no effect without the -s option.

-r name [if0...]

Create another routing domain (called name) with the following prioritized interface list.

-S uid

Run subprocesses as this uid .

Copyright © 2015, QNX Software Systems Limited 63

-s

Use standard filepaths for subprocess executables (defaults: system=/usr/sbin/ user=/usr/bin/).

-u

Automatically assume the interface is connected based on its up state. This allows shim

drivers as well as drivers that don't issue link state changes to work.

Description:

The net_pps service offers a PPS interface for communicating with the QNX network manager. For

more information about QNX support for networking, see “Networking Architecture” in the System

Architecture Guide.

PPS objects:

For more information about the instructions net_pps can send to the network manager and the

information it can receive, see the relevant PPS object and directory descriptions:

• /pps/services/networking/all/proxy

• /pps/services/networking/all/interfaces/

• /pps/services/networking/all/status_public

• /pps/services/networking/control

Copyright © 2015, QNX Software Systems Limited64

Network Manager (net_pps)

Chapter 9
Shutdown (coreServices2)

Provide access through Persistent Publish/Subscribe (PPS) communication to a variety of services,

including shutdown

Syntax:

coreServices2 [-C configuration file] [-d] [-l none | module [,module]*]

[-M UID:GIG] [-r path] [-S UID:GIG] [-U UID:GIG] [-v]*

Runs on:

QNX Neutrino

Options:

-C filename

The filepath and filename of the configuration file.

-d

Run in foreground instead of as a daemon (default).

-l none | module [,module]*

If specified, use this list of dynamic modules instead of the dynamic modules listed in the

configuration file.

-M

The username or the UID:GID,GID specifying the user and group IDs of the monitor process.

-r path

Specify the root path to the PPS service. The default is /pps/services/.

-S

The username or the UID:GID,GID specifying the user and group IDs of the spawner process.

-U

The username or the UID:GID,GID specifying the user and group IDs of the main server

process.

-v

Set verbosity of output to sloginfo.

Copyright © 2015, QNX Software Systems Limited 65

Description:

The coreServices2 utility provides a single point from which to ask the system to run a variety of

services. It manages the operations involved in communicating with multiple services using PPS objects.

This design means that the requesting component or application only needs to publish and subscribe

to the relevant PPS objects.

The QNX SDK for Apps and Media uses coreServices2 to provide access from the HMI to the

shutdown service.

coreServices2 objects:

The coreServices2 service maintains a separate object for each service to which it gives access.

An object may be static (compiled into the coreServices2 binary) or dynamic (loaded through

dlopen() at runtime).

Most basic services are static, but some services that are large (or that require large shared libraries)

and are not needed by all implementations are made available as dynamic modules. The

coreServices2 service doesn't use any dynamically loaded modules and maintains the following

statically loaded object:

shutdown

Shut down and reboot the system (see shutdown in the Utilities Reference).

PPS objects:

The coreServices2 service publishes or subscribes to the following PPS object:

• /pps/services/system/info

Configuration file:

A configuration file specifies the core services that can be used. The name and location of the file is

specified by the -C option. In QNX Apps and Media targets, the configuration file is located at

/etc/system/config/coreServices2.json.

The file has the following syntax:

{

"static_modules" : comma-separated string of static module names

"dynamic_modules" : comma-separated string of dynamic module names

"disable_procmon" : [true|false]

"disable_hwid" : [true|false]

}

For example, the configuration file on the reference image includes only the shutdown service, which

is a static module:

{

"static_modules" : "shutdown",

"dynamic_modules" : "",

"disable_procmon" : true,

Copyright © 2015, QNX Software Systems Limited66

Shutdown (coreServices2)

"disable_hwid" : true

}

Copyright © 2015, QNX Software Systems Limited 67

Shutdown (coreServices2)

Chapter 10
System Launch and Monitor (SLM)

Automate process management

Syntax:

slm configuration_file

Runs on:

QNX Neutrino

Description:

System Launch and Monitor (SLM) is started early in the boot sequence to launch complex applications

consisting of multiple processes that must be started in a specific order.

SLM is a utility controlled by a configuration file. The configuration file specifies any interprocess

dependencies, the processes to run, and the process properties. For example, suppose a multimedia

application needs the services of the audio subsystem and the database server, which in turn requires

the Persistent Publish/Subscribe (PPS) service. When SLM learns of these one-way dependencies when

reading the configuration file, the service internally constructs a directed acyclic graph (DAG). The

DAG represents the workflow of the underlying processes and is sorted to produce a partial ordering

for scheduling the processes so that all control-flow dependencies are respected. In this example, SLM

would first verify that PPS is running before starting the database server, and then check that the

database server is running before starting the multimedia application.

For more information about how to use SLM, see slm in the Utilities Reference.

Copyright © 2015, QNX Software Systems Limited 69

Index

A

Application Launcher (launcher) 10

apps 10, 13

access control for 13

authorization to run 13

launching 10

audio 11

ducking 11

managing concurrent streams 11

Audio Manager 11

Authorization Manager (authman) 13

C

camera 22

video capture 22

core services 66

coreServices, See coreServices2

coreServices2 66

D

diskimage 36–37

displays utility 61

ducking 11

audio 11

G

gen-ifs 47

gen-ifs.py 51

I

image 36, 47, 49, 51, 53

creating 47, 49, 51, 53

partition 36

image partitioned medium 37

K

keyboard 59

keyboard-imf 59

running 59

L

launcher 10

M

mkimage.py 51

mksysimage.py 49, 51, 53

mktar 56

N

net_pps 63

command-line options 63

running 63

network manager 63

P

PPS 10

launcher control object 10

S

System Launch and Monitor, See SLM

T

tar 56

creating 56

Technical support 8

Typographical conventions 6

V

vcapture 22

Copyright © 2015, QNX Software Systems Limited 71

Index

Copyright © 2015, QNX Software Systems Limited72

Index

	Contents
	About This Reference
	Typographical conventions
	Technical support

	Application Launcher (launcher)
	Audio Management
	Authorization Manager (authman)
	Camera Video (rearview-camera)
	Geolocation
	Image Generation Utilities
	diskimage
	gen-ifs.py
	gen-osversion.py
	mkimage.py
	mksysimage.py
	mktar.py

	Keyboard (keyboard-imf)
	Network Manager (net_pps)
	Shutdown (coreServices2)
	System Launch and Monitor (SLM)
	Index

