
Getting Started

QNX® SDK for Apps and Media 1.1

©2014–2015, QNX Software Systems Limited, a subsidiary of BlackBerry
Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: April 30, 2015

Contents
About This Guide..5

Typographical conventions..7

Technical support...9

Chapter 1: Installing and Booting a Reference Image...11
About reference images..12

Downloading and transferring a reference image..13

Booting a reference image...15

Chapter 2: Apps and HMIs...19
Full screen HMI...20

Replacing the full screen HMI...22

Pre-installing apps...24

Chapter 3: Building Target Images..27
Image artifacts...28

How to create a target image...30

Before you begin..32

Environment variables..33

Scripts and utilities..35

Building a target image...38

BeagleBone Black...39

i.MX6x SABRE Smart Devices..40

OMAP5 EVM...42

VMware..44

x86 Bay Trail..45

Chapter 4: Understanding the mksysimage process..47

The QNX Apps and Media directory structure..48

Board Support Packages (BSPs)..49

BSP directory structure..50

Understanding search paths..52

Chapter 5: Startup..55
Initial startup process...58

System Launch and Monitor (SLM)..60

Chapter 6: Modifying Target Images..61
Filesets and profiles...62

Filesets in the reference image...62

Adding and modifying filesets..65

Getting Started

Changing file destinations..66

Adding symbolic links..67

Image configuration settings...68

Configuration file for mksysimage.py...68

Configuration file for mkimage.py...69

Changing partitions...70

Changing image and partition sizes...71

IFS files..73

Troubleshooting tips...76

Index...77

Contents

About This Guide

Getting Started describes how to get started with the QNX SDK for Apps and Media. The QNX website

has Apps and Media reference (evaluation) images. You can download the platform-specific reference

image you need, copy it to your target and begin using the QNX Apps and Media system.

Depending on what you need to do, you should refer to different chapters in this guide:

• Installing and Booting a Reference Image (p. 11) explains how to transfer a QNX Apps and Media

reference image to your target platform. You should start with this chapter.

• Building Target Images (p. 27) explains how to build a target image. Once you are familiar with

what is in the QNX Apps and Media reference image, you can follow the instructions in this chapter

to recreate a reference image. When you have built a new image, you can transfer it to your target,

as explained in “Installing and Booting a Reference Image”.

• Understanding the mksysimage process (p. 47) explains what mksysimage.py does when it generates

a target image.

• Startup (p. 55) describes the startup process for a QNX Apps and Media system.

• Modifying Target Images (p. 61) explains how to modify your QNX Apps and Media target image.

These instructions explain how to add or remove components or otherwise customize your Apps

and Media image. When you have customized your image, you can build it, as explained in “Building

Target Images”.

The following table may help you find information quickly:

See:To find out about:

Installing and Booting a Reference

Image (p. 11)

Getting started with a reference image

Downloading and transferring a reference

image (p. 13)

How to transfer a reference image to your target

Apps and HMIs (p. 19)How to add apps to your QNX Apps and Media project

Building Target Images (p. 27)How to build an Apps and Media image

How to create a target image (p. 30)The tasks you must complete to build a target image

Understanding the mksysimage process (p. 47)The process mksysimage.py uses to build an image

Scripts and utilities (p. 35)Scripts and utilities you use to build an Apps and

Media image

Startup (p. 55)The QNX Apps and Media startup process

Modifying Target Images (p. 61)How to modify your target image

In the interests of brevity, in this document target and reference images generated from the

QNX SDK for Apps and Media may be referred to simply as “QNX Apps and Media target (or

reference) image”, or even “Apps and Media image”.

Copyright © 2015, QNX Software Systems Limited 5

The variable base_dir used in this guide refers to the directory where you have installed QNX

SDP on your host system.

We have included in the installation the version of Python that we tested for building Apps

and Media.

For information about supported hardware, see the Installation Notes and Release Notes that

are posted on the QNX Download Center.

Copyright © 2015, QNX Software Systems Limited6

About This Guide

http://www.qnx.com/download/

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In

general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have unwanted or

undesirable side effects.

WARNING: Warnings tell you about commands or procedures that could be dangerous to your

files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited 7

About This Guide

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those

pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited8

About This Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qnx.com).

You'll find a wide range of support options, including community forums.

Copyright © 2015, QNX Software Systems Limited 9

About This Guide

http://www.qnx.com

Chapter 1
Installing and Booting a Reference Image

Platform-specific reference images offer a quick and convenient way to install a QNX Apps and Media

system on a target board.

QNX Software Systems makes available platform-specific reference images (p. 12) built with the QNX

SDK for Apps and Media. If you want to learn about the QNX SDK for Apps and Media, you should

start by downloading the reference image for your target platform and transferring it to your target

system.

Transferring a QNX Apps and Media reference image is a simple process. However, each supported

platform requires some platform-specific actions.

If you are using a reference image, you shouldn't need to do anything with the BSP. The BSP

included in the image is configured for QNX Apps and Media on the supported board. If you

do need information about the BSP, see the BSP User Guide for your platform.

Copyright © 2015, QNX Software Systems Limited 11

About reference images

A reference image is a convenient way to install a complex system on a target board.

A QNX Apps and Media reference image (which is stored as a .img file) contains the entire system

from the Initial Program Loader (IPL) to the user applications. It also includes the BSP and the startup

code for its targeted platform, and all the filesystems, libraries, resource managers, and other

components, such as Qt runtime, needed to run a QNX Apps and Media system. As well, it includes

a collection of HTML5 and Qt demo apps, which you can launch from the Home screen. For more

information about these demo apps, see the QNK SDK for Apps and Media User's Guide.

You can transfer a reference image directly to a removable storage medium, such as an SD card or

USB key, without having to modify partition information. Once the image is on the removable medium,

you can simply insert the SD card or USB key into your target system, and boot.

To get started with a QNX for Apps and Media system, all you need to do is:

1. Download a platform-specific reference image to your host system.

2. Transfer the reference image to a removable storage medium.

3. Insert the removable medium with the target image into your target platform, and boot from this

image.

Copyright © 2015, QNX Software Systems Limited12

Installing and Booting a Reference Image

Downloading and transferring a reference image

This section describes how to download an Apps and Media reference image and transfer it to your

target platform.

Downloading a reference image

To download a QNX Apps and Media reference image:

1. On the QNX web site (www.qnx.com), navigate to the Developers > Downloads section.

2. Download the zip file with the appropriate reference image to your host system.

3. Extract this zip file to a convenient location.

The zip file for VMware contains a .vmx file, which can be opened with VMware. See “Booting a

reference image (p. 15).” Reference images for other platforms contain a .img file, which you'll need

to transfer to a micro SD card or USB key, depending on the platform.

These reference images use this naming pattern: platform -media .img. For example, baytrail-usb.img or

imx61sabresmart-sd.img.

The zip files also contain one or more tar files. These are included as a convenience, so you can view

the contents of the reference image on a host system that doesn't read QNX6 filesystems.

For more information about downloading a reference image, see the QNX SDK for Apps and Media 1.1

Installation Notes.

Transferring a reference image to removable media

The QNX Apps and Media reference images support only micro SD cards or USB keys, depending on

the target platform. The reference images are approximately 500 MB when zipped, and expand to 4

GB when extracted. The minimum requirements for the removable storage are:

• micro SD card: 4 GB Class 10

• USB key: 4 GB USB 3.0

We recommend UHS-I cards for better read/write performance. These cards can be identified by a “U”

with a number “1” inside it, as shown below:

Figure 1: The UHS-I identifier

Different hardware platforms (boards) support different removable media devices. Use the type of

device your platform requires:

• BeagleBone Black — micro SD card: SanDisk Ultra
®

microSDHC
™

UHS-I SD card for mobile devices,

4 GB or larger

• i.MX6x SABRE Smart — micro SD card: SanDisk Ultra
®

microSDHC
™

UHS-I SD card for mobile

devices, 4 GB or larger (Use a micro to SD converter to insert the micro SD card into the SD card

slot.)

Copyright © 2015, QNX Software Systems Limited 13

Installing and Booting a Reference Image

http://www.qnx.com

• OMAP5 — micro SD card: SanDisk Ultra
®

microSDHC
™

UHS-I SD card for mobile devices, 4 GB

or larger

• VMware — not required

• x86 Bay Trail — USB key: Kingston Technology 8 GB DataTraveler G4 USB 3.0 flash drive

To transfer a QNX Apps and Media reference image to a micro SD card or USB key, follow the

instructions for your host OS.

When you have finished transferring the reference image to the removable media, follow the

platform-specific startup instructions.

Linux

On a Linux host system, use these command-line instructions to copy a reference image to removable

storage:

sudo dd bs=1048576 if=your_image of=/dev/sdx

This command causes the dd utility to write 1 MB chunks of data to the disk at a time. This command

assumes that sdx is the SD card (or other removable storage).

The device name shouldn't include a partition suffix. For example, do not use /dev/sdx1.

However, on some Linux variants, the device name can be /dev/mmcblk0.

Windows

On a Windows system, to copy a reference image to removable storage:

1. If you don't already have Win32 Disk Imager on your system, download it from this site, then install

it:

http://sourceforge.net/projects/win32diskimager/

2. Run the Win32 Disk Imager.

3. Browse to the location where you extracted the the image from the zip archive, and click Open.

4. Click Write to write the .img file to your microSD card.

5. Click Yes to begin the process of writing the image. When it's complete, you'll see the message

“Write successful.”

6. Click OK, then exit Win32 Disk Imager.

Copyright © 2015, QNX Software Systems Limited14

Installing and Booting a Reference Image

http://sourceforge.net/projects/win32diskimager/

Booting a reference image

After you have transferred your Apps and Media image to your target platform, you can boot your system

and start running apps.

To boot from a QNX Apps and Media reference image, follow the instructions for your supported target

platform. For detailed information about supported platforms, platform variants, and revisions, see the

QNX SDK for Apps and Media Release Notes.

For information about connecting board power supplies, screens, and other peripheral devices, see the

BSP User Guide for your board. For an explanation about board and peripheral support, see the Release

Notes. For information about what's included in the reference image, see “A Guided Tour of the

Reference Image” in the User's Guide.

If you use a physical keyboard connected to the target platform to get started, you must

disconnect it from the target platform to be able to use the touch keyboard.

BeagleBone Black

To boot from the QNX Apps and Media reference image on your BeagleBone Black target:

1. Remove the micro SD card from your host system, and insert it into the target platform's SD card

slot.

2. Hold down the target's S2 switch to cause the target to boot from the SD card.

3. Connect the target platform's power supply.

Your Apps and Media reference image should boot, and you should see the QNX Apps and Media

system running in the QNX environment.

i.MX6x SABRE Smart

To boot from the QNX Apps and Media reference image on your i.MX6x SABRE Smart target:

1. Configure the board's SW6 DIP switches as shown below:

ON

1 8

SW6

Figure 2: SW6 DIP switch configuration to boot the smart device from the SD card slot (SD3)

2. Remove the micro SD card from your host system, and use a micro SD to SD card converter to

insert it into the target platform's SD card slot.

3. Connect the target platform's power supply and power up the board.

Your Apps and Media reference image should boot, and you should see the QNX Apps and Media

system running in the QNX environment.

Copyright © 2015, QNX Software Systems Limited 15

Installing and Booting a Reference Image

OMAP5

To boot from the QNX Apps and Media reference image on your OMAP5 target:

1. Remove the micro SD card from your host system, and insert it into the target platform's SD card

slot.

2. Connect the target platform's power supply and power up the board.

Your Apps and Media reference image should boot, and you should see the QNX Apps and Media

system running in the QNX environment.

VMware

The QNX Apps and Media reference image for VMware is designed to run in VMware on your PC. Since

it is an x86 image, you can open it in VMware directly.

The QNX Apps and Media supports:

• VMware Workstation 9.0 or higher

• VMware Player 5.0 or higher

• VMware Fusion 5 or higher

Virtual Box isn't supported.

To use the QNX Apps and Media reference image for VMware:

1. Start a supported version of VMware Workstation, Player, or Fusion.

2. Open a virtual machine, browse to the location where you saved the QNX Apps and Media reference

image for VMware, then choose qnxanm.vmx.

If VMware displays a dialog indicating that the virtual machine was moved, select I copied it (as

recommended), then click OK.

3. Power on the virtual machine for this image.

Your Apps and Media reference image should boot, and you should see the QNX Apps and Media

system running in the QNX environment.

x86 Bay Trail

For x86 Bay Trail targets, you should update your BIOS to version 0039 or higher. See:

https://downloadcenter.intel.com/SearchResult.aspx?lang=eng&FamilyId=36&LineId=3736&ProductID=3782&ProdId=3782.

To boot from the Apps and Media reference image on your x86 target:

1. Remove the USB device from your host system, and insert it into a USB port on your x86 target.

2. Connect the target platform's power supply and power up the x86 target.

3. Enter the BIOS to configure the machine to boot from the USB drive that you've just inserted.

4. After configuring the BIOS to use the USB drive as the primary boot device, reboot the target.

Your Apps and Media reference image should boot, and you should see the QNX Apps and Media

system running in the QNX environment.

Copyright © 2015, QNX Software Systems Limited16

Installing and Booting a Reference Image

https://downloadcenter.intel.com/SearchResult.aspx?lang=eng&FamilyId=36&LineId=3736&ProductID=3782&ProdId=3782
https://downloadcenter.intel.com/SearchResult.aspx?lang=eng&FamilyId=36&LineId=3736&ProductID=3782&ProdId=3782

Screen calibration

The first time you start a QNX Apps and Media reference image on a target, the system automatically

prompts you to calibrate the screen. Subsequent startups will go directly to the QNX Apps and Media

Home screen. For more information about how to calibrate the screen, use the software keyboard, or

start an app, see “A Guided Tour of the Reference Image” in the User's Guide.

Copyright © 2015, QNX Software Systems Limited 17

Installing and Booting a Reference Image

Chapter 2
Apps and HMIs

You can add apps to Apps and Media, either in the target image or afterwards when the system is up

and running. You can also configure your Apps and Media system to use a simple, monolithic HMI

instead of the default HMI with packaged apps.

Adding apps without modifying the Apps and Media image

If you are an HTML5 or Qt app developer who just wants to get apps into a QNX Apps and Media

system, you don't need to modify and rebuild a target image. You can add apps to a system after it is

up and running. For instructions, see “Packaging, Installing, and Launching Apps” in the Application

and Window Management guide.

Copyright © 2015, QNX Software Systems Limited 19

Full screen HMI

The reference image includes a second HMI that demonstrates how to run a single, monolithic HMI

without packaging apps into Blackberry ARchive (BAR) files.

The default HMI delivered with QNX Apps and Media reference images uses Application and Window

Management components, such as the Authorization Manager (authman) and Application Launcher

(launcher), and apps packed into BAR files. If you don't want to use this HMI model, you can configure

your system to use a second HMI, also written in Qt.

To configure your system to display this simple HMI instead of the default Home screen:

1. On your target, select Settings to get the IP address for your target platform.

2. On your host system, use SSH to connect to the target (username: root, password: root).

3. Use elvis or vi to change the relevant line in /var/etc/services-enabled to disable the QT home

screen. Change:

QTHOMESCREEN:true

to

QTHOMESCREEN:false

4. Save the services-enabled file.

5. Restart your board.

After the board restarts, the simple HMI showing the QNX logo and the target's IP address appears:

Figure 3: A simple HMI that consists of a white background, the QNX logo, and the target's IP address.

To make this change persistent during image rebuilds, modify the services-enabled file in your

deployment workspace: $QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/boards/board-specific /var/etc

Copyright © 2015, QNX Software Systems Limited20

Apps and HMIs

You can use the same method to enable and disable other services:

service:true | false

For example:

WIFI:false

QTHOMESCREEN:false

USBCAM:true

It's expected that developers write their own full screen HMI, as the sample provided is intended

just to demonstrate how to start Qt runtime and its dependencies (e.g., graphics/Screen,

multimedia/mm-renderer). For more information, see “Writing an HMI” and “Source code for

sample Qt apps” in the QT Developer's Guide.

Copyright © 2015, QNX Software Systems Limited 21

Apps and HMIs

Replacing the full screen HMI

You can replace the QNX full screen HMI with one you have developed using the QNX Qt Development

Framework.

SLM launches the full screen HMI via a script, qthmi-start.sh. This action is configured in

$QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/etc/slm-config-all.xml:

<SLM:component name="hmi">

<SLM:command>/base/scripts/qthmi-start.sh</SLM:command>

<SLM:stop stop="signal">SIGTERM</SLM:stop>

<SLM:envvar>APP_MEDIA_KB_PATH=/base/usr/anm/bin/keyboard</SLM:envvar>

<SLM:envvar>APP_MEDIA_ASSET_PATH=/base/usr/anm/share/appmedia11</SLM:envvar>

<SLM:envvar>QQNX_PHYSICAL_SCREEN_SIZE=150,90</SLM:envvar>

<SLM:depend>symlink_hmi</SLM:depend>

<SLM:depend>symlink_base</SLM:depend>

<SLM:depend>iopkt</SLM:depend>

<SLM:depend>pps</SLM:depend>

<SLM:depend>calib-done</SLM:depend>

<SLM:depend>keyboard</SLM:depend>

<SLM:depend>screen-ready</SLM:depend>

</SLM:component>

The qthmi-start.sh script is located in $QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/scripts/. It

invokes the executable called QtSimpleHMI, which is located in the

base_dir /target/qnx6/architecture /usr/anm/bin directory.

The QtSimpleHMI is included in the basefs.anm.qt.xml fileset in the

$QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/filesets/ directory.

To replace the default full screen HMI with your own HMI:

1. Place your HMI executable file in the base_dir /target/qnx6/architecture /usr/anm/bin directory.

2. In the services-enabled file in the

$QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/boards/board-specific /var/etc directory, enable the

full screen HMI by changing:

QTHOMESCREEN:true

to

QTHOMESCREEN:false

3. In the basefs.anm.qt.xml fileset in the $QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/filesets/
directory, replace QtSimpleHMI with the name of your HMI executable.

4. In the qthmi-start.sh script located in the $QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/scripts/
directory, replace QtSimpleHMI with the name of your HMI executable.

5. Rebuild your target image by following the instructions for your board in “Building a target

image (p. 38).”

Copyright © 2015, QNX Software Systems Limited22

Apps and HMIs

6. Follow the instructions for transferring an image (p. 13) and booting your board (p. 15).

Copyright © 2015, QNX Software Systems Limited 23

Apps and HMIs

Pre-installing apps

You can pre-install apps by adding them to your Apps and Media target image and re-building the

image.

If you are a system developer who needs to deliver pre-installed apps, you can package your apps in

BAR files, add them to your target image configuration profile, then rebuild the image.

Before you begin, if you aren't familiar with how the QNX SDK for Apps and Media uses filesets

and profiles, see “Filesets and profiles (p. 62)”.

Unless otherwise specified, these instructions assume a Linux host. If you are working on a

Windows host, run the commands in the bash shell.

To include pre-installed apps in a target image, you need to modify the mksysimage configuration

files used to generate the image, by doing the following:

1. Create a .bar file (archive) for each of your new apps.

For information about creating .bar files, see “Packaging an HTML5 app” in the HTML5 Developer's

Guide and “Packaging the app into a BAR file from Qt Creator” in the Qt Developer's Guide.

2. Copy your .bar file(s) to the following directory (or one of its subdirectories):

base_dir /target/qnx6/appinstall/bars/unsigned

3. In the profile file for your board (such as os.xml), specify the location where you copied the .bar
file(s). Profile files are located under:

$QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards/platform . variant /

In the <application> section of the profile file, add an <include-application> entry for

each .bar file. In this entry, you must specify the archive name and location (relative to the /unsigned
directory). For example, if you copied the file myapp .bar to the /qt subdirectory, your entry in the

profile file would be:

<include-application name="qt/myapp.bar" secure="unsigned">

4. To generate a new image that includes your app(s), go to the $QNX_DEPLOYMENT_WORKSPACE/
infra/utils/scripts/ directory and run the appropriate mksysimage command:

For Linux:

mksysimage.sh -o output_path platform.ext -P AnM -f

For Windows:

mksysimage.bat -o output_path platform.ext -P AnM -f

After you run this command, your app(s) will be included in the generated image.

Copyright © 2015, QNX Software Systems Limited24

Apps and HMIs

The QNX_DEPLOYMENT_WORKSPACE environment variable must be set to the location where you

copied base_dir /product_deployment/QSAM/1.1/deployment/. For information about this variable, see

“Environment variables (p. 33)”.

For more detailed information about modifying target images, see “Modifying Target Images (p. 61)”.

Copyright © 2015, QNX Software Systems Limited 25

Apps and HMIs

Chapter 3
Building Target Images

To generate a QNX SDK for Apps and Media target image you only need to run a single script that

launches other scripts that build the image.

Overview of the process

The diagram below shows the process used to generate a QNX Apps and Media target image. You only

need to run the mksysimage.sh (Linux) or mksysimage.bat (Windows) file to start the process:

Default
XML Files
mktar uses
as input

Profile files
(list filesets & apps)

Image

mksysimage.py

gen-ifs.py

.build files
as input

gen-osversion.py

mktar.py

mkimage.py mkxfs

mkifs

dos.xml

os.xml

.tar files

.img
image files
for each
partition

.ifs files

profile.xml

calls creates

calls

/etc/os.version

creates

OR

Customizable
XML File

Uses file <platform>-mksysimage.cfg to
define default IFS, profiles, image tars, and
configuration file used by mkimage.py.

creates

diskimage

Creates a buildfile in
order to create an imageUses .cfg file

to define session
variants, partitions,
and image size. calls

creates

Uses image.cfg
file to define image.

Run:
mkysimage.sh mksysimage.bat
(Linux) (Windows)

Figure 4: Image generation process for the QNX SDK for Apps and Media platform

The only script you should run to generate an image is mksysimage.sh (Linux) or mksysimage.bat
(Windows). These scripts look after the process of running (in the proper sequence) the other

scripts that build your image.

Final image

The final step in the image-generation process is the creation of the OS image (.img) for the platform.

The resulting tar file will also be located in the same output directory as the image.

Copyright © 2015, QNX Software Systems Limited 27

Image artifacts

When you complete a project with the QNX SDK for Apps and Media, you must build a target image

to install your project on the target hardware.

To build a target image, you need to package all the following components:

• Board Support Packages (BSPs)

• the core OS and utilities

• HTML5 apps

• Qt apps

• Qt runtime

• HMI

• Browser/WebKit

• other binaries

Typically, you don't build all these components yourself. Instead, you:

• use the prebuilt binaries which you put in your development environment when you installed the

QNX SDK for Apps and Media platform

• install additional packages

• download any required BSPs

Artifact organization

When you design a system, you must choose how to organize components into one or more IFS files

and partition images. You then combine partition images to produce target images:

Image filesystems (IFS)

Image Filesystems (or .ifs files) are created by mkifs. An IFS is a file that contains a

bootable OS image. An IFS is a single binary that is loaded into RAM, generally by a

bootloader or IPL on bootup. IFS files are usually quite minimal; they include only the drivers

and libraries needed to start the kernel and mount additional partitions.

Because an IFS is loaded into RAM and the files in it are more difficult to upgrade than

files in a regular filesystem, an IFS is usually used only for startup code and a few key

libraries, especially libraries that need to load early in the boot process.

In the case of the QNX SDK for Apps and Media platform, everything required to start a

QNX kernel and mount secondary storage is stored in an IFS, but the HMI and apps are

loaded from a storage device. The primary binaries and libraries in the IFS are automatically

mounted to /proc/boot.

Partition images

Partition images (or .image files) are created by mkxfs (a wrapper utility for various filesystem

generation utilities; see “M” in the Utilities Reference). These files contain the contents of

a partition that is written to a storage device.

Partition images can contain a variety of file types including IFS files. For the QNX SDK for

Apps and Media platform, for non-x86 platforms, the primary IFS is stored in a FAT32

partition because most targets can read FAT32 with their default bootloader.

Copyright © 2015, QNX Software Systems Limited28

Building Target Images

For x86 platforms, the QNX IPL is used and it loads an IFS from a QNX filesystem.

An image may consist of a maximum of four primary partitions. For example, an SD image

for the QNX SDK for Apps and Media platform contains three (3) partitions: a FAT32 partition

for booting and two Power-Safe (fs-qnx6.so) partitions (one for system data and another for

user data).

Target images

Partition images are combined to produce target images (or .img files). A target image (also

referred to as a disk image or system image) contains an entire target system—a partition

table and the partition contents—and so is convenient to install. You can load a target image

directly onto a storage medium, such as a micro SD card or a USB key, without having to

modify partition information.

Typically, the resulting image is stored in non-removal storage; however, SD cards or USB keys

are easier to begin with.

Copyright © 2015, QNX Software Systems Limited 29

Building Target Images

How to create a target image

The QNX website includes reference (evaluation) images for you to explore and use; however, as a

system integrator or the developer of a custom solution, you might want to generate your own images.

If you want to use a custom image, you'll have to create an image for your target board. When you have

your board booting with this custom image, you can modify the filesets to include additional packages

and applications in the generated image.

The image generation process

Depending on your board, you will need to follow these high-level steps to create your target image:

Step 1

Download a board-specific BSP (which contains drivers and prebuilt files) from the QNX

website. For information about QNX BSPs, see “Board Support Packages (BSPs) (p. 49)”

and the BSP User Guide.

Step 2

Extract your BSP, then copy the files from the /prebuilt directory. For instructions about

extracting BSPs and where to copy the files, see the platform-specific instructions under

“Building a target image (p. 38).”

Step 3

(Optional) Depending on the board and boot loader used, you may require an Initial Program

Loader (IPL, which loads the IFS) or an MLO (multimedia card loader for OMAP5 EVM).

To generate the IPL, run the mkflashimage script. For more information, see the BSP

User Guide for your board.

Step 4

(Optional) You can customize the image to:

• change its contents (e.g., add or remove apps)

• include binaries and files in filesets

• modify the configuration profile files (e.g., os.xml, dos-sd.xml) for the board-specific

package

• modify the startup process using .build files and System Launch and Monitor (SLM)

Step 5

Run the mksysimage.sh (Linux) or mksysimage.bat (Windows) script to generate your target

image.

The following diagram shows an overview of the process used to create a target image for the QNX SDK

for Apps and Media. This process is discussed in detail in the chapters that follow.

Copyright © 2015, QNX Software Systems Limited30

Building Target Images

Step 1

Download a BSP & extract files

Copy prebuilt BSP files to your
deployment workspace location

Optional

Step 4

Run mksysimage to generate an
image file

Include custom apps in the
fileset

Include binaries & files in the
fileset

Customize configuration files

Modify the startup process

If customizing your BSP,
create new MLO & IPL files

Step 2

Step 3

Step 5

Figure 5: Process to create a QNX SDK for Apps and Media target image

The mksysimage.py image generation script

Because generating the various files needed for a complete target image is a time-consuming and

error-prone process, the QNX SDK for Apps and Media platform includes the mksysimage.py Python

script that handles the entire process of generating a system image. To ensure that you use the correct

version of Python (included with the Apps and Media installation), always use mksysimage.sh (Linux)

or mksysimage.bat (Windows) to run this Python Script.

For more information about mksysimage.py and other relevant scripts and utilities, see Building

Target Images (p. 27) in this guide, Image Generation Utilities in the System Services Reference, and

the QNX SDP Utilities Reference.

You also have the option of generating a system image manually; you can run the individual utilities

manually to generate any of the following:

• IFS

• TAR file

• partition images

• disk image

Copyright © 2015, QNX Software Systems Limited 31

Building Target Images

Before you begin

To create a QNX Apps and Media image, you need to have the QNX SDP 6.6 installed on your system.

After you unzip a BSP, a prebuilt IFS image is available in the BSP's /images directory. This prebuilt

image is configured for the various BSP device drivers already running. (The prebuilt IFS only

demonstrates what's in the core OS and not Apps and Media.) When you build the BSP, the prebuilt

image will be overwritten with a new image that is generated by the BSP build process, so you may

want to make a copy of the prebuilt image for future reference. However, if you forget to make a copy

of the prebuilt image, you can still recover the original one—simply extract the BSP from the zip archive

into a new directory.

Before you begin the process of creating an image for QNX SDK for Apps and Media, make sure that

you:

• have installed the QNX Software Development Platform 6.6 for either a Windows or Linux host

• have downloaded the QNX Qt runtime packages and followed the installation instructions for these

packages

• have a target with a touchscreen for use with the browser app

• can build and run the QNX SDP 6.6 BSP for your target platform without any issues

ELF executables and shared objects are automatically marked as executable (unless you specify

[+raw]).

Codecs for video playback

For some platforms, you need to get and install codecs or decoders for video playback:

BeagleBone Black

Video playback requires installation of the Ittiam software video decoder. You can obtain

the necessary files in the ittiam-datestamp .zip package.

i.MX6Q SABRE Smart

Video playback requires installation of the Freescale video codecs. You can obtain the

necessary files in the freescale-datestamp .zip package.

OMAP5432 EVM

Video playback requires installation of the Texas Instruments video codecs. You can obtain

the necessary files in the ti-datestamp .zip package.

You can obtain the packages from the QNX Download Center. Install them according to the installation

instructions provided with the packages.

Copyright © 2015, QNX Software Systems Limited32

Building Target Images

http://www.qnx.com/download/

Environment variables

Before you create an image, you must make sure the environment variables relevant to the image

creation process are properly set.

Environment variables relevant to image creation

Listed below are the environment variables associated with the image creation process. Note that

PATH, QNX_HOST, and QNX_TARGET are set when you run the script that defines the environment

variables:

BSP_ROOT_DIR

The name of the directory where you extracted the BSP archive.

CPU_VARIANT

The CPU architecture for which the BSP is designed. For QNX Neutrino RTOS SDP 6.6, for

example, the supported CPU variants are armle-v7 or x86.

PATH

A colon-separated list of directories that are searched when the shell looks for commands.

For more information, see ksh in the Utilities Reference.

QNX_DEPLOYMENT_WORKSPACE

The path to the QNX deployment work space where you copied the files required to build

the image. It determines the location for the files that go onto the target. Before you begin

working:

1. Copy to another location the directory and all the contents of:

base_dir /product_deployment/QSAM/1.1/deployment/

where base_dir is the directory where you have installed the QNX Neutrino SDP.

2. Set the QNX_DEPLOYMENT_WORKSPACE environment variable to the location where

you copied deployment and its contents.

You can also use this environment variable when you have custom hardware (boards) that

don't currently exist in the boards directory. If you want to create your own copy of the QNX

deployment directory structure for your requirements, you can use this environment variable

to reference your specific source control.

QNX_HOST

The location of host-specific files for all development hosts.

QNX_PRODUCT

An optional environment variable that identifies the default product to use, such as AnM
for QNX SDK for Apps and Media. If you don't set this environment variable, when you

generate a target image, set the -P option as -P AnM (for Apps and Media).

Copyright © 2015, QNX Software Systems Limited 33

Building Target Images

QNX_PYTHON_PATH

An optional environment variable that specifies the location of the Python interpreter used

to generate images. This variable is set by running mksysimage.sh (Linux) or mksysimage.bat
(Windows).

QNX_QT

An optional environment variable that defines a default location for the installed version of

Qt that you want to use. By default it's not set; however, it should reference the

architecture-dependent location where Qt is installed on the host computer. If you don't set

this environment variable, when you generate a target image, use the -Q option.

QNX_TARGET

The location of SDP (OS) target content on the host device.

To see a detailed list of environment variables used in QNX SDP and QNX for Apps and Media,

see the appendix Commonly Used Environment Variables in the QNX SDP Utilities Reference.

Set environment variables for image creation

To set environment variables for the QNX SDK for Apps and Media, type the following at the command

prompt:

Linux:

source base_dir/qnx660-env.sh

Windows:

base_dir\qnx660-env.bat

where base_dir is the directory where you installed the QNX 6.6.0 SDP.

CAUTION: When you run qnx660-env.sh (Linux) or qnx660-env.bat (Windows), the variables

are only set locally. Therefore, every time you open a shell or a command-line prompt, you

must run the command to set the environment variables.

Copyright © 2015, QNX Software Systems Limited34

Building Target Images

Scripts and utilities

Several scripts and utilities are used by mksysimage.sh (Linux) or mksysimage.bat (Windows) to

build an Apps and Media image.

mksysimage.py

The first utility to run in the image-generation process is the mksysimage.py utility script. This

Python script invokes other utilities to generate tar files and images for each platform. The script is

located at:

$QNX_DEPLOYMENT_WORKSPACE/infra/utils/scripts/mksysimage.py

where QNX_DEPLOYMENT_WORKSPACE is the location where you copied:

base_dir /product_deployment/QSAM/1.1/deployment

By default, mksysimage.py reads a platform-specific configuration file

(platform . variant /mksysimage/platform -mksysimage.cfg) from the following directory:

QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards/

mktar.py

mksysimage.py

.img
image file

Profile files

Generate
.tar files

.tar files

Generate
.img file

Figure 6: mktar.py uses profile files (that list filesets and apps) to create tar files, then

mksysimage.py generates an image file (.img) from these tar files.

Configuration files specify image variants for each platform; they specify which tar (.tar) files and

images are generated. These tar files are intermediate containers used in the image generation process.

For information, see “Image configuration settings (p. 68)” and “Filesets and profiles (p. 62).”

For all platforms, mksysimage.py generates a tar file and an image:

Copyright © 2015, QNX Software Systems Limited 35

Building Target Images

platform -os.tar

The content that goes into a QNX Power-Safe filesystem. Typically, this content includes

all files except the ones needed for internal booting, such as MLO and IFS files.

platform - image_variant .img

The image file for the bootable media used by the platform (USB stick or micro SD card).

For ARM platforms only, mksysimage.py also generates a second tar file:

platform -dos- image_variant .tar

The content that goes into a FAT32 filesystem that includes all boot files, such as MLO and

IFS files. FAT32 is compatible with most boot loaders.

The generated image includes the tar files mentioned above. Linux and Windows hosts can't read the

final image, so the tar files allow you to see what will be included in an image.

You can change the default configuration file, or specify your own by using the -c option in

mksysimage.py to customize your tar files and images. For more information about this utility, see

mksysimage.py in the System Services Reference.

gen-osversion.py

The gen-osversion.py utility script generates the /etc/os.version file based on the specified build

environment. For more information about this utility, see gen-osversion.py in the System Services

Reference.

gen-ifs.py

The gen-ifs.py utility script consolidates various .build file segments into a single buildfile before

calling the mkifs utility to create the .ifs file(s) that will be included in the final target image. An IFS

is a bootable image filesystem that contains the procnto module, your boot script, and possibly other

components such as drivers and shared objects. For more information about this utility, see

gen-ifs.py in the System Services Reference.

mktar.py

The mktar.py utility creates a tar file containing the files, directories, symbolic links, and their

permissions as specified in the filesets. These tar files contain the QNX Apps and Media files for the

specified platform variant and are used to generate the QNX Power-Safe and FAT32 filesystems included

in the QNX Apps and Media target image.

As input, the mktar.py utility uses the dos- variant .xml and os.xml files; otherwise, it uses the default

profile.xml file. These files specify which filesets to include, and for os.xml, the .bar files to pre-install.

The contents of a partition come from these generated tar files.

Copyright © 2015, QNX Software Systems Limited36

Building Target Images

mkimage.py

The mkimage.py utility script calls the mkimage utility, and builds an image called

partition_name .image from each partition. The Python script mkimage.py uses a configuration file

(platform -variant .cfg) to define session variants, partitions, and image size:

• The mkimage.py utility script processes and parses the command line, places the bootable image

file(s) first in the resulting output file, followed by embedded filesystem files, and any other files

that were on the command line.

• The mkimage.py script uses mkxfs to create the image files (.image files) for each partition

specified in the mkimage configuration file. The diskimage utility creates the final image that

combines all the partition image files (partition_name .image) into a single image.

mkflashimage

The mkflashimage script is included in BSPs for the i.MX6x SABRE Smart Devices and OMAP5

platforms. It is used to generate IPLs for these targets.

Copyright © 2015, QNX Software Systems Limited 37

Building Target Images

Building a target image

If you modify the deployment configuration or target contents of your QNX Apps and Media system,

you can use command-line instructions to build an image to include your modifications.

Before you begin building your QNX Apps and Media target image, familiarize yourself with the available

scripts and configuration files, then prepare your working environment, as described below in “Setting

up (p. 38).”

• Unless otherwise specified, these instructions assume that you are working in the command

line on a Linux host.

• For supported board variants and peripheral devices, see the Release Notes.

• For more information about the target platform and the QNX BSP for this platform, see the

BSP User Guide.

• For additional information about what happens when you build a QNX Apps and Media

target image, see Building Target Images (p. 27).

Scripts and configuration files

The QNX SDK for Apps and Media installation process creates a workspace that contains the scripts

and configuration files you'll use when you build your target image.

Scripts are under the following directories (assuming that you have already set

$QNX_DEPLOYMENT_WORKSPACE as instructed in “Setting up (p. 38)”):

$QNX_DEPLOYMENT_WORKSPACE/infra/utils/scripts

The (optional) configuration files are in:

$QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards

At this location, under platform . variant , there are two important directories:

platform . variant /mksysimage

Contains files for mksysimage configuration.

platform . variant /ifs

Files in this directory specify how to generate the IFS.

Setting up

When you build a custom image, start with the following preliminary steps:

1. Copy to another location the directory and all the contents of:

base_dir /product_deployment/QSAM/1.1/deployment/

(where base_dir is the directory where you have installed the QNX Neutrino SDP).

2. Set the QNX_DEPLOYMENT_WORKSPACE environment variable to the location of the new copy

of the deployment directory (include the /deployment directory in the path).

Copyright © 2015, QNX Software Systems Limited38

Building Target Images

3. Create an output directory where you want to have the image generated. You must specify a valid

directory name; the directory must exist prior to running mksysimage, or the script won't generate

the image.

4. Set the QNX_QT environment variable to the architecture-specific path of your QNX Qt Development

Framework installation. This environment variable tells the mksysimage script (which generates

the target image) where the QNX Qt runtime is installed on your host.

For example, on a Linux host for an ARMLE-v7 target:

export QNX_QT=qt_base_dir/QNX-qt/Qt-5.3.1-armle-v7

On a Windows host for an x86 target:

set QNX_QT=qt_base_dir\QNX-qt\Qt-5.3.1-x86

where qt_base_dir is the directory where you installed the QNX Qt Development Framework.

Later, when you run mksysimage, redirect its output to a file and look for any warning and error

messages about missing files. For example:

Warning: host file filename missing.

When you run mksysimage.sh (Linux) or mksysimage.bat (Windows) to generate a system

image file (.img), you must set these options:

• You must specify the argument for the -P option as -P AnM (for Apps and Media).

• The mksysimage.py script needs to know the full path to the QNX Qt runtime on your

target, so it can find the Qt libraries and binaries. If you haven't set the QNX_QT environment

variable, when you run mksysimage, use the -Q option to specify where the QNX Qt

runtime is installed on your host.

• Run the mksysimage.py script with the -f option to force it to overwrite existing tar files.

BeagleBone Black

These instructions describe how to build a QNX Apps and Media target image for BeagleBone Black

platforms.

Before building your target image, you should understand the available scripts and configuration files,

and prepare your working environment, as described in “Setting up (p. 38).” You should also understand

the general procedure for extracting and building a BSP, as discussed in “Board Support Packages

(BSPs) (p. 49).” Be aware, however, that the steps that follow are not the same as the general BSP

build steps.

To build your own QNX Apps and Media image for Texas Instruments AM335x BeagleBone Black

platforms, on your host system:

1. Set up the environment variables for the QNX 6.6.0 SDP, and the development environment for

QNX Apps and Media:

Copyright © 2015, QNX Software Systems Limited 39

Building Target Images

Linux:

source base_dir/qnx660-env.sh

Windows:

base_dir\qnx660-env.bat

where base_dir is the directory where you installed the QNX 6.6.0 SDP.

2. Set the QNX_QT environment variable to the location of the Qt runtime on your host system:

Linux:

export QNX_QT=qt_base_dir/QNX-qt/Qt-5.3.1-armle-v7

Windows:

set QNX_QT=qt_base_dir\QNX-qt\Qt-5.3.1-armle-v7

3. Extract a BSP, then copy everything from the /prebuilt directory to the board-specific directory in

the QNX_DEPLOYMENT_WORKSPACE path, as follows. We'll refer to the directory where you extracted the

BSP as bsp_dir :

cd bsp_dir

cp -r prebuilt/* $QNX_DEPLOYMENT_WORKSPACE/target/boards/beaglebone/

4. Create an output directory where you want to have the image generated:

mkdir output_dir

5. From the $QNX_DEPLOYMENT_WORKSPACE/infra/utils/scripts/ directory, run mksysimage.sh (Linux)

or mksysimage.bat (Windows) to generate a system image file (.img):

mksysimage.sh -P AnM -o output_dir beaglebone.ext -f

where output_dir is the location of the new image.

You should now have an image file (.img) ready to write to a micro SD card so you can transfer it to

your target. For instructions, see “Downloading and transferring a reference image (p. 13).”

i.MX6x SABRE Smart Devices

These instructions describe how to build a QNX Apps and Media target image for i.MX6x SABRE Smart

Devices platforms.

Before building your target image, you should understand the available scripts and configuration files,

and prepare your working environment, as described in “Setting up (p. 38).” You should also understand

the general procedure for extracting and building a BSP, as discussed in “Board Support Packages

(BSPs) (p. 49).” Be aware, however, that the steps that follow are not the same as the general BSP

build steps.

Copyright © 2015, QNX Software Systems Limited40

Building Target Images

To build your own QNX Apps and Media image for Freescale i.MX6x SABRE Smart Devices platforms,

on your host system:

1. Set up the environment variables for the QNX SDP, and the development environment for QNX

Apps and Media:

Linux:

source base_dir/qnx660-env.sh

Windows:

base_dir\qnx660-env.bat

where base_dir is the directory where you installed the QNX 6.6.0 SDP.

2. Set the QNX_QT environment variable to the location of the Qt runtime on your host system:

Linux:

export QNX_QT=qt_base_dir/QNX-qt/Qt-5.3.1-armle-v7

Windows:

set QNX_QT=qt_base_dir\QNX-qt\Qt-5.3.1-armle-v7

3. Extract a BSP, then copy everything from the /prebuilt directory to the board-specific directory in

the QNX_DEPLOYMENT_WORKSPACE path, as follows. We'll refer to the directory where you extracted the

BSP as bsp_dir :

cd bsp_dir

cp -r prebuilt/* $QNX_DEPLOYMENT_WORKSPACE/target/boards/imx61sabresmart/

4. From the BSP directory, run make, then from the /images subdirectory, run mkflashimage to

generate an IPL:

Linux:

cd bsp_dir

make

cd bsp_dir/images

mkflashimge

Windows:

cd bsp_dir

make

cd bsp_dir/images

sh mkflashimge

This utility script is shipped in the BSP. It creates the IPL as the following binary file:

Copyright © 2015, QNX Software Systems Limited 41

Building Target Images

bsp_dir /images/ipl-mx6q-sabresmart.bin

5. Create an output directory where you want to have the image generated:

mkdir output_dir

6. From the $QNX_DEPLOYMENT_WORKSPACE/infra/utils/scripts/ directory, run the following command to

generate a system image file (.img):

Linux:

mksysimage.sh -P AnM -o output_dir imx61sabresmart.ext -f

Windows:

mksysimage.bat -P AnM -o output_dir imx61sabresmart.ext -f

where output_dir is the location of the new image.

7. Copy the IPL to offset 1024 of the image file (.img) you just created:

dd if=bsp_dir/images/ipl-mx6q-sabresmart.bin

of=output_dir/imx61sabresmart-sd.img

bs=512 seek=2 skip=2 conv=notrunc

The dd utility isn't provided with Windows. To perform this step on Windows, download a

native Windows implementation of dd.

You should now have an image file (.img) ready to write to a micro SD card so you can transfer it to

your target. For instructions, see “Downloading and transferring a reference image (p. 13).”

OMAP5 EVM

These instructions describe how to build a QNX Apps and Media target image for OMAP5 EVM target

platforms.

Before building your target image, you should understand the available scripts and configuration files,

and prepare your working environment, as described in “Setting up (p. 38).” You should also understand

the general procedure for extracting and building a BSP, as discussed in “Board Support Packages

(BSPs) (p. 49).” Be aware, however, that the steps that follow are not the same as the general BSP

build steps.

To build your own QNX Apps and Media target image for Texas Instruments OMAP5432 EVM platforms,

on your host system:

1. Set up the environment variables for the QNX SDP, and the development environment for QNX

Apps and Media:

Linux:

source base_dir/qnx660-env.sh

Copyright © 2015, QNX Software Systems Limited42

Building Target Images

Windows:

base_dir\qnx660-env.bat

where base_dir is the directory where you installed the QNX 6.6.0 SDP.

2. Set the QNX_QT environment variable to the location of the Qt runtime on your host system:

Linux:

export QNX_QT=qt_base_dir/QNX-qt/Qt-5.3.1-armle-v7

Windows:

set QNX_QT=qt_base_dir\QNX-qt\Qt-5.3.1-armle-v7

3. Extract a BSP, then copy everything from the /prebuilt directory to the board-specific directory in

the QNX_DEPLOYMENT_WORKSPACE path, as follows. We'll refer to the directory where you extracted the

BSP as bsp_dir :

cd bsp_dir

cp -r prebuilt/* $QNX_DEPLOYMENT_WORKSPACE/target/boards/omap5uevm/

4. From the BSP directory, run make, then from the /images subdirectory, run mkflashimage to

generate an IPL:

cd bsp_dir

make

cd bsp_dir/images

mkflashimge

This utility script is shipped in the BSP. It creates the IPL as the following binary file:

bsp_dir /images/sd-ipl-omap5-uevm5432.bin

5. Copy the IPL to the sd-boot directory:

cp bsp_dir/images/sd-ipl-omap5-uevm5432.bin

$QNX_DEPLOYMENT_WORKSPACE/target/boards/omap5uevm/sd-boot/MLO

6. Create an output directory where you want to have the image generated:

mkdir output_dir

7. From the $QNX_DEPLOYMENT_WORKSPACE/infra/utils/scripts/ directory, run mksysimage.sh (Linux)

or mksysimage.bat (Windows) to generate a system image file (.img):

mksysimage.sh -P AnM -o output_dir omap5uevm.ext -f

where output_dir is the location of the new image.

Copyright © 2015, QNX Software Systems Limited 43

Building Target Images

You should now have an image file (.img) ready to write to a micro SD card so you can transfer it to

your target. For instructions, see “Downloading and transferring a reference image (p. 13).”

VMware

These instructions describe how to build a QNX Apps and Media target image which you can use in

VMware on your computer.

Before building your target image, you should understand the available scripts and configuration files,

and prepare your working environment, as described in “Setting up (p. 38).”

To build your own QNX Apps and Media target image for VMware, on your host system:

1. Set up the environment variables for the QNX SDP, and the development environment for QNX

Apps and Media:

Linux:

source base_dir/qnx660-env.sh

Windows:

base_dir\qnx660-env.bat

where base_dir is the directory where you installed the QNX 6.6.0 SDP.

2. Set the QNX_QT environment variable to the location of the Qt runtime on your host system:

Linux:

export QNX_QT=qt_base_dir/QNX-qt/Qt-5.3.1-x86

Windows:

set QNX_QT=qt_base_dir\QNX-qt\Qt-5.3.1-x86

3. Create an output directory where you want to have the image generated:

mkdir output_dir

4. From the $QNX_DEPLOYMENT_WORKSPACE/infra/utils/scripts/ directory, run mksysimage.sh (Linux)

or mksysimage.bat (Windows) to generate a system image file (.img), using the path to the x86

IPL:

mksysimage.sh -P AnM -o output_dir -k

"-b base_dir/target/qnx6/x86/boot/sys/ipl-diskpc1" vmware.ext -f

where output_dir is the location of the new image.

5. Copy the following two files:

• qnxAnM.vmx

• vmware-qnxAnM.vmdk

Copyright © 2015, QNX Software Systems Limited44

Building Target Images

from:

$QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards/vmware.ext/vm-config/

into the same directory as the .img file.

You should now be able to launch a VMware session and open the qnxAnM.vmx file to launch QNX

Apps and Media.

x86 Bay Trail

These instructions describe how to build a QNX Apps and Media target image for x86 Bay Trail platforms.

Before building your target image, you should understand the available scripts and configuration files,

and prepare your working environment, as described in “Setting up (p. 38).” You should also understand

the general procedure for extracting and building a BSP, as discussed in “Board Support Packages

(BSPs) (p. 49).” Be aware, however, that the steps that follow are not the same as the general BSP

build steps.

To build your own QNX Apps and Media target image for Intel x86 Bay Trail platforms, on your host

system:

1. Set up the environment variables for the QNX SDP, and the development environment for QNX

Apps and Media:

Linux:

source base_dir/qnx660-env.sh

Windows:

base_dir\qnx660-env.bat

where base_dir is the directory where you installed the QNX 6.6.0 SDP.

2. Set the QNX_QT environment variable to the location of the Qt runtime on your host system:

Linux:

export QNX_QT=qt_base_dir/QNX-qt/Qt-5.3.1-x86

Windows:

set QNX_QT=qt_base_dir\QNX-qt\Qt-5.3.1-x86

3. Extract a BSP, then copy everything from the /prebuilt directory to the board-specific directory in

the QNX_DEPLOYMENT_WORKSPACE path, as follows. We'll refer to the directory where you extracted the

BSP as bsp_dir :

cd bsp_dir

cp -r prebuilt/* $QNX_DEPLOYMENT_WORKSPACE/target/boards/baytrail/

Copyright © 2015, QNX Software Systems Limited 45

Building Target Images

4. Create an output directory where you want to have the image generated:

mkdir output_dir

5. From the QNX_DEPLOYMENT_WORKSPACE/infra/utils/scripts/ directory, run mksysimage.sh (Linux) or

mksysimage.bat (Windows) to generate a system image file (.img), using the path to the x86

IPL:

mksysimage.sh -P AnM -o output_dir -k "-b

base_dir/target/qnx6/x86/boot/sys/ipl-diskpc1" baytrail.ext -f

where output_dir is the location of the new image.

You should now have an image file (.img) ready to write to a USB key so you can transfer it to your

target. For instructions, see “Downloading and transferring a reference image (p. 13).”

Copyright © 2015, QNX Software Systems Limited46

Building Target Images

Chapter 4
Understanding the mksysimage process

If you are creating target images, you should understand how mksysimage generates these images.

The following explanations help you understand what mksysimage.py does when it generates an image:

how it uses BSPs, the QNX Apps and Media directory structure, IFS files, and search paths.

Copyright © 2015, QNX Software Systems Limited 47

The QNX Apps and Media directory structure

It is important to understand the directory structure used in the QNX SDK for Apps and Media. You

need to know where components are located when you create your target image.

The deployment tree

After it has been set, the QNX_DEPLOYMENT_WORKSPACE environment variable references the

deployment directory. This directory has two branches:

infra

Contains files that determine what goes into an image (the configuration files used to

generate an image).

target

Contains the binaries, libraries, and configuration files that may be included in a target

image.

Both infra and target have subdirectories, as shown in the figure below.

scripts

target

filesets

boards

utils

infra

boards

product

accounts

etc

root

opt

product

scripts

usr

var

AnM

AnM

boards

filesets

boards

accounts

etc

scripts

var

Configuration files

Candidate content

Figure 7: The directory structure for an Apps and Media image.

The files in the deployment subdirectories must be listed in a fileset to be included in the image. If a

file goes on a target, use $QNX_DEPLOYMENT_WORKSPACE/target/. If a file is not part of a target image, use

the directory structure located under $QNX_DEPLOYMENT_WORKSPACE/infra/.

Copyright © 2015, QNX Software Systems Limited48

Understanding the mksysimage process

Board Support Packages (BSPs)

If you are rebuilding a QNX Apps and Media target image, you will need to download and build the

QNX BSP for your target platform.

A BSP typically includes an Initial Program Loader (IPL), a startup program, a default buildfile,

networking support, board-specific device drivers, system managers, utilities, and so on. To learn more

about BSPs, see “Working with a BSP” in the Building Embedded Systems guide.

If you haven't modified the BSP, you can use the prebuilt binaries provided by QNX.

Building a BSP (command line)

After you have installed the QNX SDP on your host system, you can download platform-specific BSPs

from the QNX website. You can then either unzip the archive and build it on the command line, or

import it into the IDE and unzip and build it there.

These instructions are for building a BSP from the command line on either a Linux or Windows host

system. You may also want to refer to the BSP User Guide for the BSP for your target platform. These

guides provide details about switch settings, drivers commands, and so on.

Unless otherwise specified, these instructions assume a Linux host. If you are working on

Windows host run the commands in the bash shell.

To build a BSP for QNX SDP 6.6:

1. Set your environment variables, as instructed in “Set environment variables for image

creation (p. 34)”.

2. Download a QNX SDP 6.6 BSP from the QNX website at

http://community.qnx.com/sf/sfmain/do/viewProject/projects.bsp to a new directory in the SDP host

environment (the archive unzips to the current directory).

For example, you can use the following directory structure:

$QNX_TARGET/root/bsps/my_bsp /

The BSP file will be named like this:

BSP_board_name_SVN xxxxxx_JBN yy .zip

where board_name is the name of the board, xxxxxx is the SVN ID for the BSP, and yy is a unique

ID for the BSP.

3. Navigate to the directory where you saved the BSP and extract the BSP archive file:

unzip bsp_filename

Copyright © 2015, QNX Software Systems Limited 49

Understanding the mksysimage process

http://community.qnx.com/sf/sfmain/do/viewProject/projects.bsp

4. Change to the root directory of the unzipped BSP, then make and install the BSP:

make

make install

5. To use the newly generated BSP binaries, copy bsp_base_dir /install to

$QNX_DEPLOYMENT_WORKSPACE/target/boards/board_name .

For information about the BSP directory structure and where to find key files, see “BSP directory

structure (p. 50)”.

Permissions on a Windows host

When running on a Windows host, mkifs can't get the execute(x), setuid (set user ID), or setgid (set

group ID) permissions from the file, when modifying .build files. Use the perms attribute to specify

these permissions explicitly. You might also have to use the uid and gid attributes to set the ownership

correctly. To determine whether a utility needs to have the setuid or setgid permission set, see the

utility's entry in the QNX SDP Utilities Reference.

BSP directory structure

The information below should help you find files you need in a BSP.

BSP directories

When a BSP is extracted from its zip file, it is organized into the following directories:

bsp_base_dir /image

Directory for the QNX IFS, which is the image suitable for running on the target device. Any

other related binaries (such as an IPL or combined IPL/IFS image) are also created in this

directory. In addition, the generated IFS buildfile will also reside in this directory after the

BSP builds. By default, this directory also contains a prebuilt OS image.

bsp_base_dir /install

Location to which the contents of the bsp_base_dir /prebuilt directory are copied when a BSP

is built. Any binaries generated as a result of building the BSP source (contained in the

BSP's bsp_base_dir /src directory) are also copied to the bsp_base_dir /install directory. (The

mkifs utility will gather its content from the deployment directory and its subdirectories.)

bsp_base_dir /prebuilt

Various header files necessary for building the source components of the BSP, as well as

prebuilt binaries or libraries whose source code is not included with the BSP.

bsp_base_dir /src

The source code for device drivers, libraries, and utilities.

Copyright © 2015, QNX Software Systems Limited50

Understanding the mksysimage process

Location of key files

After you build the BSP, you'll find key files in the following locations, where $BSP_ROOT_DIR is the

name of the directory you extracted the BSP archive in, and $CPU_VARIANT is the CPU architecture for

which the BSP is designed (e.g., armle-v7 or x86):

LocationFile(s)

$BSP_ROOT_DIR/imagesBuildfile (core OS)

$BSP_ROOT_DIR/install/$CPU_VARIANT/boot/sysIPL

The files in this location are generated only when you run

mkflashimage.

$BSP_ROOT_DIR/install/$CPU_VARIANT/lib/dllLibraries (DLL drivers), such as audio, graphics, and

network
The files in this location are generated only when you

compile the libraries.

$BSP_ROOT_DIR/install/usr/includeGeneric header files (not architecture-specific)

$BSP_ROOT_DIR/install/$CPU_VARIANT/sbinSource code for different drivers (sbin drivers), such

as serial, flash, block, PCI, PCMCIA, and USB

Copyright © 2015, QNX Software Systems Limited 51

Understanding the mksysimage process

Understanding search paths

To find the files needed to build an image, mksysimage searches a specific set of paths.

Search paths are a simple method for specifying which files get included in an image when it is built.

When mksysimage.sh or mksysimage.bat calls mksysimage.py, this Python script uses mktar.py
and gen-ifs.py to build an image, these scripts examine the search paths in sequence and use the first

instance found of the file they need.

For example, if gen-ifs.py needs foo.bin to build an image and there are two copies of this file:

$QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/boards/omap5uevm.ext/ifs/foo.bin

and:

$QNX_DEPLOYMENT_WORKSPACE/target/foo.bin

assuming that these search paths are in the order above, mksysimage.py will use the file in:

$QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/boards/omap5uevm.ext/ifs/foo.bin

because this search path is first in the list.

Search paths for QNX Apps and Media start from the most specific (product and board) and work down

to the most general (the QNX Neutrino OS). If a file foo.bin is available for both a specific product and

board but also the OS, mksysimage.py will use the product and board version of the file (because

it is in a search path listed earlier).

Thus, when customizing your target image, you can add files to paths at the top of the list to replace

files found in paths listed later.

Organization of search paths

For QNX Apps and Media, search paths are generally organized as follows:

1. product-specific files

a. board-specific files

a. cpu_dir

b. non-board-specific files

a. cpu_dir

2. non-product-specific files

a. board-specific files

a. cpu_dir

b. non-board-specific files

a. cpu_dir

c. cpu_dir

3. deployment files and SDP-specific files (those located in qnx660/target/qnx6)

a. CPU-specific

Copyright © 2015, QNX Software Systems Limited52

Understanding the mksysimage process

Example search path list

Below is an example list of search paths. Note that the QNX_TARGET enviroment variable is set to

base_dir /target, and that the paths for the OS and Qt are last in the list, so the build will use files in

these paths only if no file of the same name has been found in the more specific paths.

$QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/boards/omap5uevm.ext/armle-v7

$QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/boards/omap5uevm.ext/ifs

$QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/boards/omap5uevm.ext

$QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/boards/common/ifs

$QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/boards/common

$QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/armle-v7

$QNX_DEPLOYMENT_WORKSPACE/target/product/AnM

$QNX_DEPLOYMENT_WORKSPACE/target/boards/omap5uevm/armle-v7

$QNX_DEPLOYMENT_WORKSPACE/target/boards/omap5uevm/

$QNX_DEPLOYMENT_WORKSPACE/target/boards/common

$QNX_DEPLOYMENT_WORKSPACE/target/armle-v7

$QNX_DEPLOYMENT_WORKSPACE/deployment/target

$QNX_DEPLOYMENT_WORKSPACE/target/qnx6/armle-v7

$QNX_DEPLOYMENT_WORKSPACE/target/qnx6

qt_base_dir/QNX-qt/Qt-5.3.1-armle-v7

To see all the paths used for the files that mksysimage.py uses, specify a verbosity greater than six.

For example, use -vvvvvvv, and the output will display the search paths used by gen-ifs.py and

mktar.py.

The mktar.py and gen-ifs.py scripts will not display a search path if it doesn't exist. In

otherwords, they don't issue any kind of “Missing search path!” error.

Copyright © 2015, QNX Software Systems Limited 53

Understanding the mksysimage process

Chapter 5
Startup

A QNX Apps and Media system starts up in several stages.

The startup process involves multiple tasks, completed in sequence. These tasks can be grouped into

three stages:

1. Hardware startup — board and chip dependent; software has no control over this stage.

2. Initial startup — the IPL, IFS, and any services and applications that must be accessed immediately.

To customize this stage, you need to modify the build file and rebuild the target image.

3. Everything else — The System Launch and Monitor (SLM) service uses its configuration files to

know what to launch to prepare the environment for the HMI. You don't need to rebuild the target

image to change the launch order of applications; you just need to change the SLM configuration

files.

App 1

HMISLMBuild ScriptKernelStartupIPLH/W

Time

Power on

App 2

App 3, etc.

U-Boot

BIOS/EFI

Reset vector

slm-config-all.xml
slm-config-platform.xml

SLM configuration files

Figure 8: The startup sequence for a QNX Apps and Media system

Phase locked loop (PLL)

PLL is part of the hardware startup process. It refers to how long it takes for the first instruction to

begin executing after power is applied to the processor.

Most CPUs have a PLL that divides the main crystal frequency into all the timers used by the chip.

The time that the PLL takes to settle to the desired frequencies often represents the largest portion of

the chip's startup time.

The PLL stage is independent of any OS and varies from CPU to CPU; in some cases, it takes as long

as 32 milliseconds. Consult your CPU user manual for the exact timing.

Initial Program Loader (IPL)

QNX provides a standard, bare-bones IPL that performs the fewest steps necessary to configure the

memory controller, initialize the chip selects and/or PCI controller, and configure other required CPU

Copyright © 2015, QNX Software Systems Limited 55

settings. Once these steps are complete, the IPL copies the startup program from the image filesystem

(IFS) into RAM and jumps to it to continue execution.

The IFS contains the OS image, which consists of the startup program, the kernel, the build scripts,

and any other drivers, applications, and binaries that the system requires. Because you can control

what the IFS contains, the time for the copying stage varies, but it typically constitutes the longest

part of the kernel boot process. In extreme cases where the system contains a very large image and

has no filesystem other than the IFS, this stage can take a long time (10 seconds or more).

You can indirectly adjust the length of this phase by reducing the size of the IFS. To add, remove, or

configure files stored in the IFS, modify the .build files used by gen-ifs. You can also compress the

image to make the IFS smaller (with the additional overhead of decompression, which you can speed

up by enabling the cache in the IPL).

Typically, the bootloader executes for at least 6 milliseconds before it starts to load the OS image. The

actual amount of time depends on the CPU architecture, on what the board requires for minimal

configuration, and on what the chosen bootloader does before it passes control to the startup program.

Some boards come with another bootloader, such as U-Boot. These bootloaders aren't as fast as the

QNX IPL, because this IPL has been specifically tuned for QNX systems.

For more information on the IPL and how to modify it for your purposes, see “Writing an IPL Program”

in the Building Embedded Systems guide.

Startup program (including the kernel)

The first program in a bootable OS image is a startup program whose purpose is to initialize the

hardware, the system page, and callouts, then load and transfer control to the kernel (procnto or

procnto-smp). If the OS image isn't in its final destination in RAM, the startup program copies it there

and decompresses it, if required.

During bootup, the kernel initializes the memory management unit (MMU); creates structures to handle

paging, processes and exceptions; and enables interrupts. Once this phase is complete, the kernel is

fully operational and can begin to load and run user processes from the build scripts.

Build scripts

Each board has a different set of build scripts to support different configurations. The build scripts

let you specify which drivers and applications to start, and in what order.

You can use the build scripts to launch services or utilities that need to be running very early or that

need extra time to load (for example, PPS or disk drivers). Wherever possible, these processes should

be started in the background to optimize concurrency and maintain the highest possible utilization of

the CPU until the HMI is fully operational.

It's also important to limit what goes into the build script because the build script is included in the

IFS, and everything that's added to it increases the IFS size and, therefore, the loading time.

Furthermore, SLM is more efficient at launching services and also allows you to monitor and restart

services as required.

In the QNX SDK for Apps and Media platform, the build scripts start the following:

• Screen

• audio service

Copyright © 2015, QNX Software Systems Limited56

Startup

• disk drivers (and then mount the disks)

• the PPS service

• debugging utilities, such as slogger and dumper

• BSP drivers, such as the serial driver, realtime clock, and other hardware utilities

• SLM and the system debug console

System Launch and Monitor (SLM)

SLM is a service that starts any processes required for the HMI (e.g., io-pkt), then starts the HMI. At

this point, SLM waits for further instructions. SLM is controlled by a set of configuration files

(slm-config-all.xml and slm-config-platform.xml) that tell it what modules to start and whether there

are dependencies within or between those modules. The dependencies of the HMI are defined in the

anm-init module of the file slm-config-all.xml. For more information, see the entry for SLM in the

System Services Reference.

Copyright © 2015, QNX Software Systems Limited 57

Startup

Initial startup process

You can modify the startup process to improve startup times and customize the launch order of services

and applications that are started before SLM takes over.

The buildfile

When a BlackBerry 10 OS system is built, it uses a buildfile to generate an IFS. This buildfile specifies:

• the files and commands to include in the IFS

• the startup order for the executables

• the loading options for the files and executables

• the command-line arguments and environment variables for the executables

Overview of the initial startup process

The following illustration shows an overview of the IFS startup process:

Startup header

Startup code

procnto

Boot script

Fi
le
s

Flash driver
TCP/IP stack
Hard disk driver
Configuration
etc.D

ir
ec
to
ry

st
ru
ct
u
re

ORCPU

Start

BIOS &
extension

ROM
monitor

IPL code
(from BSP)

Done
OR

IFS

Figure 9: The startup sequence for a BlackBerry 10 OS system

The QNX Apps and Media buildfiles include many smaller .build files that the gen-ifs.py

utility script combines into an output IFS file. For more information, see “IFS files (p. 73).”

After the hardware has initialized, startup proceeds as follows:

1. The processor begins executing at the reset vector. The reset vector is the address at which the

processor begins executing instructions after the processor's reset line has been activated. On the

x86, for example, this is the address 0xFFFFFFF0.

These instructions can be a BIOS, a ROM monitor, or an IPL. If they are a BIOS, then the code

will find and jump to a BIOS extension (for example, a network boot ROM or disk controller ROM),

which will load and jump to the next step. If it's a ROM monitor, typically U-Boot, then the ROM

monitor jumps to the IPL code.

2. The IPL minimally configures the hardware to create an environment that allows the startup program

microkernel to run, then locates the IFS and transfers control to the startup program in the image.

Copyright © 2015, QNX Software Systems Limited58

Startup

The IFS is a file with a directory structure; it contains the OS, your executables, and any data files

related to your programs.

3. The startup program configures the system and transfers control to the procnto module, which

is a combined microkernel and process manager.

4. The procnto module sets up the kernel and runs a boot script that contains drivers and other

processes (which may include those you specify), and any additional commands for running anything

else. The files included will be those specified by the mkifs buildfile.

When this process is complete, control is handed to the SLM service.

Copyright © 2015, QNX Software Systems Limited 59

Startup

System Launch and Monitor (SLM)

You can use the System Launch and Monitor (SLM) service to modify the launch sequence of

applications and services without rebuilding the target image.

The SLM service starts processes required for the HMI (e.g., io-pkt), then the HMI itself. It automates

process management by running early in the boot sequence and launching complex applications

consisting of many processes that must start in a specific order.

SLM uses XML configuration files to determine the appropriate order for starting processes. These files

list all the processes for SLM to manage, any dependencies between the processes, the commands for

launching the processes, and other properties. The files are located in these subdirectories:

$QNX_DEPLOYMENT_WORKSPACE/target/product/AnM/

The files are:

slm-config-all.xml

Configures services common to all hardware platforms. Located in: etc/.

slm-config-modules.xml

An example of how to add new modules. Located in: etc/. This file is included in

slm-config-all.xml.

slm-config-platform.xml

Platform-specific servics, such as board-specific drivers. Located in:

boards/platform . variant /etc/

For more information, see the System Launch and Monitor (SLM) entry in the System Services Reference.

Example SLM configuration

Below is a section taken from the current contents of the SLM configuration file slm-config-all.xml;
this section defines support for the PPS service:

<!-- pps starts in the IFS, this just blocks until /pps is available -->

<SLM:component name="pps">

<SLM:command launch="builtin">no_op</SLM:command>

<SLM:args></SLM:args>

<SLM:waitfor wait="pathname">/pps</SLM:waitfor>

<SLM:stop stop="signal">SIGTERM</SLM:stop>

</SLM:component>

Copyright © 2015, QNX Software Systems Limited60

Startup

Chapter 6
Modifying Target Images

If you add pre-installed apps to your system or customize it in any other way, you need to include the

modifications in a new image, which you must build and transfer to your target system.

The following explanations should help you understand QNX Apps and Media target images and how

they are built so you can incorporate new apps, or implement other modifications. For more information

about adding apps, see “Apps and HMIs (p. 19)”.

Copyright © 2015, QNX Software Systems Limited 61

Filesets and profiles

Filesets let you specify files, directories, symbolic links, and their permissions to include in the image.

Profile files determine which filesets and other components are included in the tar file from which the

image is built.

Filesets

The mksysimage. script uses fileset files to group files into sets that can be easily included in or

excluded from an image. Filesets are placed in a number of locations. For a list of the filesets in each

location by default, see “Filesets in the reference image (p. 62).”

Profile files

When it generates a tar file, mktar.py uses profile files to determine what to include in the tar file from

which the target image will be created. A profile file specifies:

• the filesets to include in the tar file

• the prepackaged applications to include in the tar file

• which fileset goes into which partition in the image

If a profile file specifies an app that is packaged as a .bar file, mktar.py includes that app in the tar

file from which it generates the target image. This app will be included in the image and won't require

installation after the system is running.

For example, the default profile files for the OMAP5 EVM board are:

[sd]

. . .

profiles=os.xml,dos-sd.xml

. . .

They are located under:

$QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards/platform.variant/

Filesets in the reference image

The tables below list the filesets that are included by default in the QNX Apps and Media reference

images.

Filesets in base_dir/deployment/infra/filesets

The filesets listed in the following table are present only if you have installed the corresponding

additional packages from the QNX Download Center.

Copyright © 2015, QNX Software Systems Limited62

Modifying Target Images

http://www.qnx.com/download/

DescriptionFileset

Third-party video decoder components from

Freescale required for the i.MX6 Sabre Smart

Devices platform.

basefs.armle.extra.freescale.xml

Configuration and drivers for iPod

connectivity.

basefs.mm.extra.ipod.xml

TI video decoder components for the OMAP5

and Jacinto hardware platforms.

basefs.omap5uevm.video.xml and

basefs.jacinto6evm.video.xml

Ittiam software video codecs ARMLE-v7

platforms.

basefs.mm.extra.ittiam.xml

Software decoding for Microsoft Windows

Media Audio 9 format files and streams.

basefs.mm.extra.wma9.xml

Filesets in $QNX_DEPLOYMENT_WORKSPACE/infra/boards/board-specific

DescriptionFileset

Video codecs for the x86 Bay Trail.basefs.baytrail.video.xml

DVFS for the i.MX6 SABRE Smart Devices.basefs.imx61sabre.dvfs.xml

DVFS for the OMAP5 EVM.basefs.omap5.dvfs.xml

Board-specific drivers and graphics

components.

basefs.board-specific .xml

Board-specific IFS files (depending on the

board, may also include MLO and U-boot).

dosfs.board-specific .boot.xml

LVDS for the OMAP 5 EVM.dosfs.omap5uevm.lvds.boot.xml

Board-specific IFS files.rootfs.board-specific .xml

Filesets in $QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards/beaglebone.ext

DescriptionFileset

Sample multimedia files for the QNX SDK

for Apps and Media for the BeagleBone

Black.

rootfs.beaglebone.anm.media.xml

Filesets in $QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/filesets/

DescriptionFileset

Base fileset for the QNX SDK for Apps and

Media. Includes the HMI, icons, and

associated configuration.

basefs.anm.multimedia.xml

Copyright © 2015, QNX Software Systems Limited 63

Modifying Target Images

DescriptionFileset

Apps and media components in the scripts
and usr/lib directories.

basefs.anm.os.xml

Qt components for the QNX SDK for Apps

and Media.

basefs.anm.qt.xml

Sample multimedia files for the QNX SDK

for Apps and Media.

rootfs.anm.media.xml

Filesets in $QNX_DEPLOYMENT_WORKSPACE/infra/filesets

DescriptionFileset

Debug utilities for ARMLE-v7.basefs.armle.common.debug.os.xml

OS debug tools.basefs.common.debug.os.xml

Networking components, including CURL,

FTP, and Telnet.

basefs.common.developer.networking.xml

Highest level OS partition directories.basefs.common.directories.xml

Base filesystem. Includes configuration for

fonts, users and groups, networking,

basefs.common.etc.xml

authman, launcher, OpenSSL, SLM, and

other base components.

Geolocation service (ip-provider).basefs.common.geolocation.xml

Input service (libinput).basefs.common.inputservice.xml

Multimedia components, such as

mm-renderer, mm-sync, and so on.

basefs.common.multimedia.xml

The launcher service.basefs.common.os.launcher.xml

Base filesystem. Includes components in the

bin, lib, usr/bin, usr/sbin, and usr/share
directories.

basefs.common.os.xml

Base components of Qt.basefs.common.qt.xml

Common scripts, including bar-install

and shutdown.

basefs.common.scripts.xml

Utilities such as the Korn shell (ksh), pipe,

and cksum.

basefs.common.util.xml

Core WebKit libraries.basefs.common.webkit.xml

The weblauncher service.basefs.common.weblauncher.xml

Currently Used fonts.basefs.fonts.common.xml

Copyright © 2015, QNX Software Systems Limited64

Modifying Target Images

DescriptionFileset

DejaVu fonts package.basefs.fonts.dejavu.xml

Source Han Sans font package.basefs.fonts.han.xml

Additional WebKit libraries including the

WebPlatform JavaScript API.

basefs.html5.common.torch.webkit.xml

WebKit Web Inspector components.basefs.html5.common.webinspector.xml

Multimedia AAC components.basefs.mm.aac.xml

Multimedia screen writer.basefs.mm.sw.xml

The accounts directory.rootfs.common.accounts.xml

Common certmgr certificates.rootfs.common.certificates.xml

Common directories such as accounts, root,
apps, and var.

rootfs.common.directories.xml

Components in the var/etc directory.rootfs.common.etc.xml

Geolocation configuration.rootfs.common.geolocation.xml

The root and var directories.rootfs.common.os.xml

The PPS filesystem for the base components

(audio, multimedia, application launcher,

etc.)

rootfs.common.pps.xml

Adding and modifying filesets

You can add new filesets, and new groups and users to existing filesets.

You need to ensure that all files you want to include in an image are added to filesets.

Adding a new fileset

To add a new fileset to an image:

1. Determine which partition the fileset belongs to (e.g., /base).

2. In the basefs. fileset_name_to_create .xml file, add the following lines:

<?xml version="1.0" encoding="UTF-8"?>

<fileset name="basefs.appsandmedia. fileset_name">

3. Add any files or symbolic links (symlinks) that you require. For information about adding symbolic

links, see “Adding symbolic links (p. 67).”

4. Ensure that you terminate the file with the tag </fileset>.

5. Add the new fileset to a profile file, such as os.xml or dos- variant .xml.

Copyright © 2015, QNX Software Systems Limited 65

Modifying Target Images

Adding new groups and users to a fileset

The groups.xml and users.xml files are the configuration files specific to filesets. When you want to

add a new group and/or user, you must update the groups.xml and/or user.xml file located in

$QNX_DEPLOYMENT_WORKSPACE/infra/filesets/config.

Before you can reference a user (uid) or group (gid) in a fileset, those entries must exist in the

appropriate file.

To add a new group, enter a <group> element as follows:

<group name="my_group" gid="511"/>

To add a new user, enter a <user> element as follows:

<user name="some_user" uid="900" gid="511"/ home="/some_destination

shell="/bin fullname="some_name"/>

Any new user or group must be added to the corresponding .xml file; otherwise, the image

generation process will fail.

Some gid values are reserved. See the comments in groups.xml for the number ranges that

are reserved.

Changing file destinations

When a file's location in the host's $QNX_TARGET directory structure is different from its location on

the target, you can set a new destination for it on the target.

To do this, you can modify a fileset to specify a different destination on the target system. In most

cases, you would organize files on the host exaclty as they will be organized on the target. However,

the Qt runtime directory structure on the host is not the same as the directory structure required for

the target, so this feature is useful for working with Qt runtime.

Files on the target that are not in the same path as on the host system add a level of complexity

to your system. We recommend using this feature only if strcitly required, such as for Qt

runtime.

Unless otherwise specified, these instructions assume a Linux host. If you are working on a

Windows host, run the commands in the bash shell

To change the destination of files:

1. Navigate to where the filesets are located:

cd $QNX_DEPLOYMENT_WORKSPACE/infra/filesets

2. Open one of the filesets that you wish to modify in an editor (e.g.,base.common.qt.xml).

Copyright © 2015, QNX Software Systems Limited66

Modifying Target Images

3. For a file element, add “dest”= and specify a valid location:

dest="some_location"

For example, to set an alternative destination for Qt, you might add the following for dest:

<file name="lib/libQt5QnxAfExtras.so.5.3.2"

dest="usr/qt5-5.3/lib/libQt5QnxAfExtras.so.5.3.2"

uid="root" gid="nto" mode="0755"/>

4. Save the file.

5. Generate the image. For instructions, see “Building a target image (p. 38).”

The new location for the file will be used for the file on the target.

Adding symbolic links

You can instruct mktar.py to create symbolic links when it generates an image from a fileset.

Unless otherwise specified, these instructions assume a Linux host. If you are working on a

Windows host, run the commands in the bash shell.

To add a symbolic link:

1. Locate the filesets in this directory:

$QNX_DEPLOYMENT_WORKSPACE/infra/filesets

2. In an editor, open one of the filesets that you wish to modify (e.g., base.common.multimedia.xml).

3. Add a symlink element. The following example shows three symlink elements:

<symlink name="usr/qt5-5.3/lib/libQt5QnxAfExtras.so.5.3"

target="libQt5QnxAfExtras.so.5.3.2" uid="root" gid="nto" mode="0755"/>

<symlink name="usr/qt5-5.3/lib/libQt5QnxAfExtras.so.5"

target="libQt5QnxAfExtras.so.5.3.2" uid="root" gid="nto" mode="0755"/>

<symlink name="usr/qt5-5.3/lib/libQt5QnxAfExtras.so"

target="libQt5QnxAfExtras.so.5.3.2" uid="root" gid="nto" mode="0755"/>

4. Save the file.

When mktar.py generates an image, it will create the symbolic link.

Copyright © 2015, QNX Software Systems Limited 67

Modifying Target Images

Image configuration settings

Configuration files let you define files for the system image for a specific platform type, and provide

size and partition information.

When you create your own OS image for your platform, you can modify various options in the

configuration files used by the mksysimage.py (p. 68) and mkimage.py (p. 69) utilities.

Configuration file for mksysimage.py

A configuration file for mksysimage.py defines the components for a specific platform type.

For information about running the mksysimage.py utility script, see mksysimage.py in

the System Services Reference.

Unless otherwise specified, these instructions assume a Linux host.

An mksysimage.py configuration file defines these components:

• an IFS file renamed to qnx-ifs and used as the default boot file

• the tar files to generate

• the tar files to include in the image

• a configuration file that defines the image partition sizes

You can find the default configuration file at:

$QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards/platform.variant /mksysimage /platform -mksysimage.cfg

For example, the default configuration file for the OMAP5 EVM board is as follows:

[sd]

default-ifs=omap5-sd.ifs

profiles=os.xml,dos-sd.xml

image-tars=omap5uevm-os.tar,omap5uevm-dos-sd.tar

image-config=omap5uevm-sd.cfg

The contents of this configuration file reveal that this OMAP5432 board has an SD image variant called

sd, which defines the following:

default-ifs

The ifs image name used as the default bootup IFS (qnx-ifs).

profiles

The mktar.py profiles used to generate tar files. The image-tars elements correlate

directly with the profiles. The names of the generated tar files have names of the form:

platform -profile_name .tar.

image-tars

The tar files included in the image.

Copyright © 2015, QNX Software Systems Limited68

Modifying Target Images

image-config

The configuration file used for specifying the size of each partition in the resulting image

file. The image-configuration files must be in the $QNX_DEPLOYMENT_WORKSPACE/infra/product/
AnM/boards/platform.variant /mksysimage/ directory.

Configuration file for mkimage.py

The mkimage.py utility script takes as input a configuration file that provides image information.

For information about running this script, see mkimage.py in the System Services Reference.

The configuration file used by mkimage.py provides the following information:

• maximum size of the image

• size and number of partitions, to a maximum of four

• order of partitions

• type of each partition

• path to each partition

For example, the contents of the OMAP5 configuration file (omap5uevm-sd.cfg) look like this:

[disk]

heads=64

sectors_per_track=32

cylinders=3724

sector_size=512

[boot]

path=/dos

type=12

num_sectors=1048576

order=1

[base]

path=/base

type=179

num_sectors=1253376

order=2

[data]

path=/

type=178

num_sectors=5322752

order=3

The sections of this file define the following:

Copyright © 2015, QNX Software Systems Limited 69

Modifying Target Images

[disk]

This section doesn't specify a partition, but determines the size of the image and of the

partitions. This section is required, must not be empty, must appear first in the file, and

must be called [disk].

heads

The number of heads for the data medium used.

sectors_per_track

The number of sectors for each track for the data medium used.

cylinders

The number of cylinders for the data medium.

sector_size

The size of the sectors used to store the data.

[partition_name]

A partition in the image. In the example above, [boot] is the first partition and contains

boot information.

path

Identifies the mountpoint of the partition.

type

Identifies the type of partition. For information about partition types, see “Partitions” in the

System Architecture guide for BlackBerry 10 OS.

num_sectors

The number of sectors for the partition.

order

The order for the specified partition in the image. If the order is 1, it's the bootable partition.

The example above shows three partitions:

• [boot] is of type 12 (FAT), has a partition order of 1 (meaning the first partition in the image),

and is located at /dos. The configuration file used with mksysimage.py will indicate that this

first partition is the boot ifs and that the ifs file will be renamed to qnx-ifs.

• [base] is of type 179 (QNX Power-Safe), has a partition order of 2, and is located at /base.

• [data] is of type 178 (QNX Power-Safe), has a partition order of 3, and is located at the root /.

Changing partitions

You can edit your board's board-media .cfg file to change the partitions in your image.

Unless otherwise specified, these instructions assume a Linux host. If you are working on a

Windows host, run the commands in the bash shell.

Copyright © 2015, QNX Software Systems Limited70

Modifying Target Images

To change the partitions in an image:

1. Locate the .cfg file for your board. For example, for OMAP5, the file is omap5uevm-sd.cfg and it's

located in: $QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards/omap5uevm.ext/mksysimage/

2. Open this file in a text editor and modify the various settings as required.

For example, the OMAP5 configuration file contains this partition:

[base]

path=/base

type=179

num_sectors=1253376

order=2

The line path=/base identifies the mountpoint for the partition. You can change the partition

settings as required. For details on the various settings, see the configuration file settings list (p. 69).

Changing image and partition sizes

To change the size of your target image or partitions, you must modify a variant-specific configuration

file.

The file that you must modify is:

$QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards/platform /mksysimage/platform - image_variant .cfg

For x86 platforms, you should note the following when creating partitions:

• The mksysimage utility requires a different argument to be passed in.

• The boot process is different from ARMLE-v7 platforms.

• The IFS gets installed to a different location.

Calculating the maximum size of a target image

To calculate the total size of the image, you must multiply the values given in the [disk] section of

the configuration file:

heads

x sectors_per_track

x cylinders

x sector_size

total maximum size of image

The disk section doesn't specify a partition, but provides important size information and must

appear at the top of the configuration file, before any partitions are specified.

Copyright © 2015, QNX Software Systems Limited 71

Modifying Target Images

For the OMAP5432 example for the sd variant, the maximum size of the image is 3.9 GB (3.63 GB

actual) and is calculated as follows:

64 heads

x 32 sectors_per_track

x 3724 cylinders

x 512 sector_size

3904897024 bytes for a total of 3.63 GB for the total maximum size

of the image

Limitations:

• The total size of all partitions can't exceed the total size of the image.

• The maximum number of heads is 255.

• The maximum number of sectors_per_track is 63.

Calculating the size of a partition

The size of a partition in the example above is calculated as follows:

heads x sectors_per_track x cylinders = number_of_sectors

number_of_sectors x sector_size = partition size

64 x 32 x 3724 = 7626752

7626752 x 512 = 3904897024 bytes

Therefore, the size of the partition is 3724 MB.

Copyright © 2015, QNX Software Systems Limited72

Modifying Target Images

IFS files

Image Filesystems (IFS) files are created by mkifs. An IFS file contains a bootable OS image. In a QNX

Apps and Media system, the gen-ifs.py utility generates a build file and then provides it as input to

mkifs to build an IFS.

Standard QNX BSPs are built by mkifs, which reads the build information from a single, large build

(.build) file. The complexity of the QNX SDK for Apps and Media makes this approach to building an

IFS difficult to implement: the same build process must support many different products and platforms.

To make these complex builds easier to manage and configure, QNX Apps and Media uses many small

build files, with each file configuring a specific part of the build. These small build files can be re-used

and combined for different products and platforms.

IFS directories

In the directory structure defined for generating images, there are five locations where you'll find IFS

directories.

target

product

infra

product

Configuration files

Candidate content

AnM boards

ifs
board.variant

boards

common
ifs

AnM boards board.variant ifs

ifsboard

ifscommon

5

4

3
2

1

Figure 10: The ifs directories in a product image

The preceeding illustration shows the location inside $QNX_DEPLOYMENT_WORKSPACE of various IFS

directories related to the generation of IFS files. Instances 1 to 4 in the “Configuration files” part of

the diagram are the directories with the input .build files, as follows:

1. product-specific but non-board-specific files

2. product-specific and board-specific files

3. non-board-specific and non-product-specific files

4. board-specific but non-product-specific files

Instance 5 in the “Candidate content” part of the diagram is the ifs directory where the image generation

scripts put the final generated IFS image.

Modifying the IFS for a specific board

To modify the IFS for a specific board, do the following:

1. Modify this IFS config file:

• $QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards/platform /ifs/

Copyright © 2015, QNX Software Systems Limited 73

Modifying Target Images

2. Modify the appropriate buildfiles, which are located in these directories:

• $QNX_DEPLOYMENT_WORKSPACE/infra/boards/platform /ifs/

• $QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards/platform /ifs/

Adding an IFS

If you need to add a new IFS to the build, you can edit the IFS configuration file: platform -ifs.cfg, which

is located at:

$QNX_DEPLOYMENT_WORKSPACE/infra/product/AnM/boards/platform /ifs/

In this configuration file, you can add a new IFS, change the order of the buildfile, and add a new

buildfile to the IFS.

For example, the configuration file for OMAP5 (omap5uevm-ifs.cfg) contains the following default

buildfiles:

[omap5-sd.ifs]

omap5-base.build

omap5-start-i2c.build

omap5-start-disk-sd.build

screen-omap5uevm-diskLibs.build

omap5-apps-and-media.build

apps-and-media.build

omap5-start-audio.build

screen-common-diskLibs.build

omap5uevm.build

generic.build

script.build

To add a new IFS:

1. Create a new [variant.ifs] section in the configuration file.

2. Add this section to the fileset file as well.

3. Run mksysimage to regenerate the image. This script calls other scripts to combine the buildfiles

listed in the ifs section (in the order that they are listed), create the .image files for the partitions

on the target, and combine these image files to create the target image as a single .img file.

IFS for x86 platforms

The /.boot/ directory contains the generated IFS files.

The current boot support is for x86 PC partition-table-based (the same base system as current booting)

with a BIOS that supports INT13X (LBA). Files placed into the .boot directory are assumed to be boot

images created with mkifs. The name of the file should describe the boot image.

For more information, see the BSP User Guide for your platform.

Target startup scripts

Buildfiles let you incorporate scripts to be run on your target. The[+script] attribute in the buildfile

tells mkifs that the specified file is a script file, which is a sequence of commands that you want

Copyright © 2015, QNX Software Systems Limited74

Modifying Target Images

procnto to execute when it's completed its own startup. Script files look like regular shell scripts,

except that:

• you can position special modifiers before the actual commands you want to run

• mkifs parses script file contents before placing them into the image

To run a command, its executable must be available when the script is executed. You can add the

executable to the image or get it from a filesystem that's started before the executable is required. The

latter approach results in a smaller image.

For more information about script files, see “The script file” in the Building Embedded Systems User's

Guide and mkifs in the Utilities Reference.

Copyright © 2015, QNX Software Systems Limited 75

Modifying Target Images

Troubleshooting tips

You can use various mksysimage.py options to have this script complete only select parts of the image

generation process.

Building an entire target image that includes everything from the IFS to the apps can be time-consuming.

When you modify components or troubleshoot, you can use combinations of mksysimage.py options

to build only parts of the image:

--no-mkimage

Prevents mksysimage.py from generating image files. The mksysimage.py script stops

after it has generated the tar files. Use this option when you need to confirm that your

changes will be correctly incorporated into the image after you have changed a component

such as a fileset or a profile.

--no-mkimage --no-mktar

Prevents mksysimage.py from generating tar files or image files. The mksysimage.py

script stops after it has generated the IFS files. Use this option when you need to confirm

that your IFS changes will work.

--keep-partition-images

Prevents mksysimage.py from deleting intermediate partition images. Use this option

when you need to keep the existing partition images. For example, if you are customizing

the configurations used by mkimage.py and want to examine them before incorporating

them into an image (.img) file.

Copyright © 2015, QNX Software Systems Limited76

Modifying Target Images

Index

.image 28

.img 28

.img file 12

[disk] 69

A

adding 65

filesets 65

apps 19, 24

adding without modifying the image 19

including in an image 24

Apps and Media 20, 22

Full Screen HMI 20, 22

B

base_dir 6

bash shell 49

Bay Trail 16

x86 reference image 16

BeagleBone 15

booting 15

reference image 15

BeagleBone Black 39

building image 39

BIOS 58

board 73

modifying build 73

Board Support Packages 49

boot 16

x86 BIOS and APIC 16

boot process 58

boot sequence, See system startup sequence

booting 15–16

BeagleBone reference image 15

i.MX6x SABRE Smart reference image 15

OMAP5 reference image 16

VMware reference image 16

x86 Bay Trail reference image 16

bootloader, See IPL

BSP 28, 49

building 49

obtaining 49

BSPs 49

contents 49

build 11, 73

image 11

modifying for a specific board 73

build scripts 56

limiting size of 56

purpose of 56

buildfile 58

building 27, 35, 39–40, 42, 44–45, 49

BeagleBone Black image 39

BSP 49

i.MX6x SABRE Smart Devices image 40

image 27, 35, 39–40, 42, 44–45

OMAP5 image 42

VMware image 44

x86 Bay Trail image 45

C

calibrating 17

screen 17

changing 66–67, 70

image destination on the target 66–67

partitions in an image 70

codecs 32

getting 32

video 32

configuration files 60, 66

groups.xml 66

SLM 60

user.xml 66

configure 60, 68–69, 71

image 60, 68

image partitions 71

mkimage.py 69

mksysimage.py 68

variants 68

creating 67

symbolic link 67

cylinders 69

D

decoder 32

Ittiam 32

destination 66–67

changing for image on the target 66–67

Copyright © 2015, QNX Software Systems Limited 77

Index

destination (continued)

changing on target 66

directory 48

structure in system image 48

disk 12

image 12

diskimage 27, 37

downloading 13

reference image 13

E

embedding procedure 32

prerequisites 32

environment variables 33–34

PATH 33

QNX_HOST 33

QNX_TARGET 34

setting 34

F

file 62

profile 62

fileset 62, 65–66

adding new 65

groups 66

including in an image 62

modifying 65

users 66

using to change file destination on target 66

filesets 62

in reference image (listed) 62

filesystem 58, 74

fs-qnx6.so 74

layout 58

fs-qnx6.so 74

filesystem 74

Full Screen HMI 20, 22

adding to image builds 20

customizing 22

displaying 20

replacing 22

G

gen-ifs.py 27, 36, 73

image generation process 36

gen-osversion.py 27, 36

generate process 27, 36–37

gen-ifs.py 36

mkimage 37

mksysimage.py 27

mktar.py 36

generating 27, 31, 35

image 27, 35

system image 31

groups 66

adding to fileset 66

groups.xml 66

H

heads 69

HMI 20, 22, 28, 57

configuring dependencies with SLM 57

customizing 22

monolithic 20, 22

replacing 22

HTML5 apps 28

I

i.MX6x SABRE Smart 15

booting 15

reference image 15

i.MX6x SABRE Smart Devices 40

building image 40

ifs 68

IFS 28, 55, 73–74

about 28

location in directory structure 73

purpose of 55

reducing the size of 55

understanding 73

x86 74

image 11–12, 24, 27–28, 30–36, 39–40, 42, 44–45,

47–48, 58, 60–61, 66, 68–73

artifacts 28

binaries 28

Browser 28

build 11

buildfile 58

building 27, 39–40, 42, 44–45

calculate image size 71

calculate partition size 72

changing destination on the target 66

Copyright © 2015, QNX Software Systems Limited78

Index

image (continued)

changing partitions 70

configuration 60, 68

core OS 28

creating 30

customize partition size 71

directory structure (example) 48

disk 12

environment variables 33–34

filesystem layout 58

generating 27, 35

generating system 31

generation process 36

HMI 28

HTML5 apps 28

ifs 68

image-config 68

image-tars 68

including apps 24

maximum size 69

modifying 47, 61

modifying for a specific board 73

partition 28, 69

number 69

order 69

size 69

type 69

prerequisites to create 32

profiles 68

Qt runtime 28

reference 12

scripts 35

startup 58

system 12

target 28

utilties 35

variants 68

WebKit 28

Image Filesystem 28

about 28

image-config 68

image-tars 68

images directory 50

Initial Program Loader, See IPL

install directory 50

IPL 55, 58

enabling the cache 55

IPL (continued)

instead of U-boot 55

optimizing 55

purpose of 55

Ittiam 32

video decoder 32

M

make command 49

micro SD card 13

transfering reference image to 13

mkflashimage 37

mkifs 27–28, 73

mkimage 37

image generation process 37

mkimage (utility), See mkimage.py

mkimage.py 27, 37, 69

configure 69

cylinders 69

example 69

heads 69

maximum size 69

num_sectors 69

order 69

partition 69

number 69

order 69

path 69

size 69

type 69

partition_name 69

path 69

Python script 37

sector_size 69

sectors_per_track 69

mksysimage 39

options 39

mksysimage.bat 27

mksysimage.cfg 27

mksysimage.py 27–28, 31, 35–37, 68

configure 68

gen-ifs.py overview 36

image generation process 27

mkimage overview 37

mktar.py overview 36

Python script 35

script overview 27

Copyright © 2015, QNX Software Systems Limited 79

Index

mksysimage.sh 27

mktar.py 27, 36, 67

creating symbolic link 67

image generation process 36

mkxfs 27–28, 37

mm-renderer 20

starting 20

modifying 47, 61

image 47, 61

multimedia 20

starting 20

N

num_sectors 69

O

OMAP5 16, 42

booting 16

building image 42

reference image 16

options 39

mksysimage 39

OS 28

image 28

P

partition 28, 69, 71–72

calculate size 72

customize size 71

generating image 28

image 28

number 69

order 69

path 69

power-safe 28

size 69

system data 28

type 69

user data 28

partition_name 69

partitions 70

changing in an image 70

PATH 33

permissions 50

Windows host 50

phase locked loop (PLL) 55

PLL 55

prebuilt directory 50

procnto 58

starting 58

profile files 62

profiles 68

Q

QNX_DEPLOYMENT_WORKSPACE 33, 35

QNX_HOST 33

QNX_TARGET 34

Qt 66

directory structure 66

Qt runtime 20, 28

starting 20

R

reference image 12–13, 15–16

BeagleBone 15

downloading 13

i.MX6x SABRE Smart 15

OMAP5 16

transferring to removable media 13

VMware 16

x86 Bay Trail 16

removable storage 13

requirements 13

reset vector 58

S

screen 17

calibrating 17

Screen 20

starting 20

script 74

startup 74

script files 75

scripts 35

image building 35

SD card 13

transfering reference image to 13

search paths 52

sequence used by mksysimage 52

sector_size 69

sectors_per_track 69

Copyright © 2015, QNX Software Systems Limited80

Index

service 21

enable or disable 21

setting 34

environment variables 34

size of image 69

SLM 57, 60

configuration 57

configuration files 60

purpose of 57

src directory 50

stages in the boot sequence 55

starting 15–16, 20

BeagleBone reference image 15

i.MX6x SABRE Smart reference image 15

mm-renderer 20

Multimedia 20

OMAP5 reference image 16

QT runtime 20

Screen 20

VMware reference image 16

x86 Bay Trail reference image 16

startup 56, 58, 74

image 58

IPL 58

program 56

reset vector 58

scripts 74

target 74

symbolic link 67

creating 67

creating in image 67

system 12, 31

generating image 31

image 12

System Launch and Monitor 60

system startup sequence 55

stages in 55

T

target 11, 28, 39–40, 42, 44–45

build image 11

building image 39–40, 42, 44–45

image 28

Technical support 9

transferring 13

micro SD card 13

reference image to removable media 13

SD card 13

USB key 13

Typographical conventions 7

U

U-Boot 58

USB key 13

transfering reference image to 13

user.xml 66

users 66

adding to fileset 66

utilties 35

image building 35

V

variants 68

video playback 32

BeagleBone Black 32

Freescale i.MX6Q SABRE Lite 32

TI OMAP5432 EVM 32

VMware 16, 44

booting 16

building image 44

reference image 16

W

Webkit 28

Windows 50

permissions 50

X

x86 16, 74

Bay Trail reference image 16

BIOS and APIC 16

booting 16

IFS 74

x86 Bay Trail 45

building image 45

Copyright © 2015, QNX Software Systems Limited 81

Index

Copyright © 2015, QNX Software Systems Limited82

Index

	Contents
	About This Guide
	Typographical conventions
	Technical support

	Installing and Booting a Reference Image
	About reference images
	Downloading and transferring a reference image
	Booting a reference image

	Apps and HMIs
	Full screen HMI
	Replacing the full screen HMI
	Pre-installing apps

	Building Target Images
	Image artifacts
	How to create a target image
	Before you begin
	Environment variables
	Scripts and utilities
	Building a target image
	BeagleBone Black
	i.MX6x SABRE Smart Devices
	OMAP5 EVM
	VMware
	x86 Bay Trail

	Understanding the mksysimage process
	The QNX Apps and Media directory structure
	Board Support Packages (BSPs)
	BSP directory structure

	Understanding search paths

	Startup
	Initial startup process
	System Launch and Monitor (SLM)

	Modifying Target Images
	Filesets and profiles
	Filesets in the reference image
	Adding and modifying filesets
	Changing file destinations
	Adding symbolic links

	Image configuration settings
	Configuration file for mksysimage.py
	Configuration file for mkimage.py
	Changing partitions
	Changing image and partition sizes

	IFS files
	Troubleshooting tips

	Index

