QNX® SDK for Apps and Media 1.1

Qt Developer's Guide

©2014-2015, QNX Software Systems Limited, a subsidiary of BlackBerry
Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road

Ottawa, Ontario

K2K 0B3

Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@gnx.com
Web: http://www.gnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: June 01, 2015

Qt Developer's Guide

Contents

Y o010 I T F- €0 - 5
TyPOgraphiCal CONVENTIONS. . ..ttt ettt e et e e e e et e e e eaaa e e eeeens 6
LT T T o= T 0T o oo PP 8

Chapter 1: QNX Qt Development TOOIS.........ccuuuiiiimreiniiir e 9
Source code fOr SAMPIE Qf @PPS. . vuuuueieiriett ittt e ettt e ettt e ettt e e e eeb e r e e e et e e e eat e e e e era s 10
QNX Browser [nvocation from Q... e e 11

Chapter 2: Preparing your host system for Qt development............cooiviuiiiiiiii 13
Installing QNX QDF and Q Creator.....c.uu.oiiiiiii e e e e eees 14
Configuring a QNX device in QE Creator. oo 16
Configuring @ toolchain in Qb Creator. e e e e e e 20

Chapter 3: Creating and running Qt @PPsS.......ccuuiriiieuiiiimie i s s s s s s reas s s e rnnnssssenan 25
Creating @ ProJeCt fOr @ QA DD e i ettt e e e e et e e e e e e et e e e e e 26

B 1= T T o= o L= T P 27
Making a QML file iNt0 @ ProjeCt rESOUICE. ... iiiiit e 28
Adding code 10 10ad the Ul.......ccooriii e 31
Adding an image for the @app 1CON....i.uu i e 32
Writing the app deSCripIor file. ... e e e e e 33
Environment Variables.o 34
XML elements in app desCriptor file.. ... 35
R0 o T g~ { g T= T T o] o A PP 41
Tips for compiling programs in Qt Creator........coouuuiiiiiiiiiie e 42
Packaging the app into @ BAR file from Qt Creator.........coooiiuuiiiiiiiiiiciii e 44
Packaging the BAR file from the command line..........cccooiiiiiiiiiiiii e, 47
Qt command-line options for blackberry-nativepackager. oo iieeeeneeeieeeineeeeneenns 48
Deploying the BAR file 0N the target.........ooiiiiiiiii e 51
T T Ta T (o[- T o] o PP b5
Cleaning the target before redeploying @ BAR file.. ..o 56

Chapter 4: Building libraries for Qt @pps.......ccuuciiiimiiiiiimiirr s e 59
Creating a project for the lDrary........ e e 60
FA¥o (o 11 T~ T {1 ot f (oo PP 62
BUIIAING The TIDIAIY. ... ittt e e e e e e e e e neans 64
Adding the library 10 Qt @PP PrOJECTS...cuuuuiiiitiie ettt e 66
Calling library funCtions iN Qb @PPS. ... ceeureniii it e e e 67
Packaging Qt apps With the library. ... e 69

Chapter 5: Writing an HMIL..........oo st e r s e s e s s e s s e s en s s enn s e na e e ra s ensssnnnn 71
Creating a project for @ Qt HMI....oooun o e e 72

Adding the Main QML file....cceeer e e 74

Contents

Adding the QRC filB..uuuuuiii e e e e e e s e e e e e e e e e st aeaeaeaaeaaanes 74
AAING the CPP fil@. ettt e e e e et e e e e e e aeeraaes 76
Building the HMI application for @ QNX target........oovveuuiiiiiiiiii e 78
Configuring the runtime environment........ccooiiiii e 79
Uploading the binary to the target.......oooeiiiii e 80
Running the HMI @appliCation........ooiuuiiiiiii e e e a s 82
Adding @ control 10 the HMI........oiin e e e e e 85
Compiling the QPPS library code with the application...........ccocooiiiiiiiiiii 85
Adding the VolumeModule C4+ ClasS.....c.uiiiuuiiiiiiiiiiie i 86
Adding images for VOIUME CONTIOL........iieiiii e e 91
Adding the QML COMPONENTS......uiiiiiii ettt e et e e e et eeeeaan e eeees 93

About This Guide

This document explains how to set up a host system for Qt development and how to perform all tasks
in the development lifecycle for Qt apps.

The QNX Apps and Media reference image includes many sample Qt apps, which provide useful
programming references for developing apps for various domains (e.g., media playback, camera display,
system control). The tutorials in this document show you how to use Qt Creator to define projects,
specify a basic Ul, build and package apps, and deploy and run them on a target system.

The pre-built Qt distribution available with the QNX SDK for Apps and Media 1.1 is an optimized
Cl port of the Qt Community version and has been made available as a convenience for our
customers. Although this version of Qt is not a QNX commercially licensed product, you can
obtain Qt support from QNX under a Custom Services Plan (CSP). Qt Enterprise and support
for Qt Enterprise is available from The Qt Company (http://www.qt.io). For more information
about Qt licensing, see http://www.qt.io/licensing/.

-
-

To find out about:

The components needed to develop Qt apps and where to | QNX Qt Development Tools (p. 9)
find these components

How to access the QNX Browser and deliver HTML5 QNX Browser Invocation from Qt (p. 11)
content from Qt apps

How to install and configure the Qt development tools on | Preparing your host system for Qt
your host system development (p. 13)

How to develop, package, deploy, and run Qt apps on a | Creating and running Qt apps (p. 25)
QNX Apps and Media target

How to build a library and dynamically link it into Qt apps | Building libraries for Qt apps (p. 59)

How to develop and display a Qt HMI on a QNX Apps and | Writing an HMI (p. 71)
Media target

How to run applications written for QNX Apps and Media | Building the HMI application for a QNX
1.0 on QNX Apps and Media 1.1 targets target (p. 78)

Copyright © 2015, QNX Software Systems Limited 5

http://www.qt.io/
http://www.qt.io/licensing/

About This Guide

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In
general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

Reference Example

Code examples
Command options
Commands

Constants

Data types
Environment variables
File and pathnames
Function names
Keyboard chords
Keyboard input
Keyboard keys
Program output
Variable names
Parameters
User-interface components

Window title

if(stream
-1R

make

NULL
unsigned short
PATH

/dev/null

exit()
Ctrl-Alt-Delete
Username
Enter

login:

stdin

parm1
Navigator

Options

== NULL)

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective [Show View.

We use notes, cautions, and warnings to highlight important messages:

'S Notes point out something important or useful.

/. CAUTION: Cautions tell you about commands or procedures that may have unwanted or

¢ = % undesirable side effects.

/= WARNING: Warnings tell you about commands or procedures that could be dangerous to your

L AN
r Ay .
{ "" 3 files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited

About This Guide

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those
pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited 7

About This Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qgnx.com).
You'll find a wide range of support options, including community forums.

8 Copyright © 2015, QNX Software Systems Limited

http://www.qnx.com

Chapter 1
QNX Qt Development Tools

To write Qt apps for QNX devices, you need to install Qt version 5.3.1 and Qt Creator version 3.2.1
onto your development system.
Before you can install the Qt tools, your system must have these platform installations:

e QNX SDP 6.6
e QNX SDK for Apps and Media 1.1

With this platform support, you can configure and start using these Qt development tools:

Qt runtime

Our Qt runtime package is based on Qt version 5.3.1 and contains a version of the build
tools (e.g., qmake, qcc) adapted to generate binary and library files for BlackBerry 10 OS.

Qt Creator

This IDE lets you manage projects for Qt applications, edit C++ and QML source files, and
add project resources such as images. This release officially supports version 3.2.1 of

Qt Creator, which you must configure to use the build tools in the installed Qt runtime
package.

'S Details on accessing and installing the Qt runtime and IDE are given in Preparing your host
E system for Qt development (p. 13).

Copyright © 2015, QNX Software Systems Limited 9

QNX Qt Development Tools

Source code for sample Qt apps

10

The QNX SDK for Apps and Media installers include a zipped folder (appsmedia_qt_source_v1_1.zip)
containing the source code for many sample Qt apps. These apps provide programming references for
implementing functions such as media playback, photo viewing, and displaying an HMI that lists the
installed apps.

The installers copy the Qt source code package to the source directory within the root directory of the
QNX SDP 6.6 installation (e.g., /usr/qnx660/source/appsmedia_qt_source_v1_1.zip). You can extract
the files containing the Qt source code to any location and examine their contents; however, you can't
modify or rebuild the sample apps without installing and configuring the Qt development tools as
described in this document.

The sample apps are:
Home screen

An HMI, built from Qt, that displays a status bar and the icons of the installed apps, which
users can tap to launch those apps

IP Camera
Displays a video feed supplied by an RTP/IP-based camera
Media Player
Browses and plays audio and video content
Photo Viewer
Displays picture files
QtSimpleHmi
A basic HMI written as a stand-alone application with no packaging
Settings

Provides controls to configure the system
These same Qt apps are part of the shipped images but only their binaries and runtime resources (e.g.,
icon files) are included in the images. When you extract the Qt source code package on your host

system, each sample app listed above is found in a directory with the same name. There's also the
Common directory, which stores classes useful to many types of apps.

Copyright © 2015, QNX Software Systems Limited

QNX Qt Development Tools

QNX Browser Invocation from Qt

Although Qt includes programming interfaces for accessing web browsers, these components aren't
supported by the QNX Qt runtime for this release. Instead, your Qt code can start one of our sample
QNX browsers or a custom browser, by using the launcher service.

The shipped image includes two browsers:

e BrowserlLite, a basic web browser built from HTML5 and Cordova plugins
e Browser, a fully-functional browser with advanced features (e.g., browsing history, URL bookmarking)
built from HTML5 and JavaScript

Both browsers are packaged and installed as apps (as opposed to stand-alone applications with their
own HMI) and hence, can be launched from Qt code by writing a command to a Persistent
Publish/Subscribe (PPS) object monitored by the launcher service. An example of using Qt to launch
an app is the Home screen app. The source code of this app is found in the Qt source code bundle
(appsmedia_qt_source_v1_1.zip), which is part of the QNX SDK for Apps and Media installer package.
Specifically, you can examine the code in the Homescreen/app/launcher subdirectory to see how to
format and send the start command through PPS.

For more information about the Home screen sample and how users interact with it to launch apps,
see the User's Guide. For a reference of the PPS control object used by launcher, see the
Ipps/services/launcher/control entry in the PPS Objects Reference.

If you want to deliver HTML5 content to the user without running a browser, your Qt apps can start
any app written with HTML5 and related technologies, using the same mechanism of sending an app
launch request to launcher through PPS.

Copyright © 2015, QNX Software Systems Limited 11

Chapter 2
Preparing your host system for Qt development

To write Qt applications, you must install the Qt runtime and Qt Creator IDE and then configure the
IDE to use our build tools and to target applications to a QNX device.

The host system is the machine where you develop apps, which can be a Windows or a Linux machine.
The target system is the machine where you run the apps. In the QNX Qt development environment,
the target is a hardware board running QNX Apps and Media.

Before you can configure your host system to support Qt apps, you must have the following:

e An installation of QNX SDP 6.6 on your host system. By default, this platform is installed to
C:\qnx660 on Windows and /usr/qnx660 on Linux. We refer to this installation location as
DEFAULT_SDP_PATH throughout this document.

¢ An installation of QNX SDK for Apps and Media 1.1 on your host system. This latter platform
depends on some critical SDP patches that fix key subsystems (e.g., audio, graphics); the list of
required patches is given in the platform's Installation Note.

e A target system running QNX Apps and Media 1.1 that's connected to the same network as the
host system and that has a valid IP address.

Copyright © 2015, QNX Software Systems Limited 13

Preparing your host system for Qt development

Installing QNX QDF and Qt Creator

14

QNX Qt 5.3.1 Development Framework (QNX QDF) is a package containing the Qt runtime needed for
building Qt apps. Qt Creator is the IDE that you use to write, debug, and build the apps. You need to
install both components before you can develop Qt apps for QNX Apps and Media systems.

To install the Qt development tools on your host system:

1. Locate the Installation Note applicable to your host OS by visiting our website, www.gnx.com, and
going to the QNX SDK for Apps and Media 1.1 Download area.

To find the right documentation for your host, look for headings with names similar to “QNX Qt
5.3.1 Development Framework (Windows Hosts)” or “ONX Qt 5.3.1 Development
Framework (Linux Hosts)"”,thenclick See Installation/Release notes... toaccess
the supporting documentation.

2. Follow the instructions in the Installation Note to access, download, and install QNX QDF and
Qt Creator.
The installation dialog will prompt you for the directory to install Qt into, which we refer to as

QT_BASEDIR. In this example, we use the default directory of C:\QNX-qt on a Windows host.

3. Verify the correct paths of the QNX QDF build resources by opening an OS terminal, navigating to
the location of the gqmake version suitable for your intended QNX target, and typing qmake -query:

i |

&l Administrator: DITA-OT -@ﬂéﬁ

0 G

» L 3 RO

2 MNETH PR 0 Q

F) NS TH RCHDAT A ¥]

4 : 1 'l 'l 1 ' .

F 3 TH ATH

’ E.: hl*.. ¥ ¥ 0

my] i vy I

) NSTH Al ¥ ¥

: Mo L H -|"l ¥ ¥

3 NSTH 4 ¥ 0

1 NS T [¥ ¥

AT _INSTH 5 ¥ ;

r NS TH N ¥]

2 NS TH 1POR ¥ ¥ -

F) MSTH oM .0 ¥ .

’ NS TH NS (] 0 ¥ : 0

] NS TH 20N RAT 10

.

IT_INSTF X AMPLES q 0

0 MT T O 3 ¥

7 05T PREF ¥ ¥

F 02T DATH ¥ ¥

] ns v ¥ ¥

y 0% 1 0 ¥ ¥

IMAK 3

JMAK 3

IMAK [i i

AT UERZI0

0 G

4 111} 3

W -

The path of the gqmake utility is Q7_BASEDIR\Qt-5.3.1- variant\bin, where variant is x86 or armle-v7,
depending on your target's processor type. Note that on Linux the directory separators would be
forward slashes (/).

Copyright © 2015, QNX Software Systems Limited

http://www.qnx.com

Preparing your host system for Qt development

In this example, we use a Windows host and a target system that has an armle-v7 processor, so we
query the properties of C:\QNX-qt\Qt-5.3.1-armle-v7\bin\gmake.exe. Regardless of your host 0OS
and target type, the paths of the build resources shown in the output should match the first few

directory levels in the gmake path.

After QNX QDF and Qt Creator are successfully installed, you must configure a QNX device to represent
your target system and a toolchain to define your compiler and debugger settings. The sections that

follow explain how to do this.

Copyright © 2015, QNX Software Systems Limited 15

Preparing your host system for Qt development

Configuring a QNX device in Qt Creator

You must configure a QNX device to tell Qt Creator which target system your apps will be deployed
onto. In the QNX Qt development environment, the target is your hardware board running QNX Apps
and Media.

To configure a QNX device in Qt Creator:
1. In the IDE, select the Tools menu, then click Options to open the Options dialog.

2. Choose Devices in the left-side menu and click the Add... button on the right side.

Initially, Qt Creator shows the default device of Local PC in this dialog, because you haven't
added a device that represents a QNX target:

[P Options Iﬁ

Filter Devices

L=

.f_’:_] Qt Quick

- Devices |

Device: [Loml PC {default for Desktop) '] [Add...
[Qy‘ Build & Run
General Remove
@ Debugger
ol Mame: Local PC Set As Default
X Designer Type: Desktop
Auto-detected: Yes (id iz "Desktop Device™) Show Running Processes

! Analyzer
A .
Yersion Control

i) Android

Current state: Unknown

Type Spedific

m

F% Code Pasting 7

QK H Cancel][Apply]

3. In the Device Configuration Wizard Selection dialog, choose ONX Device and click Start Wizard.
4. In the New QNX Device Configuration Setup dialog, fill in the connection fields:

a) Name the device configuration something meaningful, like OMAP5432.

b) Enter the IP address of the target board.

c) In each of the username and password fields, enter root.

To display this last field, ensure you've selected Password as the authentication type.

d) Click Next.

16 Copyright © 2015, QNX Software Systems Limited

Preparing your host system for Qt development

[0 New QMX Device Configuration Setup

)

Connection
Iif? Connection

Summary

The name to identify this configuration:
The device's host name or IP address:
The user name to log into the device:
The authentication type:

The user's password:

The file containing the user's private key:

OMAPS5432

10.222.98.67

root

@ Password

'KE‘!.I'

dministratory.sshlid_rsa

Browse...

Mext

] [Cancel

5. On the summary page, click Finish.

Qt Creator creates the new device configuration and runs the device connectivity test, which entails
connecting to the device and checking if the specified ports and certain key services (e.g., grep,
awk) are available. The test results are shown in the Device Test dialog:

Copyright © 2015, QNX Software Systems Limited

17

Preparing your host system for Qt development

18

[':1 Device Test

Connecting to host. ..
Chedking kernel version. ..
QMY 6.6.0 TI-OMAP5432-UEVM

All specified ports are available.

Checking for awk...
awk found.

Checking for grep...
grep found,

Checking for kil...
kill found.

Checking for netstat...
netstat found.

Checking for print...
print found,

Chedking for printf...
printf found.

Chedking for ps...
ps found.

Checking for read...
read found,

Checking for sed...
sed found.

Checking for sleep. ..
sleep found.

Chedking for uname...
uname found,

Chedking for slogZinfo...
slog2info found.

Device test finished successfully.

Checking if specified ports are available. ..

Close

6. After examining the test results, click Close to return to the Options dialog (which now displays

the settings of the QNX device).

Copyright © 2015, QNX Software Systems Limited

Preparing your host system for Qt development

[Options ﬁ

Filter Devices
. Devi
@ Environment i SVICEs |
Device: |OMAP i
E Text Editor ’] [- J
) General Remaove
% FakeVim ’ l
Name: OMAP | setAspefaut |
Hel

@ =P Type: OMX
{} Cos Auto-detected: No [Test |

P) Current state: Unknown lShow Running Processesl
-’—L] Qt Quick

v Type Spedific [Deploy Public Key. ..]
[Q} Build & Run _ o

| Machine type: Physical Device
@ Debugger 1 Authentication type: @ Password () Key
X Designer Host name: 10,222.97.124 S5H port: 22 =
Free ports: 10000-10100 Timeout: 10s =

! Analyzer

. Username: root

[.
Version Control Password: [7] show password
'ﬁ Android Private key file: EVadministrator, sshlid_rsa Browse...
e BlackBerry GDE server executable: Leave empty to look up ...
' Devices A
FE Code Pastinag i

[0K] [Cancel] [Apply]

7. If the connectivity test failed, review the new device's connection settings (shown in the Devices
tab) and fix any improper settings.

You can then click Test (on the right side) to retest your device (this action relaunches the Device
Test dialog, as shown in Step 5 (p. 17)).

8. Click the OK button in the bottom right corner to close the Options dialog.

CAUTION: Clicking Apply isn't enough to save the new device configuration. You must

& close the Options dialog and return to the main application screen before relaunching the
same dialog and configuring the build and run settings; otherwise, the new device won't
be listed. This is a known issue in Qt Creator.

Qt Creator has added a device profile representing your target system. You can now configure a toolchain.

Copyright © 2015, QNX Software Systems Limited 19

Preparing your host system for Qt development

Configuring

a toolchain in Qt Creator

After defining a QNX device to represent your target system, you must set up a toolchain in Qt Creator.
The toolchain defines the build and run environment based on the QNX QDF installation and the
compiler, debugger, and target device configurations.

To configure a toolchain in Qt Creator:

1. In the IDE, select the Tools menu, then click Options to open the Options dialog.

2. Choose Build & Run in the left-side menu, click the Qt Versions tab in the main viewing area, then

click the Add... button on the right side.

.~ "y
[Options l&
Filter Build & Run
@ Environment = | General | Kits | Qt Versions Compilers | Debuggers I CMake |
E Text Editor Mame gmake Location Add...
Auto-detected
Remaowve
% FakeVim Manual
@ Help iy Clean up
O e
< Qt Quick
[Qy, Build & Run
@ Debugger
X Designer
Bl Analyzer Y.
oK] [Cancel] [Apply]
LS "
3. In the file selector shown, navigate to the host directory containing the qmake version that you're
using, select qmake.exe (on Windows) or gmake (on Linux), then click Open.
The directory containing this utility is @T_BASEDIR\Qt-5.3.1- variant\bin, where variant is x86 or
armle-v7; on Linux, the directory separators would be forward slashes (/).
The Options dialog then displays additional fields for configuring the selected Qt version.
4. At the bottom of the dialog, on the line that reads ONX Software Development Platform,
click Browse....
20 Copyright © 2015, QNX Software Systems Limited

Preparing your host system for Qt development

[Options ﬁ

Filter Build & Run

@ Environment - General Kits Qt Viersions Compilers Debuggers I CMake

= | Text Editor Name gmake Location Add. ..
Auto-detected
R
% FakeVim 4 Manual _

Qt53.1 (Qt-5.3.1-armle-v7) CAQMNX-gt\Qt-5.3.1-armle-vitbinigmake.exe

@ Help Clean Up

| at Quick

[Q;., Build & Run
Q Debugger

f Designer
Viersion name: Ot 5.3.1 (Qt-5.3. 1-armle-v7)

! Analyzer
gmake location: C:\QMX-gthQt-5.3. 1-armle-v7bin\gmake. exe
[
Version Control
. M¥ Software Development Platform: Cilgnxee0
IQI Android Q P a

m

BlackB
@ ackoery Qt version 5.3.1 for QNX ARMle-v7 Details ¥
sanx QNX

ﬂ Devices i

Helpers: Mone available Details ™

Ok] [Cancel] [Apply]

5. In the file selector that the IDE displays, navigate to the SDP installation location (referred to as
DEFAULT_SDP_PATH in this document) and click Select Folder.
The ONX Software Development field now lists the directory containing the QNX SDP 6.6
installation on your host system.

6. Click the Compilers tab, click the Add button on the right side, then select occ from the dropdown
list.
The Options dialog displays additional fields at the bottom for configuring the newly added compiler.
7. Fill in the compiler fields:
a) In the Name field, enter QNX SDP 6.6 QCC.
b) On the Compiler path line, click Browse... to open the file selector. On Windows, navigate
to DEFAULT_SDP_PATH\host\win32\x86\usr\bin and choose qcc.exe. On Linux, navigate to
DEFAULT_SDP_PATH/host/linux/x86/ust/bin and choose qcc. Click Open to confirm the setting.

¢) On the NDK/SDP path line, click Browse... to open the file selector, navigate to
DEFAULT_SDP_PATH, then click Select Folder.

d) In the dropdown list for ABI, select arm-1inux-generic-elf-32bit.

Copyright © 2015, QNX Software Systems Limited 21

Preparing your host system for Qt development

[Options ﬁ
Filter Build & Run
@ Erwironment o | General I Kits I Qt Versions Debuggers CMake
Text Editor Name Type Add -
Auto-detected
% Fakelim 4 Manual
QNX SDP 6.6 QCC QCC Remove
@
{} C++
<] ot quick
Mame: QNX SDP 6.6 QCC
@ Build & Run Compiler path: C:\gnx660thostiwin32\x86usrbinigcc.exe
Q Debugger NDK/SDP path: | C:\gnxae0 Browse...
X Designer ABL: [arm-linux—generic—elf—SZbit '] arm ¥ |-|linux ¥ |-[generic ¥ |-|elf ¥ |-|3Zbit ~
[EB Analyzer e
0K] [Cancel] [Apply
8. Click the Apply button in the bottom right corner to save these settings.
9. Click the Debuggers tab, then click the Add button on the right side.
The Options dialog displays additional fields at the bottom for configuring a new debugger.

10. Fill in the debugger fields:

a) In the Name field, enter QNX SDP 6.6 GDB.

b) On the path line, click Browse... to open the file selector. On Windows, navigate to
DEFAULT_SDP_PATH\host\win32\x86\usr\bin and choose ntoarmv7-gdb.exe. On Linux, navigate to
DEFAULT_SDP_PATH/host/linux/x86/usr/bin and choose ntoarmv7-gdb. Click Open to confirm the
setting.

22 Copyright © 2015, QNX Software Systems Limited

Preparing your host system for Qt development

[Options ﬁ
Filter Build & Run

@ Envirenment

Test Editor Mame Path Type Add

% FakeVim 4 ilqit:u-;EtEdEd
@ e QMX SDP 6.6 GDB C:\qruia0\host\win32\x@6\usr\bin\ntoarmv7-gdb.exe GDB
{7} c-

<] ot quick

| »

| General I Kits I Qt Versions Compilers Debuggers CMake

m

[Q} Build & Run M Name: QNX SDP 6.6 GDB

@ Debugger Path: C:\gnx660%hostiwin32\x36 usrbin\ntoarmy 7-gdb. exe| Browse. ..
X Designer ABIs: |arm-unknown-unknown-unknown-32bit

[EB Analyzer e

0K][Cancel][Apply

11. Click the Apply button in the bottom right corner to save these settings.
12. Click the Kits tab, then click the Add button on the right side.
The Options dialog displays additional fields at the bottom for configuring a new kit.
13. Fill in the kits fields:
a) Name the kit something meaningful, like QNX SDP 6.6 - OMAP5432.
b) In the Device Type dropdown list, select ONX Device.
c) In the Device dropdown list, select the device configured earlier (e.g., OMAP5432).
d) In the Compiler dropdown list, select ONX SDP 6.6 QCC.
e) In the Debugger dropdown list, select QNX SDP 6.6 GDB.
f) In the Qt version dropdown list, select ot 5.3.1 (Qt-5.3.1-armle-v-7).

Copyright © 2015, QNX Software Systems Limited 23

Preparing your host system for Qt development

[[Options ﬂ]

Filter Build & Run
@ Environment - | General | Kits | Qt Versions I Compilers Debuagers CMake
= | Ted Editor blame __
Auto-detected
Clone
% FakeVim 4 Manual

QMX SDP 5.6 - OMAP5432

|
> Ik s o
Help

| at Quick

03 Build & Run
@ Debugger MName: QMX SDP 6.6 - OMAP 5432

m

i Designer Device type: [QN)C Device "l
e Device: |oMAP5432 (default for QNX) *|| Manage |
nalyzer
Version Control
Compiler: | QNX SDP 6.6 QCC | | Manage... |
Android
' Androi Debugger: | QX SDP 6.6 GDB || Manage... |
@ BlackBerry)
Qt version: [QtE.S.l{Qt—E.S.l—armIe—v?} "H Manage...]
I Devices i Qt mkspec:
% Code Pasting e
Ok] [Cancel] E Apply i
L9 -

14. Click the OK button in the bottom right corner to save all the Build & Run settings.

After you've configured a QNX device and a toolchain, you can begin developing Qt apps for QNX Apps
and Media systems! When creating Qt apps, you can select your Build & Run Kit in the New Project
wizard to use the build and run settings that you configured earlier.

24 Copyright © 2015, QNX Software Systems Limited

Chapter 3
Creating and running Qt apps

Qt Creator supports the entire Qt app lifecycle, from project creation to source file and resource
definition to app deployment on a target system.

The sections that follow provide a walkthrough of writing the code for a Qt app, packaging the app,
deploying it on a target system, and running it. Here, app refers to a Qt program packaged as a
Blackberry ARchive (BAR) file, which you can unpackage on the target to make the app accessible
from the HMI. To run the app, you simply tap its icon in the Home screen.

To develop Qt apps, you must have installed and configured the necessary Qt tools (including Qt Creator),
as explained in Preparing your host system for Qt development (p. 13).

Copyright © 2015, QNX Software Systems Limited 25

Creating and running Qt apps

Creating a project for a Qt App

The first task in writing a Qt App is to create a project in Qt Creator and add the necessary components
such as the Ul definition file, main source file, and an icon.

To create a Qt project:

1. Launch Qt Creator.

2. In the File menu, choose New File or Project...
3. In the Projects dialog, choose Other Project, then Empty Qt Project, and then click Choose...
i~ ™y
[New lﬂj
Choose a template: All Templates
FTEEE . Qt Unit Test Creates a gmake-based project without any files,
Annlicati : . This allows you to create an application without any
pplications a Ot Custom Designer Widget default dasses.
Libraries Em Project
m Pty Qt Proj Supported Platforms:
Other Project a Subdirs Project

Mon-0t Project
Import Project
Files and Classes
C++
BlackBerry

Qt

GLsL

General

lava

Python

| Code Snippet

[Choose... J[Cancel

26

4.

In the Location page of the Empty Qt Project dialog, name the project QtApp, then click Next.

Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

-

2 Empty Qt Project Iﬁ

@ Location
Kits

CUIMMEFY
Su ary

Introduction and Project Location

This wizard generates an empty Qt project. Add files to it later on by using the other wizards.

Mame: Qtﬁ.pp|

Create in: Ci'\Developmentiworkspace-qgt\build-QtApp-OMAP 5432

[] Use as default project location

Mext] [Cancel

6.

Defining the Ul

In the Kits page, choose the kit that you configured when setting up Qt Creator (e.g., QNX SDP
6.6 — OMAP5432), then click Next.

To define a kit, you must first define toolchain settings (e.g., compiler, debugger), as explained in
“Configuring a toolchain in Qt Creator (p. 20)".

In the Summary page, click Finish to save your new project's settings.

You can define the Ul by adding a QML file that declares the Ul components of your new app.

To define the Ul:

1.

Click the Edit icon on the left side, right-click the QtApp folder in the Projects view, then choose
Add New... in the popup menu.

In the New File dialog, select ot in the Files and Classes list, then QML File (Qt Quick 2)
in the list of file types (shown in the middle), then click Choose...

3. In the Location page of the New QML File dialog, name the file main, then click Next.

In the Summary page, click Finish.

The main.gml file is opened for editing.

Delete the default file content and replace it with the following:

import QtQuick 2.0

Rectangle {
width: 360
height: 360

Copyright © 2015, QNX Software Systems Limited 27

Creating and running Qt apps

Text {
text: gsTr ("Hello World")

anchors.centerIn: parent

This QML code defines a simple Ul consisting of a box displaying Hello World.

0 The QNX Apps and Media reference image has a similar HTML5 sample that displays

v “Hello World” but here, we're writing an app with a basic Ul to demonstrate Qt app
development and deployment. In fact, you can replace the QML code here with whatever
you like to display a different Ul.

6. Save the file.
Making a QML file into a project resource
After you've defined the Ul in a QML file, you can create a Qt resource file that includes the QML file

and then add this resource file to your project. This makes Qt Creator include the Ul definition in the
binary file.

-
-

There are several ways to access resources in Qt apps running on a QNX Apps and Media

Cl system. In addition to compiling resources into their binaries, apps can access resources from
within their BAR file package or from a shared location on the target. It's also possible to use
a mix of any of these options. The best solution depends on the nature of the app.

To make the Ul-defining QML file into a project resource:

1. Click the Edit icon on the left side, right-click the QtApp folder in the Projects view, then choose
Add New...

2. In the New File dialog, select ot in the Files and Classes list, then 0t Resource file inthe
list of file types (shown in the middle), then click Choose...

28 Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

[R New File o

Choose a template: [QNX Templates ~]
Files and Classes ’_J Ot Designer Form Class Creates a Qt Resource file {.qrc) that you can add
C+ ,_J Qt Designer Form to a Qt Widget Project.
BlackBerry ‘.J 0t Rescurce file Supported Platforms: Qi
Qt] QML File (Qt Quick 1)
GLSL] QMLFile (Qt Quick 2)
General] JsFile
Python

[Choose. ..][Cancel

3. In the Location page of the New Qt Resource file dialog, name the file resources, then click
Next.

4. In the Summary page, click Finish.

A new file, resources.qgrc, has been added to the project. The Qt Resources Editor is open.

5. In the configuration area near the bottom, click Add, then choose Add Prefix.

Copyright © 2015, QNX Software Systems Limited 29

Creating and running Qt apps

-
o resources.gre - QtApp - Ot Creator

Tools

File

Edit Build Debug Analyze

Projects x
4 @ QtApp

QtApp.pro
4 i Resources

FESOUNCES. qro
4 aml QML

@ rmain.gml

Open Documents

main.gml
rESCUrCES.grc

W. 2 Ht X & #

YE"':{-.

Window Help

resources. qrc

Add Files
Add Prefix

Remove

Prefix:

Language:

| Bl £~ Typeto locate (Ctrl+K)

6. In the Prefix field, replace the default text with ui.
7. Click Add again, then choose Add Files.

8. In the file selector that Qt Creator opens, navigate to the project directory and select main.qml,

then click Open.

The main.qgml file is stored in a Qt resource (.qre) file, which means Qt Creator will compile the QML

file into the app binary file.

30

Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

Adding code to load the Ul

The QML file defines how the Ul looks but to display it when the Qt app starts, your app must contain
C++ code that defines the application entry point and loads the Ul.

To add code that loads the Ul:

1.
2.

In the Project view, right-click the QtApp folder and click Add New...

In the New File dialog, select Cc++ in the Files and Classes list, then C++ Source file inthe
list of file types (shown in the middle), then click Choose...

3. In the Location page in the resulting dialog, name the file main, then click Next.

4. In the Summary page, click Finish.

The main.cpp file is opened for editing.

Copy and paste the following code into main.cpp:

#include <QtGui/QGuiApplication>
#include <QtQuick/QQuickView>

int main(int argc, char *argvl[])
{
QGuiApplication app(argc, argv);

QQuickView view;
view.setSource (QUrl ("grc:/ui/main.qml")) ;

view.show () ;

return app.exec();

In this code, the view loads the main.qml resource from the Qt resource file, and then displays the
Ul. Note the syntax for accessing resources in a .qrc file, which consists of the resource path
prepended with grc:. So, to access main.qgml, the view uses grc:/ui/main.qgml (because
the prefix was defined as ui).

Open the project file (QtApp.pro) for editing and add this line at the end:
QT += quick

Because main.cpp includes the QtQuick/QQuickView header file, you must tell Qt Creator to use
the quick package.

0 The project file can define many variables that affect how qmake builds the project; for
g the full list, see the variables | OMake reference in Digia's online Qt documentation.

Copyright © 2015, QNX Software Systems Limited 31

http://qt-project.org/doc/qt-5/qmake-variable-reference.html

Creating and running Qt apps

Adding an image for the app icon
To provide an icon that lets users identify and launch your app in the target HMI, you can save an
image file in your project folder.
To add an image to use as the app icon:

e Copy the following image and save it as icon.png in the QtApp project folder:

We provide a sample icon here for convenience, but you can use any appropriately sized image as
an icon.

0 The icon gets packaged into the app's BAR file—it shouldn't be compiled into resources.qrc.
g

32 Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

Writing the app descriptor file

After your project is set up, you can package the Qt app in a BAR file so it can be deployed onto a
QNX Apps and Media target. The package must contain an app descriptor file, which is an XML file
specifying various configuration and application settings.

These instructions show how to define an app descriptor file using Qt Creator but you can
manually write this file using whatever editing tool you want.

To write an app descriptor file in Qt Creator:

1.

Click the Edit icon on the left side, right-click the otaApp folder in the Projects view, then choose
Add New...

In the New File dialog, select General in the Files and Classes list, then Text file in the list
of file types (shown in the middle), then click Choose...

In the Location page of the New Text file dialog, name the file bar-descriptor.xml, then click
Next.

In the Summary page, click Finish.

The bar-descriptor.xml file is opened for editing.

. Copy and paste the following content into the new file:

<?xml version='l.0' encoding='UTF-8' standalone='no'?>
<gnx xmlns="http://www.qgnx.com/schemas/application/1.0">
<id>com.mycompany.QtApp</id>
<name>Qt App</name>
<versionNumber>1.0.0</versionNumber>
<description>The Hello World Qt demo app.</description>
<category>demo</category>
<icon>

</icon>
<buildId>1</buildId>
<author>My Company Inc.</author>
<permission system="true">run native</permission>
<env var="QQNX PHYSICAL SCREEN SIZE" value="150,90"/>
<asset type="Qnx/E1f" path="QtApp" entry="true">QtApp</asset>
</gnx>

The app-descriptor file defines the app name, description, icon file, and other fields that contain
authoring information and settings for the initial window. It also sets the
QQNX_PHYSICAL_SCREEN_SIZE environment variable, which defines the height and width of the
app's display area. Finally, the app descriptor file also provides asset information, including the
binary file path and format.

Copyright © 2015, QNX Software Systems Limited 33

Creating and running Qt apps

Environment variables

In the app descriptor file, you can define environment variables that your app can access from its
sandbox environment. In our sample Qt apps, these variable settings define the logging level or the
app's physical display area, but you can set any variable you want.

Environment variables are set using <env> tags, where the var attribute lists the variable's name and
the value attribute lists its value:

<env var="QQNX PHYSICAL SCREEN SIZE" value="150,90"/>

Physical display area

Library paths

34

The QQNX_PHYSICAL_SCREEN_SIZE variable defines the height and width of the app's display area
on the screen. The width is listed first, followed by a comma, followed by the height. Note that the
dimensions are specified in millimeters, not pixels. This is because the QNX Apps and Media target
requires a physical unit and not a virtual unit.

We strongly recommend setting this variable to better control how your app is shown in the target HMI.
If you don't define this variable, the display size defaults to 150 mm by 90 mm, which may not be
optimal for viewing your app. Also, you'll receive a stdout warning when starting your app, although it
will still run.

The LD_LIBRARY_PATH variable should not be used to define the path of dynamic libraries used by
your app. When defined in your project, this variable setting overrides the system setting on the target.
The target environment must be configured so all essential libraries, including Qt and other commonly
used libraries, are visible to the dynamic linker. For instance, on the target, LD_LIBRARY_PATH may
be set to:

lib:/usr/lib:/usr/qt5-5.3/1ib

Suppose you override this variable in the project for a Qt app so that it can access certain libraries in
its sandbox, as follows:

<env var="LD LIBRARY PATH" value="app/native/lib"/>

In this case, your app won't start on the target because the dynamic linker won't be able to find the
Qt libraries or any shared libaries outside of the app/native/lib path needed by the app. While you could
expand the project variable setting to include all the paths in the target's LD_LIBRARY_PATH value,
this depends on you knowing the target's setup, which might not be the case if you're developing apps
for a third party. Also, if the target setup changes, you would have to update your project settings.

We recommend that you instead define the RPATH link option in your project to give the app access
to the libraries included in its sandbox environment.

Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

XML elements in app descriptor file

The app descriptor file must specify the app ID, build ID, version number, a Qt binary file for the entry
point, and the physical size of the display area. The file can also define fields such as an icon image
file, author name, app name and description, and more.

Name

<arg>

Required ‘ Description

No

Defines the arguments for
configuring the application when
started. The order of the arguments
is important because they're
presented in the application's
command line in the same order
listed in the app descriptor file.

Attributes

Example

<arg>-b -v</arg>

<asset>

Yes

Specifies an asset to package in the
BAR file. For Qt apps, you must
include an <asset> tag that names
the Qt binary that's the app entry
point.

Any assets listed on the command
line override those specified with this
tag. The text of the tag is a path
relative to the BAR package root
directory. You can also use the dest
attribute to specify the asset—this
is recommended when using nested
<exclude> and <include>

elements.

Unless otherwise noted, the
attributes are optional.

defaultexcludes

When yes, apply
the exclusion
patterns to the
directory tree. For
the list of exclusion
patterns, see the
<asset> element
in the application
descriptor file DTD.

dest

The asset's
destination path.
Typically, the value
is the last part of
path (i.e., the
filename).

entry

When true, use the
asset to start the
application. The
default setting is
false.

path (Required)

The location of the
asset relative to the
working directory of
the packager.

<asset type="Qnx/E1lf"

path="QtApp"
entry="true">QtApp

</asset>

Copyright © 2015, QNX Software Systems Limited

35

http://developer.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk.devguide/topic/r_barfile_dtd_ref_asset.html

Creating and running Qt apps

\ET) [Required ‘ Description Attributes Example
public
When true, store
the asset in the
public directory of
the BAR file, so it's
readable to other
applications. Icon
assets should be
public. The default
setting is false.
type
The asset type. For
Qt binaries, use
Onx/E1f.
<author> No Specifies the author name (typically <author>
the company or developer name). My Company Inc.
</author>
<buildId> Yes, if Specifies the build identifier, which <buildId>1</buildId>
not using | is an integer between 0 and 65535.
<buildId | You modify the value when you want
File> the identifier to change.
<buildIld No Names the file that stores the build <buildIdFile>
File> identifier. This file is located in your buildnum
application root folder and it stores </buildIdFile>
the build identifier as an integer. The
packager tool increments this value
each time you build the BAR
package.
If you use this element, don't include
the <buildIid> element.
The default file created by the
Momentics IDE is buildnum.
<category> No Indicates the category to which the <category>
application belongs. media
</category>
<description>|No Defines the text to display when the <description>The Hello
application is installed. You can use World Qt demo app.
nested <text> elements to define </description>
text for different languages and
locales.
36 Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

Name Required ‘ Description Attributes Example
<entry Not if the | Defines the entry point type, which <entryPointType>
PointType> |entry can be either onx/E1£ (for native Onx/WebKit
point is |applications, including Qt </entryPointType>
defined |applications) or Onx/WebKit (for
inan applications based on HTML5 and
<asset> | Cordova).
tag;
otherwise,
yes.
<env> No Defines environment variable var (Required) <env var="QONX
sett.in.gs. For Qt apps, we recommend Name of the PHYSICAL SCREEN SIZE"
defining the . value="150,90"/>
environment
QQNX_PHYSICAL_SCREEN_SIZE variable.
variable, but you can define others
as well, as explained in value (Required)
“Environment variables (p. 34)". Value of the
environment
variable.
<icon> No Defines an icon for the app. The path See the 
is the path to the image asset (PNG
or JPG file) from the application root </icon>
path. The recommended image size
is 86 x 86 or 90 x 90 pixels.
This element is nested within the
<icon> element.
<name> Yes Defines the string value to display <name>Qt App</name>

when the app is installed. This
UTF-8 value can be at most 25
characters.

Copyright © 2015, QNX Software Systems Limited

37

Creating and running Qt apps

Name Required ‘ Description Attributes Example
<permission>|No Specifies the privileges (also known | system (Required) | <permission
ast.capa)tilrl]niii, userl.acttllons, or t Specifies whether system="true">
actions) that the application requests L i
f e og pp q the action is a access_internet
rom the OS. i ssi
system (not a user) | </Permission>
The permission settings relevant to |action. For Qt apps,
Qt apps are listed in “App this attribute must
permissions (p. 40)". be set to true.
<platform No Specifies the processor type that the <platformArchitecture>
Architecture> application is compiled for. If you x86
don't specify a value, the Momentics </platformArchitecture>
IDE inspects the binary to determine
the value.
You can use the following values:
e x86—compile your application
to run on a simulator
* armle-v7—build the
application to run on a device
<platform No Lists the locales supported by the <platformVersion>
Version> application. The values given must 10.2.0.155
be defined in the IETF Best Current </platformVersion>
Practice (BCP) 47 specification. You
can use a comma-delimited list of
locales to list more than one.
<gqnx> Yes Defines the top-level element of the | xm1lns (Optional) |See the example of the app
:ﬁhema used for the app descriptor URL referencing desc;iptor'fitle i:'/“ l:l/r/t;n;’z,‘he
ile. the XML app descriptor file (p. .
namespace.
<text> No Specifies text for the parent <name> | xml:lang <description>The Hello
and <description> elements, to | (Required) World Qt demo app.
support different languages .and The language or ctext
Iolcales. You can falso ulse ;[hls locale code. These | sl : Lang="de-DE">
element to specify multiple image .
files for th p' y pd g hyphenated strings | The German description
iles for the < > an
lach Hmage | ; are based on the for the Hello World Qt
< > elements.
splashscreen IETF Best Current | gemo app.</text>
Practice (BCP) 47 o
specification (e.g., </description>
en-US for U.S.
English, de-DE for
German, or fr-CA
for Canadian
French).
38 Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

\ET) [Required ‘ Description Attributes Example

<version Yes Specifies the app version as a string <versionNumber>

Number> in the format <0-999>. 1.0.0
<0-999>.<0-999>. The version is </versionNumber>

useful for determining whether an
upgrade is required. The value can
be a one-, two-, or three-part value,
suchas 1, 1.0, or 1.0.0.

Copyright © 2015, QNX Software Systems Limited 39

Creating and running Qt apps

App permissions

Using the <permission> element in the app descriptor file, you can list the permissions you want
the OS to grant your app.

-
-

The permissions listed here are those that apply to Qt apps. Other app types (e.g., Android)
E may have different permissions.

For Qt app decriptor files, each <permission> element can define of the following one permissions:

Permission element value Description

access_internet Allows the app to use an Internet connection from a Wi-Fi, wired, or other connection.
This permission is required to access a nonlocal destination.

access location services | Grants the app access to the system's current location and any saved access locations.
You must set this permission to access geolocation data, information for geofencing,
cell tower information, and Wi-Fi data.

access_shared Allows the app to read and write files shared between all apps. When this permission
is set, the app can access pictures, music, documents, and other files stored on the
local system, at a remote storage provider, on a media card, or in the cloud.

configure system Enables the app to modify system settings, including Bluetooth, Wi-Fi, network
connection, and software update settings.

manage cert Grants the app access to browser certificates. This is needed to browse content using
HTTPS and to save certificates locally.

post notification Allows the app to post notifications. This permission doesn't require the user to grant
your app access and is granted by the OS when requested.

read device Grants the app access to unique system identifiers such as the PIN and serial number.
identifying information [By setting this permission, you can also access SIM card information.

record audio Grants the app access to the audio stream from a microphone attached to the system.
set _audio volume Allows the app to control the audio volume.
use_ camera Allows the app to access data from cameras attached to the system. This permission

is required to take pictures, record video, and use the camera flash.

use installer Enables the app to access the appinst-mgr native service, which provides access
to the install and uninstall mechanism.

40 Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

Building the app

After creating the Qt project and defining the resources for the app, you can build its binary to verify
the correctness of the code and the project configuration.

Q Qt Creator has many features to make compilation and debugging easier, as explained in “Tips
for compiling programs in Qt Creator (p. 42)”.

To compile the app:

e In the Build menu, choose Build Project "QtApp".

Qt Creator starts building the application and displays the QCC output in the Compile Output

window.

0 bar-descriptorxml - QtApp - Qt Creator . 0 o
File Edit Build Debug Analyze Tools

Projects bl T
4 [m QtApp
QtApp.pro

4 .. Sources

| main.cpp
4 @& Resources

[FESOUrCES.Orc
4 oML
main.gml

4 [§] Other files

| | bardescriptorxml

Open Documents
bar-descriptorxm|
main.cpp
main.gml
QtApp.pro
TESOUrCes.qrc

* B+ x

Window Help

*« 9 bar-descriptor. xml o

1 <?xml version='l.0' encoding='UIF-8' standalone='no'?>

2| 4 <gnx xmlns="http://www.qnx.com/schemas/application/1.0">

3 <name>Qt App</namel

;- <description>The Hello World Qt demo app.</description>

5] 4 <icon>
& 
) </icon>

<idrcom.mycompany.QtApp</id>
o <versionNumber>1.0.0</versionNumber:>
10 <buildId>1</buildId>
11 <author>My Company Inc.</author>
12 4 <initialWindow>
13 <systemChrome>none</systemChrome>
14 <transparent>false</transparent>
F1 i indow>
1& <permission system="true">run native</permission>
17 <action system="true">run native</action>
18 <env var="QQNX PHYSICAL SCREEN SIZE"™ walue="150,30"/>
19| « <asset type="Qnx/EL1f" path="QtApp"
20 entry="true">QtApp</asset>
21 </gnx>

e »

I../../../oanxé60/carget/gnxé/ usr/include -IC:/gnx660/carget,/gnx6,/us
gcc -Vgoc ntoarmvile -lang-c++ -Wl,-rpath-link,C:/qnx660/target/qnx
ELDDING

gnx6/armle-v7,/asr/1lib -LC:/QNX-gt,/Qc-5.3.1-armle-v7/1ib -1Qt5Quick
v7/../../depot/target/qnx6/armle-v7/usr/1lib -L/builds/workspace/Qt_
10e50ml -1Qt5Network -lsocket -1Qt5Gui -1Qt5Core -1m -1GLESwZ2 -1EGL
12:57:06: The process "C:\gnxé60\host\win3Z2\x86\usri\bin'\make.exe" £
12:57:06: Elapsed time: 00:02.

Compile Qutput

O p== Type to locate (Ctrl+K) Issuesn Search Rfsultsﬂ Application Output

4 | Compile Output| | 5 ([e]SWaiRel LMY [6 (=]

Copyright © 2015, QNX Software Systems Limited 41

Creating and running Qt apps

If the application builds successfully, the binary will be in the build directory specified in the General
section of the Build Settings page, which is accessed by clicking the Projects icon on the left side and
then selecting the QtApp project.

If the build fails, you can review the messages shown in the Compile Output window (which is accessed
by clicking the button with the same name at the bottom) to determine the cause of the failure and
then take corrective action to fix the project.

Tips for compiling programs in Qt Creator

42

The following actions can help you compile and debug programs efficiently:

e To see the compilation output when your project gets built, click the Compile Output button on
the bottom of the screen. This displays the output of the QCC compiler. While the Issues view
provides a summary of any problems encountered during compilation, the Compile Output view
shows more information that helps explain the cause of an error listed in Issues.

e To speed up compilation, you can inform Qt Creator of the number of CPU cores on your host
machine. To do this, select the Projects tab, go to the Build Settings page, and locate the Build
Steps section. You can then expand the Make instruction and in the arguments field, add -j n,
where n is the number of cores on the machine:

- main.cpp - QtHmi - Qt Creator

File Edit Build Debug Analyze Tools Window Help

Qt . EIGRAGONN | Editor | CodeStyle | Dependencies |
Welcome dd Ki
AT OMAP5432
E Manage Kits... Build Run
Edit

8) Build Settings

Edit build configuration: | Debug - Add -~ Remove Renal

A‘ General

Shadow build: v
Projects

Build directory: | /home/slegault/Development/qt-workspace/build/QtHr

Analyze
Build Steps
@
Help gmake: gmake QtHmi.pro -r -spec gnx-armv7le-gcc CONFIG+=debug C

Make: make -j4 in /hme/slegault/Development/qt-workspace/build/QtH

Make arguments:

Add Build Step ~

Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

This action instructs make to use multiple threads during compilation, which can significantly
reduce build times for large projects. (It won't make any difference for our small sample project
but does help when building large applications.)

0 In some Windows versions of make, the -5 option isn't implemented and so it has no
¥ effect.

e |f you encounter compilation problems related to moc or vtables, clean your project (by selecting
Build O Clean All), rerun gmake (by selecting Build 0 Run qmake), and then rebuild your project.

Qt Creator uses gmake to generate makefiles containing instructions on how to compile the project.
Sometimes the makefiles become out-of-date and must be manually regenerated by doing those
previous actions.

Copyright © 2015, QNX Software Systems Limited 43

Creating and running Qt apps

Packaging the app into a BAR file from Qt Creator

After defining the app descriptor file, you can generate a BAR file that contains the app's binary and
icon file. The BAR package will be used by the target system to install the app.

These instructions show how to produce a BAR file as a custom build step in Qt Creator, but you can
also generate a BAR file from the command line (p. 47). BAR files are created by the
blackberry-nativepackager tool, which is part of the QNX SDK for Apps and Media installation on your
host system.

To package the app into a BAR file from Qt Creator:

1. Click the Projects icon on the left side, select the Build & Run tab, click Add Build Step, then
select Custom Process Step:

' ™y
[QtApp - Qt Creator E@g

File Edit Build Debug Analyze Tools Window Help
QtApp

Build & Run | Editor | Code Style | Dependencies |

ey QNX SDP 6.6 - OMAP5432
Manage Kits... Build Run

General

Shadow build:
Build directory: C:\Developmentiworkspace-qtibuild-Qtapp-QMX_SDP_&_6_OMAP5432-Debug

Build Steps

m

gmake: gmake.exe QtApp.pro -+ -spec gnx-army Ffle-goc "CONFIG+=debug” "CONFIG+=dedarative_debug” "COl Details +

Make: make.exe in C:\Developmentiworkspace-gtibuild-QtApp-QMX_SDP_6_6_0OMAPS5432-Debug Details *

[;Eaﬂdsmpv]

Custom Process Step

Make

Make: make.exe dean in C:\Developmentworkspace-gtibuild-QtApp-QMX_SDP_6_6_OMAPS5432-Debug Details *

Add Clean Step ™
| N O Typeto locate (Ctrl+K) IssuesSearch Results@lsedl Application ... Compile Out... _

2. On the line that reads Command, click Browse....

3. In the file selector dialog, navigate to DEFAULT_SDP_PATH\host\win32\x86\usr\bin and choose
blackberry-nativepackager.bat (on Windows) or navigate to DEFAULT_SDP_PATH/host/linux/x86/usr/bin/
and choose blackberry-nativepackager (on Linux).

A

44 Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

4. On the line that reads Arguments, enter:

QtApp.bar %{sourceDir}\bar-descriptor.xml QtApp -C %${sourceDir}

%{sourceDir}\icon.png

0 While the above command may appear across multiple lines in your viewer, you must enter

E it on one line in Qt Creator. Also, the directory separators in this example are backslashes
(\), which are used for Windows, but you must use the appropriate separator for your OS
(i.e., "/" if you're running Linux).

These arguments tell the packaging utility to create a file named QtApp.bar using the information
in bar-descriptor.xml and to include QtApp (the binary) and icon.png in the root folder of the BAR
file. For the list of all command options applicable to Qt apps, see “Qt command-line options for
blackberry-nativepackager (p. 48)".

This step makes Qt Creator run the blackberry-nativepackager command as a build step.
Every time you recompile the application, the binary is repackaged into a BAR file.

5. Scroll down to the Build Environment section, locate the Use System Environment entry, then click
Details (on the right side).

6. In the list of environment variables, locate PATH and if necessary, add the path to the host system's
java.exe location to the variable's value.

Copyright © 2015, QNX Software Systems Limited 45

Creating and running Qt apps

P
0t QtApp - Qt Creater

File Edit Build Debug Analyze Tools Window Help
QtApp
| Editor | Code Style | Dependencies

Add kit ~
Manage Kits...

Build Environment

Build

Use System Environment

[7] clear system environment

QNX 5DP 6.6 - OMAP5432

Run

Details &

Variable Value
GERY

ALLUSERSPROFILE C\ProgramData
APPDATA ChUsers\Administrator\AppDatatRoaming
COMMOMNPROGRAMFILES C\Program Files (x86)\Commaon Files
COMMOMPROGRAMFILES(XE6) C:\Program Files (xB6)\Common Files
COMMOMNPROGRAMWE432 C\Program Files\Commaon Files
COMPUTERMNAME WIN-MIDICV290L6
COMSPEC CAWindows\systern32\ cmd.exe
FP_MO_HOST_CHECK MNO
HOMEDRIVE C
HOMEPATH ‘UsershAdministrator
J1AMA_PATH C\Program Files (x86)\Java\jrel\bin
LOCALAPPDATA Ch\Users\Administrator\AppDataLecal
LOGOMSERVER WWWIN-MIDICV290L6
MAKEFLAGS -1C:/qnx660 /target/qrx/usr/include
NUMBER_OF_PROCESS0ORS 1
0s Windows_NT
QN QES 204 ib;: C:/ B0/ host/win32/586/ usr/bin: PATH
PATHEXT .COM;.EXE; BAT;.CMD; . VBS; VBE;.J5;.JSE; WSF,. WSH; . MSC
PROCESSOR_ARCHITECTURE 86
PROCESSOR_ARCHITEWGE432 AMDG4
PROCESSOR_IDEMTIFIER Inteléd Family 6 Model 58 Stepping 9, Genuinelntel

| »

bt

m

-

Edit

Reset

Batch Edit...

m

0 p== Type to locate (Ctrl+K) Iswesnﬁeard"l...hpplim...[:ompil ...HQMLIJ ...Gener -
&

You can modify the variable's value by clicking the variable name in the display area, clicking Edit
in the upper right area, and then entering the new value.

The Qt Creator build environment must be configured to find java.exe because
blackberry-nativepackager runs a batch file that calls a Java program.

7. Click the Edit icon on the left side to return to the editing view, select the Build menu, then choose
Build Project "QtApp".

Qt Creator builds the QtApp project by compiling the Ul-defining QML file into the binary, then
generates the BAR file by running the configured packaging command. The IDE displays
timestamped messages detailing the outcomes of the build steps in the Compile Output window.

The QtApp app is packaged in a BAR file and can then be deployed on your target system.

46 Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

Packaging the BAR file from the command line

You can run the blackberry-nativepackager tool from the command line.
Before running the packaging command, ensure that you have:

e The app descriptor file. This XML file must be written manually, whether in Qt Creator or another
editor.

e The binary generated by building your Qt app.

¢ Any resources (statically linked libraries, QML files, icons, etc...) used by the binary. You can
compile some resources into the binary or a library linked to the binary. If you choose to do this,
you don't need to list those resources on the packaging command line.

The command-line process for packaging a Qt app is similar to the process of “Packaging a native
C/C++ app for installation” described in the Application and Window Management guide. The key
differences are the QNX Qt environment variables (p. 34) you can define in the app descriptor file for
a Qt app.

To package a Qt app into a BAR file from the command line:

e In a BlackBerry 10 OS terminal, navigate to the location where your Qt app is stored, then enter
the command line to package the app, in this format:

blackberry-nativepackager [<commands>] [<options>] bar-package app-descriptor
binary-file [resource-file] *

You must list the BAR file first, followed by the app descriptor file, and then the app files (which
must include the binary) to store in the package. The order for other command-line arguments is
flexible; you can list the app files in any order and place commands and options at any location in
the command line.

The exact name and location of the packaging tool and its command syntax is platform-dependent.
On Linux, the tool is called blackberry-nativepackager and is stored in
DEFAULT_SDP_PATH/host/linux/x86/usr/bin/. Any filepaths in the command line must use POSIX
notation, using a forward slash (/) to indicate directories. On Windows, it's called
blackberry-nativepackager.bat and is stored in DEFAULT_SDP_PATH\host\win32\x86\usr\bin. The
command-line filepaths must follow the Windows convention, using a backslash (\) to indicate
folders.

Consider the following packaging command line for a Windows host:

blackberry-nativepackager.bat -package AngryBirds.bar
-devMode birds bar-descriptor.xml bin/angrybirds a birdsl.png

This command generates a BAR file named AngryBirds.bar based on the birds_bar-descriptor.xml
file. The BAR file contains the app's binary file (whose path is bin/angrybirds) and its icon file
(a_birds1.png). For details on the -package and —-devMode options and all other command
options applicable to packaging Qt apps, see “Qt command-line options for
blackberry-nativepackager (p. 48)".

After your app is packaged, you can deploy it on the target, as explained in “Deploying the BAR file
on the target (p. 51)".

Copyright © 2015, QNX Software Systems Limited 47

Creating and running Qt apps

Qt command-line options for
blackberry-nativepackager

The blackberry-nativepackager command line must name the BAR file, app descriptor file, and Qt
binary. The packaging tool allows you to list other files to include in the package and supports many
command-line options for Qt apps.

Syntax:

blackberry-nativepackager [<commands>] [<options>] bar-package
app-descriptor binary-file [resource-file]*

Commands:
-package
Package the assets into an unsigned BAR file (this is the default behavior).
-list
List all the files in the resulting package. This is useful for debugging packaging issues.
-listManifest

Print the BAR manifest. This is useful for debugging.

Packaging options:
-buildid /D

Set the build ID (which is the fourth segment of the version). Must be a number from 0 to
65535.

-buildIdFile file
Set the build ID from an existing file and save a new, incremented version to the same file.
-devMode

Package the BAR file in development mode. This is required to run unsigned applications
and to access application data remotely.

Path options:

-C dir
Use dir as a root directory. All files listed after this option will be used with tail paths in
the output package.

-e file path

Save a file to the specified path in the package.

48 Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

Other options:
-version
Print the packaging tool version.
help-advanced
Print the advanced options.
-help
Print the usage information. This will include other command-line options and commands
that aren't listed here but don't apply to Qt apps.
Variables:
bar-package
Path of the output BAR package file.
app-descriptor
Path of the app descriptor file.
binary-file
Path of the Qt binary file.
resource-file
Path of a resource file used by the Qt app. This could be an icon, a font definition file, an
image, and so on. You can name as many resource files as you want.
O These paths can be absolute or relative to the current directory. The resulting location in the
package is a tail path of the file, unless overridden by the -C or —e options.
Example:

The command line shown below packages the Settings app. The app binary, icon file, and several
images from installed Ul themes are included in the BAR file (QtSettingsApp.bar), which is generated
based on the app descriptor file (settings-descriptor.xml):

blackberry-nativepackager.bat -package QtSettingsApp.bar -devMode settings-descriptor.xml

-e %1l\bin\settingsapp bin/settingsapp settings icon.png

-C %1\ %1\1lib\ %$1\share\gnxcar2\palettes\
$1\share\gnxcar2\fonts\
$1\share\gnxcar2\gml\main.gml
$1\share\settingsapp\
$1\share\gnxcar2\images\themes\720p\default\Settings\
%1\share\gnxcar2\images\themes\720p\midnightblue\Settings\
%1\share\gnxcar2\images\themes\800x480\default\Settings\
$1\share\gnxcar2\images\themes\800x480\midnightblue\Settings\

Copyright © 2015, QNX Software Systems Limited 49

Creating and running Qt apps

%1\share\gnxcar2\images\themes\800x480\titanium\Settings\
%1\share\gnxcar2\images\themes\720p\default\CommonResources\
$1\share\gnxcar2\images\themes\720p\midnightblue\CommonResources\
$1\share\gnxcar2\images\themes\800x480\default\CommonResources\
$1\share\gnxcar2\images\themes\800x480\midnightblue\CommonResources\

%1\share\gnxcar2\images\themes\800x480\titanium\CommonResources\

In the actual command line, %1 is replaced with the path of the source directory containing the
compiled Qt code. The —e and -C options take arguments, so the command-line tokens following these
options refer to the files affected by them. Here, the —e option tells the packaging tool to store the
app binary (which is located at %1\bin\settingsapp on the host system) at bin/settingsapp in the output
package. The -C option removes the %1 folder from the paths of the subsequently named files. For
example, the files in %1\lib on the host system get placed in /lib in the package.

50 Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

Deploying the BAR file on the target

Before you can run an app on the target system, you must copy the app's BAR file to a temporary
location on the target and then run the installation script to set up the app. You can configure Qt Creator
to automate deploying the BAR file and installing the app.

The steps shown here define commands for Qt Creator to issue to the target as part of the deployment
process, automating part of the app development process for convenience. You could also issue these
commands manually through a BlackBerry 10 OS terminal connected to the target and the result would
be the same.

To deploy an app on the target from Qt Creator:
1. Open the project file (QtApp.pro) for editing and add the following lines to the end:
barfile.path = /var/tmp

barfile.files = $S0UT_ PWD/QtApp.bar
INSTALLS += barfile

This addition to the INSTALLS command instructs Qt Creator to copy QtApp.bar to /var/tmp on
the target. The target is represented in Qt Creator as a QNX device, as explained in “Configuring
a QNX device in Qt Creator (p. 16)".

2. Click the Projects icon on the left side, select the Build & Run tab, then click the Run button to
switch to the Run Settings page.

3. Click the Add Deploy Step button, then choose Run custom remote command.

Copyright © 2015, QNX Software Systems Limited 51

Creating and running Qt apps

.
[QtApp.pro - QtApp - Qt Creator

LR (| Editor | CodeStyle |

File Edit Build Debug Analyze Tools Window Help

Dependencies

-
ik QNX 5DP 6.6 - OMAPS432
Manage Kits. .. Build Run

Files to deploy:

Local File Path

ChDeveloprment\workspace-gthbuild-QtApp-QMi_5

Check for a configured device

Upload files via SFTP

iﬂﬂﬂﬂﬂ?ﬂﬁeﬂ'i

Check for a configured device
Check for free disk space
Create tarball

Customn Process Step

Deploy tarball via SFTP upload

) v) [s

Make
t J
Fun custorn remote command e
th not set
Upload files via SFTP r
P
|:| P T';.-'pet-: locate (Ctrl+K) 8 1ssues B search Res.

4. In the newly displayed box that reads Run custom remote command, click the “Move up”
button (which has an arrowhead pointing upwards), to ensure that this step is done before the
Upload files via SFTP step.

52

Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

" ™
[7 QtApp.pro - QtApp - Qt Creator =

File Edit Build Debug Analyze Tools Window Help

Build & Run | Editor | Code Style | Dependencies

ey QNX SDP 6.6 - OMAP5432
Manage Kits...

Files to deploy:

Lecal File Path Remote Directory
C\Developmentiwerkspace-gthbuild-QtApp-QNX_SDP_6_6_OMAP5432-Debn fvarftmp —

Check for a configured device

m

Upload files via SFTP Detailz

Run custom remote command @ A v X DXals & |4

Command line:

Add Deploy Step ™

Run configuration: [QtApp (on Remote Device) "l [Add "] Remaove

5. In the Command Line text field under Run custom remote command, enter the line:
mount —-uw /base
By default, a QNX Apps and Media image has a read-only filesystem. This command makes the
filesystem writable, which is necessary to successfully upload files.

6. Click Add Deploy Step again, choose Run custom remote command, and enter the following
command in the newly displayed Command Line field:
/base/scripts/bar-install /var/tmp/QtApp.bar
This command runs the installer on the target, installing the BAR package in a location accessible
to the Home screen.
You should have the following deployment steps (where the first and third were predefined):

a. Check for a configured device (default)
b. Run custom remote command: "mount -uw /base"
c. Upload files via SFTP (default)

Copyright © 2015, QNX Software Systems Limited 53

Creating and running Qt apps

d. Run custom remote command: " /base/scripts/bar-install /var/tmp/QtApp.bar"

7. Click the Edit icon on the left side, select the Build menu, then choose Deploy Project "QtApp".

Qt Creator performs the configured deployment steps, first copying the BAR file to the specified
target location, and then running the installer script to unpackage the app so it's visible to the
Home screen app. The IDE displays timestamped messages detailing the outcomes of the deployment
steps in the Compile Output window.

54 Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

Running the app

After you've unpackaged the app's BAR file on the target, you can run the app from the target HMI.
To run the app on the target:

1. Access the Home screen in the HMI.

You should see a new icon, labelled ot App displayed with the other icons:

NOVEMEER 6, 2014

i @) -

AudioDemo

Cordava PPS Demo PeaksAnd'

B DB &

VideaDemo IP Camera MediaPlayer

2. Tap the ot App icon to launch the app.

QtApp launches. You should see the app's basic Ul, consisting of the “Hello World” message:

NOVEMEER &, 2014

Hello World

CLOSE APPLICATION

If you specify a splashscreen image with the <splashscreen> tag in the app descriptor file, the
splashscreen is displayed while the app loads. After it loads, the app displays its initial window

based on any properties specified in the <initialWindow> tag, within the physical area defined
by the QRNX_PHYSICAL_SCREEN_SIZE environment variable (also set in the app descriptor file).

Copyright © 2015, QNX Software Systems Limited 55

Creating and running Qt apps

Cleaning the target before redeploying a BAR file

After an app's BAR file has been deployed on the target, we recommend uninstalling the app before
redeploying and reinstalling it. You can do this in Qt Creator by creating a second deployment
configuration to clean the app's installation on the target.

You can also issue these commands manually through a BlackBerry 10 OS terminal connected to the
target and the result will be the same.

To clean an app's installation on the target:

1. Click the Projects icon on the left side, select the Build & Run tab, click the Add button in the line
that reads Method, then choose Deploy to QNX Device.

-
0 QtApp - Qt Creator
File Edit Build Debug Analyze Teols Window Help
QtApp

GUGEGTLNY | Editor | CodeStyle | Dependendes

Manage Kits... Build Run

Deployment
Method: [Deploy to QMY Device hd l i Add i Remaove Rer
‘ Deploy to QMNX Device
Files to deploy:

Local File Path
ChDevelopment\workspace-gtibuild-QtApp-QNX_SDP_6_6_OMAPS432-Debu
ChDevelepment\werkspace-qth QtApp\gml\Qthpp

Check for a configured device
Run custom remote command
Upload files via SFTP

Run custom remote command

Add Deploy Step ™

| N O Typeto locate (Ctrl+K) Issuesﬂn Search Resultslif<8l Application ... l

2. Click the Rename... button on the same line, change the name to Clean QNX Device, then click
OK.

3. Remove the Upload files via SFTP step by hovering over the item and clicking the removal
button, which is marked with an X.

56 Copyright © 2015, QNX Software Systems Limited

Creating and running Qt apps

-
0t QtApp - Qt Creater

=) B 3 |

File Edit Build Debug Analyze Tools Window Help
QtApp
Build & Run | Editor | Code Style | Dependencies

B Run Settings r
Deployment
Method ’CIean QMY Device '] l Add 'l [Remove] E Rename. ..
Files to deploy:
Lecal File Path Remote Directory ol
Ch\Development\werkspace-qthbuild-QtApp-QNX_SDP_6_6_OMAP5432-De fvarftmp |E|

QNX 5DP 6.6 - OMAP5432

1

ChDevelopment\workspace-gt\QtApplgm B Qtapp Jopt/QtApp/gml
ChADevelonmentiwnrksnace-othhuild-OtAnn-ORK SDP 6 6 OMAPS43?-De font/OtAnn/hin

Check for a configured device

w || Details v

[Remove Item |

Upload files via SFTP

Add Deploy Step ™

Run configuration: ’QtApp (on Remote Device) '] l Add 'l Remove

P~ Typeto locate (Ctrl+K) IswesﬂSeardﬂ... Applim... nCompil... HQMLIJ... Gener... _
-

4.
5.

Click the Add Deploy Step button, then choose Run custom remote command.

In the new Command Line text field, enter the line:
/base/scripts/bar-uninstall com.mycompany.QtApp

To uninstall an app, you must provide its ID, which is found in the app descriptor file. For the
QtApp project, the ID (com.mycompany.QtApp) is specified in the fourth element listed inside
the root <gnx> element in bar-descriptor.xml.

There are now two deployment methods. You must choose either Deploy to QNX Device or Clean
ONX Device from the Method dropdown menu before running Deploy Project "QtApp" inthe
Build menu. To deploy the BAR file and install the app, switch to Deploy to QNX Device before
running the deployment step. To clean the app's installation on the target, choose Clean QNX Device

before redeploying the app.

57

Copyright © 2015, QNX Software Systems Limited

Chapter 4
Building libraries for Qt apps

When writing applications, it's often necessary to use libraries to store specific functionality (e.g.,
graphics functions, filesystem access). On QNX targets, apps run in sandbox environments with limited
access to system facilities, meaning that their required functionality must be contained in libraries
accessible in the sandbox.

In the QNX Qt environment, an app can either statically or dynamically link in its required libraries.
With static linking, the app links the static object-code library (.a) files into its executable. This strategy
ensures that the required library functionality is always accessible to the app. With dynamic linking,
the libraries are stored in “shared library” (.so) files that are included in the app package. At runtime,
the app binary must load these files.

Each app must package all the .so files it needs because the separate sandboxes for separate apps
mean that apps can't actually share dynamic libraries. Therefore, when a given library is included in
an app, the package size increases by the same amount whether the library is statically or dynamically
linked. Also, when one of its libaries is upgraded, the app must be repackaged and redeployed.

While static linking is the recommended option, it may not always be possible due to licensing
restrictions or other issues. When dynamic linking is the only option, special considerations apply for
the sandbox environment. The tutorial that follows demonstrates how to dynamically link a library into
an app and then deploy the library as part of the BAR package.

'S In our example, we will create a “third-party” library for use by our QtApp sample. Typically,
E a third-party library comes from an outside source such as a public project or a vendor.

Copyright © 2015, QNX Software Systems Limited 59

Building libraries for Qt apps

Creating a project for the library

The first stage in generating a library for use by Qt apps is to create a project in Qt Creator and define
library functions.

This example builds a Qt project that compiles into a dynamic library (.so) file. The library exports a
public function that can be called by application code.

To create a Qt project and configure its project file:
1.

2. In the File menu, choose New File or Project...

Launch Qt Creator.

In the resulting dialog, choose Other Project from the list on the left, then Empty Qt Project from

the list in the middle, and then click Choose...

P "y
['D Mew ﬁ
Choose a template: All Templates
Projects . Qt Unit Test Creates a gmake-based project without any files.
Applications . . This allows you to create an application without any
pp E{ Ot Custom Designer Widget default dasses.
Libraries m Empty Gt Project

Other Project
Mon-Ot Project
Irnport Project
Files and Classes
C++
ElackBerry

Qt

GLSL

General

lava

Python

a Subdirs Project
_J Code Snippet

Supported Platforms:

[Choose... J[Cancel

60

4,

In the Location page of the Empty Qt Project dialog, name the project QtLibrary, then click

Next.

Copyright © 2015, QNX Software Systems Limited

Building libraries for Qt apps

-

1 Ernpty Qt Project

=

@ Location
Kits

Summary

Introduction and Project Location

This wizard generates an empty Qt project. Add files to it later on by using the other wizards.

Mame: OtLibrary|

Create in: Ci'\Developmentiworkspace-qgt\build-QtApp-OMAP 5432

[] Use as default project location

Mext] [Cancel

5.

Copyright © 2015, QNX

In the Kits page, choose the kit that you configured when setting up Qt Creator (e.g., QNX SDP
6.6 — OMAP5432), then click Next.

To define a kit, you must first define toolchain settings (e.g., compiler, debugger), as explained in
“Configuring a toolchain in Qt Creator (p. 20)".

In the Summary page, click Finish to save your new project's settings.

Qt Creator creates the new project and displays the empty QtLibrary.pro file in the editing area.

. Add these lines to this file:

We're building a library
TEMPLATE = 1lib
VERSION = 1.0

This instructs Qt Creator to build a dynamic library file with the indicated version number. The
resulting file will be called libQtLibrary.so.1.0.

0O The project file can define many variables that affect how gmake builds the project; for
the full list, see the Variables | OMake reference in Digia's online Qt documentation.

Software Systems Limited 61

http://qt-project.org/doc/qt-5/qmake-variable-reference.html

Building libraries for Qt apps

Adding a function

62

After the library project is created, you can add functions to export services to applications.

To add a function:

1.

Click the Edit icon on the left side, right-click the ot Library folder in the Projects view, then
choose Add New... in the popup menu.

In the New File dialog, select c++ in the Files and Classes list, then C++ Class in the list of file
types (shown in the middle), then click Choose...

3. In the Details page of the C++ Class Wizard dialog, name the class Foo, then click Next.

6.

In the Summary page, click Finish.

Qt Creator creates two new files, foo.h and foo.cpp, and adds them to the project.

Open foo.h for editing (by double-clicking its entry in the Project view), and add this content to
the file:

#ifndef FOO H
#define FOO_H

#include <QString>

class Foo

{

public:
Foo () ;
QString message () const;

i

#endif // FOO_H

0 The message() function is declared in the public part of the class so it's visible to application
E code outside of the library.

After saving the header file, edit foo.cpp to add this content:

#include "foo.h"

Foo::Foo ()
{
}

QString Foo::message () const

{
return QStringLiteral ("QtLibrary says hello world");

Copyright © 2015, QNX Software Systems Limited

Building libraries for Qt apps

0 We define the most basic function that simply returns a string to its caller, just to illustrate
E the mechanism for implementing library functionality. You'll write functions that do more
useful actions but the method of defining them in library projects is always the same.

You can now build the library into an .so file containing the defined functionality.

Copyright © 2015, QNX Software Systems Limited 63

Building libraries for Qt apps

Building the library

After defining functions for the library, you can build its shared library (.so) file so that applications
can dynamically link in the library functionality.

v

Qt Creator has many features to make compilation and debugging easier, as explained in “Tips
for compiling programs in Qt Creator (p. 42)”.

To compile the library:

e Select Build O Build Project "QtLibrary".

Qt Creator starts building the library and displays the QCC output in the Compile Output window.

(04 foo.cpp - Qtlibrary - Qt Creator 1 0 e

Eile Edit Build Debug Analyze Tools Window Help
Projects *|%. & Ht X % # foo.cpp -
Qt 4 R pp 1 #include "foo.h"
7 QtApp.pro 2
Welcome 4 . Sources Z| 4 Foo::Fool()
| main.cpp : {

g Resources
I FESOUrCES.qre
4 QML
@ main.gml
4 [9 Other files
[+ . Cif/Users/nlamb,/build-Q4
| bar-descriptorxml
4 [Qtlibrary
Qtlibrary.pro
4 |y, Headers
| foo.h
4 ., Sources

| foo.cpp

* B+ x

Open Documents

bar-descriptorxml

Qtlibrary

| foo.h

Compile Qutput

4 O5tring Foo::message () const
{

Foo::message() const: QString

return Q5tringliteral ("QtlLibrary says hello world"™);

}

LI B

BADDING

gnx6/armle-v7,/1ib -LC:/gnxé660/cargec/gnxé/armle-v7,/usr/1ikb -LC:/Qt

ma!n.cpp workspace,/Qt engine/arch/armle-v7/../..//depot/target/gnxé,/armle-v"
main.gml - DADDING
QtApp.pro 1n -= 1likQtlikrary.=o0.1.0.0 likQtlLibrary.so
QtLibrary.pro in -= 1libQtLibrary.s=o0.1.0.0 libQtLibrary.so.l
Fesources.qrec 1n -2 libkQtLibrary.=so0.1.0.0 libQtLibrary.=so0.1.0
15:58:28: The process "C:\gnxé60\host\win3Z2\x86\usri\bin\make.exs"
15:58:29: Elapsed time: 00:04.

O p== Type to locate (Ctrl+K) Ismesnﬁearch Rfsultsn Application Output JEERRe’ T (ERe TG Tl OML 1S Console JRE| Ger

64 Copyright © 2015, QNX Software Systems Limited

Building libraries for Qt apps

If the build succeeds, the library file will be in the directory specified in the General section of the
Build Settings page, which is accessed by clicking the Projects icon on the left side and then selecting
the QtLibrary project.

If the build fails, you can review the messages shown in the Compile Output window (which is accessed
by clicking the button with the same name at the bottom) to determine the cause of the failure and
then take corrective action to fix the project.

Copyright © 2015, QNX Software Systems Limited 65

Building libraries for Qt apps

Adding the library to Qt app projects

66

After generating the dynamic library file for QtLibrary, you can add the library to the projects of Qt
apps to make the library functionality available to those apps.

In this tutorial, we modify the project for QtApp (which we created in Creating and running Qt
apps (p. 25)) to include our new library.

To add the library to QtApp:

1.

Click the Edit icon on the left side, right-click the otapp folder in the Projects view, then choose
Set "QtApp" as Active Project in the popup menu.

Right-click the otapp folder again, then choose Add Library...

3. In the Type page of the resulting dialog, select External Library, then click Next.

b

® N o u

9.

On the Library file line in the Details page, click the Browse button (shown on the right) to open
the file selector.

Navigate to the build directory of QtLibrary, select libQtLibrary.so, then click Open.

On the Include path line, click Browse to open the file selector.

Navigate to and select the source directory of QtLibrary, then click Open.

Under the Platform heading, uncheck the boxes for Mac and Windows, then click Next.

This last step is necessary because QNX is a POSIX-compliant OS so it uses the Linux linking

convention.

On the Summary page, click Finish.

The QtLibrary library is now part of QtApp, meaning the library's functions can be called from QtApp
code.

Copyright © 2015, QNX Software Systems Limited

Building libraries for Qt apps

Calling library functions in Qt apps

With QtLibrary integrated with QtApp, you can now write code that uses the library's message() function.
To call a library method in QtApp code:

1. Open main.cpp for editing (by double-clicking its entry under QtApp in the Project view), and
replace its contents with this code:

#include <QtGui/QGuiApplication>
#include <QtQuick/QQuickView>
#include <QScreen>

#include <QQOmlContext>

#include "foo.h"

int main(int argc, char *argv[])
{
QGuiApplication app(argc, argv);

// Get the screens so we can dynamically size our display

QScreen* screen = QGuiApplication::primaryScreen();

// Quit if there's no screen connected
if (screen == NULL) {

return 1;

// Get the width and height of the display
int w = screen->size().width();

int h = screen->size () .height();

QQuickView view;

Foo foo;
QString msg = foo.message ()
view.rootContext()—>setContextProperty("_message", msqg) ;

// Set up the view to have the proper size
view.setResizeMode (QQuickView: :SizeRootObjectToView) ;

view.resize (w, h);

view.setSource (QUrl ("grc:/ui/main.qml")) ;

view.show () ;

return app.exec();

Copyright © 2015, QNX Software Systems Limited 67

Building libraries for Qt apps

The code in main.cpp uses the library by creating a Foo object, calling the object's message()
function, and then making the returned string available to QML so it can be displayed.

2. Open main.gml for editing and replace its contents with this code:
import QtQuick 2.0
Rectangle {
Text |

text: message

anchors.centerIn: parent

3. Build the app by selecting Build O Build Project "QtApp".

The app is built with integrated QtLibrary functionality and can run on the target, so long as the library
file is packaged with it.

68 Copyright © 2015, QNX Software Systems Limited

Building libraries for Qt apps

Packaging Qt apps with the library

After the library has been added to the project of a Qt app, the packaging process for the app remains
mostly the same, except for two extra steps.

To package QtApp so it can use QtLibrary, you must:
1. Edit the project file (QtApp.pro) to add this line:

OMAKE LFLAGS += "-Wl,-rpath,app/native/lib"

This instruction embeds the path of the library file (libQtLibrary.so) into the QtApp binary. When
the launcher service runs QtApp in its sandbox environment, the service uses a root path of
app/native. All files within the Blackberry ARchive (BAR) package are relative to this location. For
instance, from the perspective of QtApp, its icon file is found at app/native/icon.png.

To package libQtLibrary.so into the lib subdirectory in the BAR file, we set rpath to the root path
appended with this subdirectory (i.e., app/native/lib).

2. Update the arguments for the packaging command as follows:

QtApp.bar %{sourceDir}\bar-descriptor.xml QtApp
-C %{sourceDir} %{sourceDir}\icon.png

-e ProjectBuildDir\1ibQtLibrary.so.1.0 lib/libQtLibrary.so.1l

The newly added —e option is followed by two paths. The first is the library file's build location on
the host system (in this case, replace ProjectBuildDir with the path containing the output library
file) and the second is the relative location of the library file within the BAR package. Note that
the file is purposely renamed from libQtLibrary.so0.1.0 to libQtLibrary.so.1.

The directory separators in this example are backslashes (\), which are used for Windows,
¥ but you must use the appropriate separator for your OS (i.e., " /" if you're running Linux).
The exception is the second path for —e; this must use the Linux separator because it

specifies a relative location on the QNX target, which follows the POSIX directory convention.

—
—

If you're using Qt Creator to package the app, you must access the Build & Run tab and edit the
build step for the packaging command to add these arguments, as explained in “Packaging the
app into a BAR file from Qt Creator (p. 44)". In the above example, ProjectBuildDir is the build
directory specified in the General section of the Build Settings page.

You can also package the app from the command line, by passing these arguments to
blackberry-nativepackager in a BlackBerry 10 OS terminal, as described in “Packaging the BAR
file from the command line (p. 47)".

Copyright © 2015, QNX Software Systems Limited 69

Chapter 5
Writing an HMI

You can develop your own HMI for QNX Apps and Media targets using Qt Creator. The process for
writing an HMI is similar to that of writing Qt apps except for the packaging (because the HMI is a
standalone application and not packaged as a BAR file).

The sections that follow provide a walkthrough of writing an HMI. The major steps include:

1. Defining the project components (e.g., resource file, main Ul file, C++ entry point file).
2. Compiling, running, and debugging the HMI application on a target system.
3. Adding controls for various subsystems (e.g., volume) to expand the HMI capabilities as needed.

To develop a Qt-based HMI, you must have the necessary Qt tools installed and configured on your
host system, as explained in Preparing your host system for Qt development (p. 13).

Copyright © 2015, QNX Software Systems Limited 71

Writing an HMI

Creating a project for a Qt HMI

The first stage in writing a Qt HMI is to create a project in Qt Creator and add the files that define the
Ul, application entry point, and how to package the project components.

In particular, the project will contain:

e A Qt Project file (QtHmi.pro) to store the project configuration settings

e A QML file (main.gml) to define the main Ul elements for the application

¢ A QRC file (resources.qgrc) to package the project resources into the binary

e A CPP file (main.cpp) to contain the entry-point function for starting the application
To create a Qt project and start defining its project file:

1. Launch Qt Creator.

2. In the File menu, choose New File or Project...

3. In the Projects dialog, choose Other Project, then Empty Qt Project, and then click Choose...

r['? Mew @N

Choose a template: All Templates
Projects . Qt Unit Test Cn_eates a gmake-based project '.r_'.'iﬂ'q:uut any files,
Applications a Ot Custom Designer Widget ;2;’533:[?;:522:.133 create an application without any
Libraries m Empty Ot Project Supported Platforms:
Other Project a Subdirs Project
Mon-Qt Project _J Code Snippet

Import Project
Files and Classes
C++
BlackBerry

ot

GLSL

General

lava

Python

[Choose... J[Cancel

4. In the Location page of the Empty Qt Project dialog, name the project QtHmi, then click Next.

72 Copyright © 2015, QNX Software Systems Limited

Writing an HMI

-

1 Ernpty Qt Project

=

@ Location
Kits

Summary

Introduction and Project Location

This wizard generates an empty Qt project. Add files to it later on by using the other wizards.

Mame: Qthi|

Create in: Ci'\Developmentiworkspace-qgt\build-QtApp-OMAP 5432

[] Use as default project location

Mext] [Cancel

Copyright © 2015, QNX

0O All files related to the project—C++ and QML source code, resource files, and the project
configuration file—will be stored in the folder specified on the Create in line in this dialog.

In the Kits page, choose the kit that you configured when setting up Qt Creator (e.g., QNX SDP
6.6 — OMAP5432), then click Next.

To define a kit, you must first define toolchain settings (e.g., compiler, debugger), as explained in
“Configuring a toolchain in Qt Creator (p. 20)".

In the Summary page, click Finish to save your new project's settings.

Qt Creator creates the new project and displays the empty QtHmi.pro file in the editing area.

Add the following lines to this file:

We're building an app
TEMPLATE = app

This is the name to give the compiled application
TARGET = QtHmi

This action configures the project to build an application binary (as opposed to a dynamic or static
library).

0O The project file can define many variables that affect how qmake builds the project; for
the full list, see the variables | OMake reference in Digia's online Qt documentation.

Software Systems Limited 73

http://qt-project.org/doc/qt-5/qmake-variable-reference.html

Writing an HMI

Adding the main QML file

Next, you can add a QML file to define the Ul for the application.
To define the main QML file for your HMI:

1. Click the Edit icon on the left side, right-click the QtHmi folder in the Projects view, then choose
Add New... in the popup menu.

2. In the New File dialog, select ot in the Files and Classes list, then QML. File (Qt Quick 2)
in the list of file types (shown in the middle), then click Choose...

3. In the Location page of the New QML file dialog, name the file main, then click Next.

4. In the Summary page, click Finish.

Qt Creator adds main.qml to the project and opens this file in the editing area.

5. Replace the contents of this file with the following:

import QtQuick 2.0
Rectangle {
color: "black"

Text {
color: "white"
text: gsTr ("Awesome HMI goes here")

anchors.centerIn: parent

6. After saving the QML file, edit the QtHmi.pro file to add the following lines:

The Ot modules needed for this project
QT += quick

This informs Qt Creator that the project uses the quick module, which is needed to build QML-based
Uls.

Adding the QRC file

To make it easier to deploy and run the application on the target, you can include the main QML file
in a Qt resource (QRC) file. A resource file packages many components including QML files, images,
and fonts into the binary so you don't have to deploy them alongside the binary on the target.

In addition to compiling resources into their binaries, applications can access resources directly
E from the target's filesystem. Deciding whether to use a resource file is a design decision. More

-
-

information about resource files and how to package Qt binaries can be found on Digia's Qt
website: hittp://qt-project.org/doc/qt-5/resources.html.

74 Copyright © 2015, QNX Software Systems Limited

http://qt-project.org/doc/qt-5/resources.html

Writing an HMI

To add a QRC file and include the main QML file in it:

-

. In the Project view, right-click the QtHmi folder and click Add New...

i

In the New File dialog, select ot in the Files and Classes list, then 0t Resource file in the
list of file types (shown in the middle), then click Choose...

3. In the Location page of the resulting dialog, name the file resources, then click Next.

4. |n the Summary page, click Finish.

A new file, resources.qgrc, has been added to the project and opened in Qt Creator for editing.

5. In the configuration area near the bottom, click Add, then choose Add Prefix.

resources.qrc - QtHmi - Qt Creator

Window Help

Build Debug Analyze Tools

File Edit
Projects =W 2 H X €« #» resources.qrc

* [T OtHmi
Qt / i QtHmi.pro
Welcome ¥ [F@ Resources

F resources.qgrc

v [QML

am| miain.gmil

Edit

N

i

¢

Debug

N

Projects

=

Analyze

&) Open Documents = Bt X
OtHmi.pro
main.gqml

resources.qrc

Help

QtHmmi

=

Add Prefix

Debug

[

=

=,

| Bl ©- Type to locate (Ctri+K) m Search Results

Copyright © 2015, QNX Software Systems Limited 75

Writing an HMI

6.

In the Prefix field, enter gm1.

Prefixes add structure to the resource file. Any prefix scheme can be used, as long as you organize
your resources in a way that makes sense for the developers working on the project.

7. Click the Add button again, then choose Add Files.

8. In the file selector that the IDE opens, navigate to and select main.gml, then click Open.

This QML file is found in the folder specified on the Create in line in the Empty Qt Project dialog,
which was opened when the project was created.

The QML file is now part of the Qt resource file that will be compiled into the binary.

Adding the CPP file

76

The last step in creating a project for an HMI is to add the C++ code that runs the application and
loads the QML file.

To add a CPP file that starts the application:

1.
2.

In the Project view, right-click the QtHmi folder and click Add New...

In the New File dialog, select c++ in the Files and Classes list, then C++ Source file in the
list of file types (shown in the middle), then click Choose...

3. In the Location page of the New C++ Source File dialog, name the file main, then click Next.

In the Summary page, click Finish.

A new file, main. cpp, has been added to the project and opened for editing.

Add the following code to this file:

#include <QtGui/QGuiApplication>
#include <QtQuick/QQuickView>

#include <QScreen>

int main(int argc, char *argvl[])
{
QGuiApplication app(argc, argv);

// Get the screens so we can dynamically size our display

QList<QScreen*> screens = QGuiApplication::screens/();

// Quit if no screen is connected
if (screens.empty()) {

return 1;

// Get the width and height of the display
int w = screens[0]->size () .width();

int h = screens[0]->size () .height();

Copyright © 2015, QNX Software Systems Limited

Writing an HMI

QQuickView view;

// Set the main QML user interface file to this view

view.setSource (QUrl ("grc:/gqml/main.qml")) ;
// Set up the view to have the proper size
view.setResizeMode (QQuickView: : SizeRootObjectToView) ;

view.resize (w, h);

// Show our user interface

view.show () ;

return app.exec();

Note that the view.setSource () call uses the grc: prefix for the QUrl object. This is how the
application accesses resources in the resources.qgrc file.

You now have a shell Qt application ready to go!

Copyright © 2015, QNX Software Systems Limited 77

Writing an HMI

Building the HMI application for a QNX target

File Edit

a,

Welcome

Edit

o

*

Debug

N

Projects

=

Analyze

e

Help

QtHmi

L

78

After creating a Qt project and defining the necessary resources for the HMI, you can build the
application binary and then deploy and run it on the target.

To build and run HMI applications written for QNX Apps and Media 1.0, follow these same steps.
To compile the HMI application:

e |n the Build menu, choose Build Project "QtHmi".

@ If you're rebuilding a legacy application, your project will likely be named something other
than "QtHmi".

Qt Creator starts building the application and displays the QCC output in the Compile Output
window.

main.cpp - QtHmi - Qt Creator
Build Debug Analyze Tools Window Help

Projects v @ H X & #» main.cpp | 4 main(int, char *[1): int
o QtHmi 1| #include <QtGui/QGuiApplications
[QtHmi.pro 2| #include <=QtQuick/QQuickView=
~ B Sources 3
c.| mMain.cpp 4|= int main(int argc, char *argv[])
~ [Resources sl o _ -
& resources.qrc 6 QGuikpplication applargc, argv);
v = QML : o .
wi main.gml 8 QQuickView view;
9 view.setSource{QUrl{"grc:/gml/main.gml"));
10 view.show();
11
12 return app.exec();
13 1
14
Open Documents - B X
(QtHmipro |
main.cpp
main.qml
resources.qrc :
Compile Output g € ¢ B

include/freetype2 -I. -0 qrc_resources.o qrc_resources.cpp

cclplus: warning: command line option '-std=gnulx' is valid for C/0b:
cclplus: warning: command line option '-std=gnulx' is valid for C/0b-
gcc -Vgec_ntoarmv?le -lang-c++ -WL,-rpath-link, /home/slegault/qnx660,
slegault/qnx660/target/qnx6/armle-v7/usr/lib -Wl,-rpath,/base/qt5-5.:
slegault/qnx660/target/qnx6/armle-v7/1ib -L/home/slegault/qnx660/tar
10t5Quick -L/opt/gnx660/target/qnx6/armle-v7/lib -L/opt/qnx660/targel
lsocket -10t5Gui -1Qt5Core -1m -1GLESw2 -1EGL

15:84:18: The process "/home/slegault/gnx66@/host/Linux/x86/usr/bin/r
15:04:18: Elapsed time: 008:01.

| N ©- Type to locate (Ctrl+K) Issues Search Resultsnpplicatiun [ol1ji:11d | 4| Compile Output| |5 [e]]]

Copyright © 2015, QNX Software Systems Limited

Writing an HMI

If the application builds successfully, the binary will be in the build directory specified in the General
section of the Build Settings page, which is accessed by clicking the Projects icon on the left side and
then selecting the project for the HMI that you want to run.

If the build fails, you can review the messages shown in the Compile Output window (which is accessed
by clicking the button with the same name at the bottom) to determine the cause of the failure, and
then fix the project as necessary.

s Qt Creator has many features to make compilation and debugging easier, as explained in “Tips
for compiling programs in Qt Creator (p. 42)”.

Configuring the runtime environment

Before running the HMI on the target, we recommend setting the QQNX_PHYSICAL_SCREEN_SIZE
environment variable. This variable defines the application display dimensions, to ensure that the HMI
fits the target's display.

| CAUTION: If this variable isn't set, the application will still run but you'll receive an stdout
{ % warning and the application might not display correctly; see “Environment Variables (p. 34)”

for more information.

To configure the runtime environment:

1. Click the Project icon on the left side to access the Build & Run settings.

2. Click the Run tab to switch to the Run Settings page.

main.cpp - QtHmi - Qt Creator
File Edit Build Debug Analyze Tools Window Help

Qt EVIGE-R0LN | Editor | CodeStyle | Dependencies |

Welcome
Add Kit -

OF.AP5432
Manage Kits...
D Run Settings
Deployment
Method: Deploy to QNX Device - Add -

Files to deploy:
Local File Path Remote Directory

Check for a configured device

Upload files via SFTP

Copyright © 2015, QNX Software Systems Limited 79

Writing an HMI

3. Scroll down to find the Run Environment heading, then expand the Use System Environment entry.

4. Click the Add button on the right side to add an environment variable.

main.cpp - QtHmi - Qt Creator

File Edit Build Debug Analyze Tools Window Help

Qt‘, | Editer | CodeStyle | Dependencies |

Welcome

AddKit - OMAP5432

E Manage Kits... Build Run
Edit

Run Environment

Use System Environment Details =
Base environment for this run configuration: | System Environment - Fetch Device Environment
Variable Value Edit

5. Set the variable name to QQNX_PHYSICAL_SCREEN_SIZE and the value to the display dimensions,
in millimeters, of your target.

The value you specify must contain the display width and height, separated by a comma. For
example, when using a 150 mm by 90 mm display, enter 150, 90.

The target runtime environment is now configured to display the HMI.

Uploading the binary to the target

You can specify the target path for installing the HMI binary and upload the binary from Qt Creator.
To define the target path and upload the binary:
1. Edit the QtHmi.pro file to add the following lines:

The installation location of files on the target

target.path = /tmp/QtHmi

INSTALLS += target

These lines tell Qt Creator where to upload files on the target.

At this point, the project file should look like this:

80 Copyright © 2015, QNX Software Systems Limited

Writing an HMI

QtHmi.pro - QtHmi - Qt Creator
File Edit Build Debug Analyze Tools Window Help

Projects v 2 B X QtHmi.pro

Qt m_‘mt_ I # We're building an app

[o QtHmi. 2 TEMPLATE = app

Welcome ~ [Sources 3
c« Main.cpp 4 # This is the name to give the compiled application
~ [Resources 5 TARGET = QtHmi
§ resources.qrc 6 . .
* B QML 7 # The 0t modules needed for this project
o Main.gml 8 0T += quick

10]# The installation location of files on the target
11| target.path = /tmp/0tHmi|
12| INSTALLS += target

" 13
Debug 14 OTHER_FILES 4=\
o il main.gml
Y
Projecl 17 RESOURCES += \
18 resources.qrc
19
G 20 SOURCES += \
Analyze 21 main.cpp
(7 '

2. Verify the upload location by:
a) Switching to the Project tab by clicking its icon on the left side.
b) Selecting the Run Settings page by clicking its tab towards the top of the Build & Run display.

¢) Under the Deployment section, the Files to deploy box should have an entry that lists the correct
build path on the host and /tmp/QtHmi as the remote directory.

Copyright © 2015, QNX Software Systems Limited 81

Writing an HMI

QtHmi.pro - QtHmi - Qt Creator

File Edit Build Debug Analyze Tools Window Help

Qt , ENGRAROGE | Editor | CodeStyle | Dependencies |
Welcome dd Ki
Add Kit OMAP5432
E Manage Kits... Build Run
Edit
D Run Settings
Deployment
Method: Deploy to QNX Device - Add - Rename...

Files to deploy:

Local File Path Remote Directory
fhome/slegault/Development/gt-workspace/build/QtHmi-OMAP5432/Debug/QtHmi ftmp/QtHmI

Check for a configured device

Upload files via SFTP

3. Switch back to the Edit tab. From the menu bar, choose Build 00 Deploy Project "QtHmi".
This uploads the binary to the target.

. Running the application from Qt Creator will automatically deploy the binary if it has changed
since the last deployment.

Running the HMI application

You can now run your HMI on the target using Qt Creator.
To run the HMI application:

1. If a QNX Apps and Media image is running on the target, establish an SSH connection with the
target and enter the following command to stop the default HMI:

slay -12 homescreen

) Root permission is required to slay the homescreen process.

You have to stop the default HMI to ensure that your new HMI appears on the screen. The default
HMI runs in the foreground and any application that you launch will have a z-order less than that
of the default HMI and hence, won't be visible (and no error message will be displayed).

You must slay the homescreen also when you want to run an application developed with QNX SDK
for Apps and Media 1.0 on a target running QNX Apps and Media 1.1. This is because when Qt

82 Copyright © 2015, QNX Software Systems Limited

Writing an HMI

Creator runs an application, it simply copies it to the target and executes it (without considering
z-order).

0 Slaying the homescreen makes the new HMI visible but you may encounter other problems

E due to the Application and Window Management components that are still running. If you
don't intend to run packaged apps on your target, a better long-term solution is to disable
these components and the homescreen by reconfiguring /var/etc/services-enabled.
Instructions on doing this are given in the “Full Screen HMI” section of the User's Guide.

2. To run the application, click the green Run button in the bottom left corner.

Open Documents

QtHmi.

main.cpp
main.qml
resources.qro

Application Output 5 « & B 7 K
QtHmi (on Remote Device) X

OML debugging is enabled. Only use this in a safe environment.
QQNX: failed to open navigator pps, errno=2

0Qux: failed to open buttoens pps, errno=2

Q0nxVirtualKeyboard: Keybeoard PPS locale object not found

P~ Type to locate (Ctrl+K Issues Search Results @ Application Out... E Compile Cutput

The HMI application runs and you should see it on the screen of the target:

Awesome HMI goes here

3. To stop the application, click the red Stop button along the top of the Application Output window
at the bottom.

Copyright © 2015, QNX Software Systems Limited 83

Writing an

HMI

Open Documents

QtHmi

84

| QtHmi.

main.cpp
main.qml
resources.qrc

Application Output 5 € % [’,

QtHmi (on Remote Device) X

OML debugging is enabled. Only use this in a safe environment.
QQNX: failed to open navigator pps, errno=2

0Qux: failed to open buttoens pps, errno=2

Q0nxVirtualKeyboard: Keyboard PPS locale object not found

| I ©- Type to locate (Ctri+K) IssuesSearch GEHNY | 3| Application Out...| | 4 (EelsIy]I [=Re]T]{xll}d

Qt Creator stops the application and displays a message saying the application was user-terminated
and containing the exit code, in the Application Output window.

Copyright © 2015, QNX Software Systems Limited

Writing an HMI

Adding a control to the HMI

Getting the HMI application to run on the target and appear as expected on the screen is an essential
step in HMI development. You can then extend the HMI by adding controls to specific services in your
embedded system.

We will write a control for setting the audio volume. Specifically, we will define a Ul component (using
QML) to provide volume adjustment controls and also write the QPPS library calls (using C++) to
publish the latest volume level to the audio status PPS object.

Like the Home screen app included with the reference image, our sample control updates the
Ul audio status to reflect the latest volume setting but it doesn't actually change the volume of
the audio output. This last task involves sending commands to the Audio Manager service
through PPS and is beyond the scope of this HMI-writing tutorial.

"
-

Summary of steps
In this section of the tutorial, we will:

1. Add the source code for the QPPS library to the HMI project, to build our own copy of the library.
2. Define a new C++ class (VolumeModule) to act as the interface between the QML code and the
QPPS classes.

3. Add image resources for the HMI volume control.

4. Define new QML components (VolumeUl and VolumeSlider) to create the Ul for the audio volume
control.

Compiling the QPPS library code with the application
To use QPPS classes to access PPS objects, we copy the QPPS source code into the QtHmi folder and

then build the QPPS library functionality into the application.

The QPPS library provides a Qt5 API for reading from and writing to PPS objects, effectively replacing
the POSIX system calls required to access and parse those objects. The source code for this library is
included in the Qt source code package that's part of the platform installers.

To compile the QPPS library code into QtHmi:

If you have already unpackaged the Qt source code and remember the location where you
g stored the QPPS library files, you can skip to Step 3 (p. 86).

"
-

1. Access the Qt source code package and locate the QPPS library code.

By default, the installers copy the package to
DEFAULT_SDP_PATH/source/appsmedia_1_1_qt_source.zip. Within the package, the QPPS library

code is found at this path: /qt/src/Homescreen/qpps/. This last directory contains another directory
named qpps, which stores the actual source code.

2. Unzip the contents of the /qt/src/Homescreen/qpps/ directory (including the nested qpps directory)
to your project directory (e.g., C:\users\username\QtHmi\).

Copyright © 2015, QNX Software Systems Limited 85

Writing an HMI

The gpps subdirectory is added to your project directory and contains the header and class definition
files needed to use QPPS classes in the QtHmi code.

3. In Qt Creator, click the Edit icon on the left side, right-click the otHmi folder in the Projects view,
then choose Add Existing Directory...

4. In the resulting dialog, on the Source directory line, click Browse to open the file selector.

5. Navigate to the directory containing the QPPS library code, then click Select Folder.
The newly selected directory is listed on the Source directory line.

6. Click OK to close the dialog.

The QPPS header and class definition files have been added to the QtHmi project, giving you access
to the QPPS classes. When you build the HMI application, the library functionality will be built into
the binary, ensuring that the application runs whether or not the target contains the QPPS library file.

In addition, Qt Creator has added this content to the project file (QtHmi.pro):

SOURCES += \
main.cpp \
gpps/dirwatcher.cpp \
gpps/object.cpp \
gpps/variant.cpp

HEADERS += \
gpps/changeset.h \
gpps/dirwatcher.h \
gpps/dirwatcher p.h \
gpps/object.h \
gpps/object _p.h \
gpps/gpps_export.h \
gpps/variant.h

Adding the VolumeModule C++ class

86

The VolumeModule class acts as the interface between the QML-based Ul and the QPPS library. This
C++ class exposes the volume level, which is read through PPS, as a Q_PROPERTY consumable by
QML.

To add the VolumeModule class:

1. In the Projects view, right-click the QtHmi folder, then choose Add New....

2. Inthe New File dialog, select c++ in the Files and Classes list, then C++ Class in the list of file
types (shown in the middle), then click Choose...

3. In the Location page of the resulting dialog, name the file VolumeModule, then click Next.

4. In the Summary page, click Finish.
Two new files are added to the project (volumemodule.h and volumemodule.cpp).

Copyright © 2015, QNX Software Systems Limited

Writing an HMI

5. Edit volumemodule.h and replace the contents with the following code:

#ifndef VOLUMEMODULE H
#define VOLUMEMODULE H

#include <QObject>
#include "gpps/object.h"

class VolumeModule : public QObject

{
Q_OBJECT

// Volume setting, accessible by QML
Q PROPERTY (double volume READ volume WRITE setVolume
NOTIFY volumeChanged)

public:
// Constructor

explicit VolumeModule (QObject *parent = NULL) ;
Q INVOKABLE double volume () const;
Q INVOKABLE void setVolume (const double value) const;

public Q SLOTS:
// Updates volume level when volume change is reported by PPS
void audioStatusChanged (const QString &name,

const QPps::Variant &attribute);

Q SIGNALS:
// Emitted when the volume level changes

void volumeChanged() ;

private:
// Reference to PPS object containing audio volume level

QPps::0bject *m ppsAudioStatus;

// Volume setting
double m volume;

i

#endif // VOLUMEMODULE H

O In this code excerpt, the include path for the header file that defines the QObject class is

E a relative path (qpps/object.h). This is because in our example, we copied the QPPS header
files to the qpps subdirectory within the project directory. If you unpackaged the QPPS
library code to a different location, you must adjust the include path accordingly.

Copyright © 2015, QNX Software Systems Limited 87

Writing an HMI

6. Edit volumemodule.cpp and replace the contents with the following code:

#include "volumemodule.h"

VolumeModule: :VolumeModule (QObject *parent)
QObject (parent)

// Access PPS object that stores audio device status
m ppsAudioStatus = new QPps::Object (
QStringLiteral ("/pps/services/audio/status"),
QPps: :0bject: :PublishAndSubscribeMode, false, this);

if (!m ppsAudioStatus->isvValid()) {
// Print error message if unable to read audio device
// status through PPS
gCritical ("%s Could not open %s: %s", Q FUNC INFO,
gPrintable (m ppsAudioStatus->path()),
gPrintable (m_ppsAudioStatus->errorString())):;
}
else {
// Connect signal for changed attribute in PPS object
// to handler for audio status changes
connect (m_ppsAudioStatus,
SIGNAL (attributeChanged (QString, QPps::Variant)),
this,
SLOT (audioStatusChanged (QString, QPps: :Variant)));

double VolumeModule::volume () const {

return m volume;

void VolumeModule: :setVolume (const double value) const {
if (value == m volume) {
//Don't set the volume if it's already set to that
return;
}
if (!m ppsAudioStatus->isValid()) {
gCritical("%s Could not write %s: %s", Q FUNC INFO,
gPrintable (m ppsAudioStatus->path()),
gPrintable (m ppsAudioStatus->errorString())):;
return;
}
if (!m ppsAudioStatus->setAttribute (
"output.speaker.volume", value))

{
gWarning ("%s SetAttribute failed %s: %s", Q FUNC_ INFO,

88 Copyright © 2015, QNX Software Systems Limited

Writing an HMI

gPrintable (m ppsAudioStatus->path()),
gPrintable (m ppsAudioStatus->errorString()));

void VolumeModule: :audioStatusChanged (
const QString &name,

const QPps::Variant &attribute)
if (name == QStringLiteral ("output.speaker.volume")) {

m volume = attribute.toDouble();

emit volumeChanged() ;

Edit main.cpp to contain the following code:

0O In the excerpt below, the sections of new code are indicated by comments containing the

\E words NEW CODE.

#include <QtGui/QGuiApplication>
#include <QtQuick/QQuickView>
#include <QScreen>

#include <QQmlContext>

#include <ggml.h>

// BEGIN NEW CODE

#include "volumemodule.h"

void setupVolumeModule (QQuickView* view)
{
// Register with the Qt Metatype system
gmlRegisterUncreatableType<VolumeModule> (
"com.mycompany.hmi",
1, 0, "VolumeModule",
QStringLiteral ("Access to object"));

// By passing in the view as a parent object, the
// VolumeModule will be deleted when its parent is deleted

VolumeModule* volumeModule = new VolumeModule (view) ;

// Give the view access to the VolumeModule
view->rootContext () ->setContextProperty (
OStringLiteral (" volumeModule"),

volumeModule) ;

Copyright © 2015, QNX Software Systems Limited

89

Writing an HMI

// END NEW CODE

int main(int argc, char *argvl[])
{
QGuiApplication app(argc, argv);

// Get the screens so we can dynamically size our display

QList<QScreen*> screens = QGuiApplication::screens();

// Quit if no screen is connected
if (screens.empty()) {

return 1;

// Get the width and height of the display
int w = screens[0]->size().width();

int h = screens[0]->size () .height();
QQuickView view;

// BEGIN NEW CODE

// Set up the volume control
setupVolumeModule (&view) ;

// END NEW CODE

// Set the main QML UI file to this view

view.setSource (QUrl ("grc:/gml/main.qgml")) ;

// Set up the view to have the proper size
view.setResizeMode (QQuickView: : SizeRootObjectToView) ;

view.resize(w, h);

// Show our user interface

view.show () ;

return app.exec();

This code gives the application access (through the view) to the VolumeModule class. Although
this class isn't coded as a singleton at the Qt level, from the QML layer, the class is accessed by
a singleton object called volumeModule.

The C++ code needed for the volume control is complete. Next, you can define the Ul components
that allow the user to adjust the volume.

90 Copyright © 2015, QNX Software Systems Limited

Writing an HMI

Adding images for volume control
You can copy the images related to volume control shown here to your host system and then add them
as project resources so your HMI can display them.
To add images for volume control to your HMI project:

1. Copy these images to your project folder:

In this example, the images shown left to right are named ic_vol_none.png, ic_vol_full.png,
E bg_volumebar.png, and fill_volumebar.png.

—
—

2. In the Projects view, right-click the otHmi folder, then choose Add Existing Files.

3. In the file selector, select the files of the four images and click Open.

A new folder, Other files, appears in the project view. This folder contains the four new image
files.

4. Open the resources.qrc file for editing, by right-clicking its entry in the Projects view, then selecting
Open in Editor.

5. In the configuration area near the bottom, click Add, then choose Add Prefix.

Copyright © 2015, QNX Software Systems Limited 91

Writing an HMI

resources.qrc - QtHmi - Qt Creator

File Edit Build Debug Analyze Tools Window Help

Projects = v 2 H X & # resources.qrc

* [T QtHmi
Qt / i QtHmi.pro
Welcome ¥ [F@E Resources

F: resources.qrc
¥ [QML
s mMain.gmil

Edit

N

~

Debug

N

Projects

=

Analyze

&) Open Documents = H ¥
- OtHmi.pro
main.gml

| resources.grc

Help

OtHmi

]

=
Debug

Add Prefix

.

=

3

| Bl ©- Type to locate (Ctri+K) Issues Search Results

6. In the Prefix field, enter img.
7. Click Add again, then choose Add Files.

8. In the file selector dialog, select the files of the four images, then click Open.

In the main editing area, the list of project resources now includes a prefix entry labelled /img
and four file listings under the prefix.

92 Copyright © 2015, QNX Software Systems Limited

Writing an HMI

EI resogurces.gre - QtHmi - Qt Creator . - P - e A
File Edit Build Debug

Analyze Tools Window Help

Projects x * w resources.qro™ |
4 iy CtHmi 4 @ fimg
@ QtHmi.pro I bg_volumebarpng

¥ gk SOUrces

1 fill_velurmebarpng

4 i Resources ic_vel_full.png

rESCUrCES.gre
* aml QML
4 %] Other files
ik bg_volumebarpng

ic_vel_nonepng

ik fill_volumebarpng
a ic_vol_full.png
dk ic_vol_nonepng

The volume indicator and adjustment images are now part of your HMI project. Qt Creator will compile
the images into the binary and your HMI can display them.

Adding the QML components

The VolumeUl and VolumeSlider components use QML to define the Ul for the audio volume control.
This Ul consists of a slider indicating the current volume level and two buttons on the sides that
increase and decrease the volume. You can tap the slider in a certain spot to set the volume to that
exact level.

To add the QML components:

1. In the Project view, right-click the QtHmi folder and click Add New...

2. In the New File dialog, select @t in the Files and Classes list, then QML File (Qt Quick 2)
in the list of file types (shown in the middle), then click Choose...

3. In the Location page of the resulting dialog, name the file volumeUT, then click Next.

4. |n the Summary page, ensure the Add to project field is set to project file (QtHmi.pro), then click
Finish.

Qt Creator adds VolumeUl.gml to the project (under the QML folder) and opens this file for editing.

Copyright © 2015, QNX Software Systems Limited 93

Writing an HMI

5. Replace the contents of this file with the following:

import QtQuick 2.0

Rectangle {
id: root
color: "#404040"
width: parent.width
height: parent.height / 8

Row {

id: volumeRow

anchors.right: root.right
anchors.rightMargin: root.width / 16

anchors.verticalCenter: root.verticalCenter

Item {
id: volumeNone
height: root.height
width: height
Image {
id: volumeNonelImage
anchors.centerIn: parent
source: "grc:/img/ic vol none.png"
}
Timer {
id: volumeNoneTimer
interval: 100
repeat: true
running: false
onTriggered: {
// Decrease volume by 1%
volumeRow.updateVolumeSlider (

volumeSlider.value - 1)

}
MouseArea {
anchors.fill: parent
onClicked: {
// Decrease volume by 1%
volumeRow.updateVolumeSlider (
volumeSlider.value - 1)
}
onPressAndHold: {
volumeNoneTimer.start () ;

// Decrease volume by 1%

94 Copyright © 2015, QNX Software Systems Limited

Writing an HMI

volumeRow.updateVolumeSlider (
volumeSlider.value - 1)
}
onReleased: {

volumeNoneTimer.stop () ;

VolumeSlider {
id: volumeSlider
width: root.width / 4
height: volumeNoneImage.height

anchors.verticalCenter: parent.verticalCenter
sourceBackground: "grc:/img/bg volumebar.png"
sourceOverlay: "grc:/img/fill volumebar.png"
value: 50

maxValue: 100

ITtem {
id: volumeFull
height: root.height
width: height
Image {
id: volumeFullImage
anchors.centerIn: parent
source: "grc:/img/ic vol full.png"
}
Timer {
id: volumeFullTimer
interval: 100
repeat: true
running: false
onTriggered: {
// Increase volume by 1%
volumeRow.updateVolumeSlider (

volumeSlider.value + 1)

}
MouseArea {
anchors.fill: parent
onClicked: {
// Increase volume by 1%
volumeRow.updateVolumeSlider (

volumeSlider.value + 1)

Copyright © 2015, QNX Software Systems Limited

95

Writing an HMI

96

}
onPressAndHold: {

volumeFullTimer.start ()

// Increase volume by 1%

volumeRow.updateVolumeSlider (

volumeSlider.value + 1)

}

onReleased: {

volumeFullTimer.stop () ;

function updateVolumeSlider (value) {

if (value > 100) {
value = 100

}

if (value < 0) {
value = 0

}

volumeSlider.value = value;

6. Repeat Steps 1 through 4 to add another QML file but this time, name the file volumeSlider.

7. Replace the contents of this file with the following:

import QtQuick 2.0

// You need to specify the background image and the overlay

Item {

id: root

property string sourceBackground:

nwn

property string sourceOverlay:

// Max value
property double maxValue: 0
// Current value

property double value: 0O

nn

// Whether this item is user interactive

property bool interactive: true

Column {

Copyright © 2015, QNX Software Systems Limited

Writing an HMI

spacing: 1

anchors.verticalCenter: parent.verticalCenter

Item {
id: graphicBar

width: root.width
height: root.height;

Image {

id: sourcelImage

anchors.fill: graphicBar
fillMode: Image.Tile
smooth: true

source: sourceBackground

Image {

id: overlayImage

height: graphicBar.height
width: handle.x

fillMode: Image.Tile
smooth: true

source: sourceOverlay

Item {

// Invisible handle for dragging

// The item doesn't need a width or height

// because its x value is all that matters

id: handle

x: (maxValue ?
(Math.min (value, maxValue) / maxValue)
* graphicBar.width : 0)

width: O

height: 0

MouseArea {

anchors.centerIn: parent

height: parent.height * 3
width: parent.width

Copyright © 2015, QNX Software Systems Limited 97

Writing an HMI

98

enabled: root.interactive

drag.target: handle

drag.minimumX: O

drag.maximumX: graphicBar.width

function moveToPosition (position)

{
if (!maxValue)

return;

// retrieve the position where the user

// dragged to

value = (position / graphicBar.width)

* maxValue

// Touch without drag
onReleased: {

moveToPosition (mouseX) ;

property bool dragActive: drag.active

onPositionChanged: {

moveToPosition (handle.x) ;

8. Open main.gml and update its contents with the following:

import QtQuick 2.0

Rectangle {

color: "black"

Text {
color: "white"
text: gsTr ("Awesome HMI goes here")

anchors.centerIn: parent

VolumeUTI {

id: volumeui

Copyright © 2015, QNX Software Systems Limited

Writing an HMI

anchors.left: parent.left
anchors.right: parent.right

anchors.bottom: parent.bottom

This adds the volume control to the bottom of the HMI.

9. Build and run the HMI application, by following the steps in “Building the HMI application for a
QNX target (p. 78)".

The HMI shown on the target screen prints the original message but also displays the volume slider
and two control buttons along the bottom. Clicking the left button decreases the volume by 1%
and moves the slider to the left. Clicking the right button increases the volume by 1% and moves
the slider to the right. Tapping the slider sets the volume to the exact level based on the location.
For instance, tapping it in the middle sets the volume to 50%.

You can also drag the volume slider to the left to decrease the volume or to the right to increase
it. Whenever your tap or drag the slider, the volume level is redrawn immediately and the audio
status PPS object is updated to store this new level.

Awesome HMI goes here

You've now added an HMI control for setting the audio volume!

) The control defined here lets the user interact with the volume display and keeps the PPS

Ul volume setting in sync with the HMI, but it doesn't tell the Audio Manager service to change
the output volume. To do this, your application has to write a command to the PPS control
object used by the Audio Manager service (for more information, see the
Ipps/services/audio/status entry in the PPS Objects Reference).

Copyright © 2015, QNX Software Systems Limited 99

Index

Index

A

app descriptor file 33-35, 40
app permissions 40
elements 35
Environment variables 34
writing 33
applications written for QNX Apps and Media 1.0 78
building and running in Qt Creator 78

B

BAR files 44, 47, 51
deploying on the target 51
generating from Qt Creator 44
generating from the command line 47

packaging tool, Seeblackberry-nativepackager

blackberry-nativepackager 4/7-49
command line example 47
command-line commands 48
command-line other options 49
command-line packaging options 48
command-line path options 48
command-line syntax 48
command-line variables 49
packaging a Qt app 47
sample command line 49
tool name and location 47

Building libraries for apps, See Library generation

C

Creating and running Qt apps, See Qt app lifecycle
overview

D

DEFAULT_SDP_PATH 13

H

HMI development 71-72, 74, 76, 78-80, 82-83, 85—

86, 91, 93
adding a Qt resource file 74
adding a Ul control 85
adding a Ul definition file 74
adding C++ code to start the HMI application 76

Copyright © 2015, QNX Software Systems Limited

HMI development (continued)

adding the VolumeModule C++ class 86

adding the VolumeUl and VolumeSlider QML
components 93

adding volume control images 91

building the HMI 78

compiling the QPPS library code with the application
85

configuring runtime environment 79

creating a project 72

disabling application management components to run
your own HMI 83

overview /1

running HMI binary 82

uploading HMI binary to target 80

host system 13

L

definition 13
prerequisites for Qt development 13

Library generation 59-60, 62, 64, 66-67, 69

Q

adding a function 62

adding the library to Qt app projects 66
building the library 64

calling library functions in Qt apps 67
creating a project 60

overview 59

packaging Qt apps with the library 69

QNX Browser 11

invoking from Qt 11

QNX Qt 5.3.1 Development Framework (QNX QDF) 14

installing 14

QNX Qt development tools 9
Qt app lifecycle 25-28, 31-33, 41, 44, 51, 56

adding an image for the app icon 32

adding code to load the Ul 31

building the app 41

cleaning the target before redeploying a BAR file 56
creating a project 26

creating a Qt app 26

defining the Ul 27

deploying the BAR file on the target 51

101

Index

Qt app lifecycle (continued)
generating the BAR file 44
making a QML file into a resource 28
overview 25
writing the app descriptor file 33
Qt Creator 14, 16, 20, 78
building and running applications written for QNX
Apps and Media 1.0 78
configuring a QNX device 16
configuring a toolchain 20
configuring the build and run environment 20
installing 14
Qt HMI development 42
compiling tips for Qt Creator 42
Qt sample apps 10

102

S

slaying the homescreen to see application HMIs on the
target 82
Source code samples 10

T

target system 13

definition 13
Technical support 8
Typographical conventions 6

w

Writing a Qt-based HMI, See HMI development

Copyright © 2015, QNX Software Systems Limited

	Contents
	About This Guide
	Typographical conventions
	Technical support

	QNX Qt Development Tools
	Source code for sample Qt apps
	QNX Browser Invocation from Qt

	Preparing your host system for Qt development
	Installing QNX QDF and Qt Creator
	Configuring a QNX device in Qt Creator
	Configuring a toolchain in Qt Creator

	Creating and running Qt apps
	Creating a project for a Qt App
	Defining the UI
	Making a QML file into a project resource
	Adding code to load the UI
	Adding an image for the app icon

	Writing the app descriptor file
	Environment variables
	XML elements in app descriptor file
	App permissions

	Building the app
	Tips for compiling programs in Qt Creator

	Packaging the app into a BAR file from Qt Creator
	Packaging the BAR file from the command line
	Qt command-line options for blackberry-nativepackager

	Deploying the BAR file on the target
	Running the app
	Cleaning the target before redeploying a BAR file

	Building libraries for Qt apps
	Creating a project for the library
	Adding a function
	Building the library
	Adding the library to Qt app projects
	Calling library functions in Qt apps
	Packaging Qt apps with the library

	Writing an HMI
	Creating a project for a Qt HMI
	Adding the main QML file
	Adding the QRC file
	Adding the CPP file

	Building the HMI application for a QNX target
	Configuring the runtime environment
	Uploading the binary to the target
	Running the HMI application

	Adding a control to the HMI
	Compiling the QPPS library code with the application
	Adding the VolumeModule C++ class
	Adding images for volume control
	Adding the QML components

	Index

