
Qt Developer's Guide

QNX® SDK for Apps and Media 1.1

©2014–2015, QNX Software Systems Limited, a subsidiary of BlackBerry
Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: June 01, 2015

Contents
About This Guide..5

Typographical conventions..6

Technical support...8

Chapter 1: QNX Qt Development Tools..9
Source code for sample Qt apps..10

QNX Browser Invocation from Qt..11

Chapter 2: Preparing your host system for Qt development..13
Installing QNX QDF and Qt Creator..14

Configuring a QNX device in Qt Creator..16

Configuring a toolchain in Qt Creator..20

Chapter 3: Creating and running Qt apps...25
Creating a project for a Qt App..26

Defining the UI...27

Making a QML file into a project resource..28

Adding code to load the UI..31

Adding an image for the app icon...32

Writing the app descriptor file...33

Environment variables...34

XML elements in app descriptor file..35

Building the app..41

Tips for compiling programs in Qt Creator..42

Packaging the app into a BAR file from Qt Creator..44

Packaging the BAR file from the command line..47

Qt command-line options for blackberry-nativepackager..48

Deploying the BAR file on the target..51

Running the app..55

Cleaning the target before redeploying a BAR file..56

Chapter 4: Building libraries for Qt apps...59
Creating a project for the library..60

Adding a function..62

Building the library..64

Adding the library to Qt app projects..66

Calling library functions in Qt apps..67

Packaging Qt apps with the library...69

Chapter 5: Writing an HMI...71
Creating a project for a Qt HMI..72

Adding the main QML file..74

Qt Developer's Guide

Adding the QRC file...74

Adding the CPP file...76

Building the HMI application for a QNX target..78

Configuring the runtime environment..79

Uploading the binary to the target...80

Running the HMI application...82

Adding a control to the HMI..85

Compiling the QPPS library code with the application...85

Adding the VolumeModule C++ class..86

Adding images for volume control...91

Adding the QML components...93

Index...101

Contents

About This Guide

This document explains how to set up a host system for Qt development and how to perform all tasks

in the development lifecycle for Qt apps.

The QNX Apps and Media reference image includes many sample Qt apps, which provide useful

programming references for developing apps for various domains (e.g., media playback, camera display,

system control). The tutorials in this document show you how to use Qt Creator to define projects,

specify a basic UI, build and package apps, and deploy and run them on a target system.

The pre-built Qt distribution available with the QNX SDK for Apps and Media 1.1 is an optimized

port of the Qt Community version and has been made available as a convenience for our

customers. Although this version of Qt is not a QNX commercially licensed product, you can

obtain Qt support from QNX under a Custom Services Plan (CSP). Qt Enterprise and support

for Qt Enterprise is available from The Qt Company (http://www.qt.io). For more information

about Qt licensing, see http://www.qt.io/licensing/.

See:To find out about:

QNX Qt Development Tools (p. 9)The components needed to develop Qt apps and where to

find these components

QNX Browser Invocation from Qt (p. 11)How to access the QNX Browser and deliver HTML5

content from Qt apps

Preparing your host system for Qt

development (p. 13)

How to install and configure the Qt development tools on

your host system

Creating and running Qt apps (p. 25)How to develop, package, deploy, and run Qt apps on a

QNX Apps and Media target

Building libraries for Qt apps (p. 59)How to build a library and dynamically link it into Qt apps

Writing an HMI (p. 71)How to develop and display a Qt HMI on a QNX Apps and

Media target

Building the HMI application for a QNX

target (p. 78)

How to run applications written for QNX Apps and Media

1.0 on QNX Apps and Media 1.1 targets

Copyright © 2015, QNX Software Systems Limited 5

http://www.qt.io/
http://www.qt.io/licensing/

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In

general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective ➝ Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have unwanted or

undesirable side effects.

WARNING: Warnings tell you about commands or procedures that could be dangerous to your

files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited6

About This Guide

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those

pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited 7

About This Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qnx.com).

You'll find a wide range of support options, including community forums.

Copyright © 2015, QNX Software Systems Limited8

About This Guide

http://www.qnx.com

Chapter 1
QNX Qt Development Tools

To write Qt apps for QNX devices, you need to install Qt version 5.3.1 and Qt Creator version 3.2.1

onto your development system.

Before you can install the Qt tools, your system must have these platform installations:

• QNX SDP 6.6

• QNX SDK for Apps and Media 1.1

With this platform support, you can configure and start using these Qt development tools:

Qt runtime

Our Qt runtime package is based on Qt version 5.3.1 and contains a version of the build

tools (e.g., qmake, qcc) adapted to generate binary and library files for BlackBerry 10 OS.

Qt Creator

This IDE lets you manage projects for Qt applications, edit C++ and QML source files, and

add project resources such as images. This release officially supports version 3.2.1 of

Qt Creator, which you must configure to use the build tools in the installed Qt runtime

package.

Details on accessing and installing the Qt runtime and IDE are given in Preparing your host

system for Qt development (p. 13).

Copyright © 2015, QNX Software Systems Limited 9

Source code for sample Qt apps

The QNX SDK for Apps and Media installers include a zipped folder (appsmedia_qt_source_v1_1.zip)

containing the source code for many sample Qt apps. These apps provide programming references for

implementing functions such as media playback, photo viewing, and displaying an HMI that lists the

installed apps.

The installers copy the Qt source code package to the source directory within the root directory of the

QNX SDP 6.6 installation (e.g., /usr/qnx660/source/appsmedia_qt_source_v1_1.zip). You can extract

the files containing the Qt source code to any location and examine their contents; however, you can't

modify or rebuild the sample apps without installing and configuring the Qt development tools as

described in this document.

The sample apps are:

Home screen

An HMI, built from Qt, that displays a status bar and the icons of the installed apps, which

users can tap to launch those apps

IP Camera

Displays a video feed supplied by an RTP/IP-based camera

Media Player

Browses and plays audio and video content

Photo Viewer

Displays picture files

QtSimpleHmi

A basic HMI written as a stand-alone application with no packaging

Settings

Provides controls to configure the system

These same Qt apps are part of the shipped images but only their binaries and runtime resources (e.g.,

icon files) are included in the images. When you extract the Qt source code package on your host

system, each sample app listed above is found in a directory with the same name. There's also the

Common directory, which stores classes useful to many types of apps.

Copyright © 2015, QNX Software Systems Limited10

QNX Qt Development Tools

QNX Browser Invocation from Qt

Although Qt includes programming interfaces for accessing web browsers, these components aren't

supported by the QNX Qt runtime for this release. Instead, your Qt code can start one of our sample

QNX browsers or a custom browser, by using the launcher service.

The shipped image includes two browsers:

• BrowserLite, a basic web browser built from HTML5 and Cordova plugins

• Browser, a fully-functional browser with advanced features (e.g., browsing history, URL bookmarking)

built from HTML5 and JavaScript

Both browsers are packaged and installed as apps (as opposed to stand-alone applications with their

own HMI) and hence, can be launched from Qt code by writing a command to a Persistent

Publish/Subscribe (PPS) object monitored by the launcher service. An example of using Qt to launch

an app is the Home screen app. The source code of this app is found in the Qt source code bundle

(appsmedia_qt_source_v1_1.zip), which is part of the QNX SDK for Apps and Media installer package.

Specifically, you can examine the code in the Homescreen/app/launcher subdirectory to see how to

format and send the start command through PPS.

For more information about the Home screen sample and how users interact with it to launch apps,

see the User's Guide. For a reference of the PPS control object used by launcher, see the

/pps/services/launcher/control entry in the PPS Objects Reference.

If you want to deliver HTML5 content to the user without running a browser, your Qt apps can start

any app written with HTML5 and related technologies, using the same mechanism of sending an app

launch request to launcher through PPS.

Copyright © 2015, QNX Software Systems Limited 11

QNX Qt Development Tools

Chapter 2
Preparing your host system for Qt development

To write Qt applications, you must install the Qt runtime and Qt Creator IDE and then configure the

IDE to use our build tools and to target applications to a QNX device.

The host system is the machine where you develop apps, which can be a Windows or a Linux machine.

The target system is the machine where you run the apps. In the QNX Qt development environment,

the target is a hardware board running QNX Apps and Media.

Before you can configure your host system to support Qt apps, you must have the following:

• An installation of QNX SDP 6.6 on your host system. By default, this platform is installed to

C:\qnx660 on Windows and /usr/qnx660 on Linux. We refer to this installation location as

DEFAULT_SDP_PATH throughout this document.

• An installation of QNX SDK for Apps and Media 1.1 on your host system. This latter platform

depends on some critical SDP patches that fix key subsystems (e.g., audio, graphics); the list of

required patches is given in the platform's Installation Note.

• A target system running QNX Apps and Media 1.1 that's connected to the same network as the

host system and that has a valid IP address.

Copyright © 2015, QNX Software Systems Limited 13

Installing QNX QDF and Qt Creator

QNX Qt 5.3.1 Development Framework (QNX QDF) is a package containing the Qt runtime needed for

building Qt apps. Qt Creator is the IDE that you use to write, debug, and build the apps. You need to

install both components before you can develop Qt apps for QNX Apps and Media systems.

To install the Qt development tools on your host system:

1. Locate the Installation Note applicable to your host OS by visiting our website, www.qnx.com, and

going to the QNX SDK for Apps and Media 1.1 Download area.

To find the right documentation for your host, look for headings with names similar to “QNX Qt

5.3.1 Development Framework (Windows Hosts)” or “QNX Qt 5.3.1 Development

Framework (Linux Hosts)”, then click See Installation/Release notes... to access

the supporting documentation.

2. Follow the instructions in the Installation Note to access, download, and install QNX QDF and

Qt Creator.

The installation dialog will prompt you for the directory to install Qt into, which we refer to as

QT_BASEDIR . In this example, we use the default directory of C:\QNX-qt on a Windows host.

3. Verify the correct paths of the QNX QDF build resources by opening an OS terminal, navigating to

the location of the qmake version suitable for your intended QNX target, and typing qmake -query:

The path of the qmake utility is QT_BASEDIR \Qt-5.3.1-variant \bin, where variant is x86 or armle-v7,

depending on your target's processor type. Note that on Linux the directory separators would be

forward slashes (/).

Copyright © 2015, QNX Software Systems Limited14

Preparing your host system for Qt development

http://www.qnx.com

In this example, we use a Windows host and a target system that has an armle-v7 processor, so we

query the properties of C:\QNX-qt\Qt-5.3.1-armle-v7\bin\qmake.exe. Regardless of your host OS

and target type, the paths of the build resources shown in the output should match the first few

directory levels in the qmake path.

After QNX QDF and Qt Creator are successfully installed, you must configure a QNX device to represent

your target system and a toolchain to define your compiler and debugger settings. The sections that

follow explain how to do this.

Copyright © 2015, QNX Software Systems Limited 15

Preparing your host system for Qt development

Configuring a QNX device in Qt Creator

You must configure a QNX device to tell Qt Creator which target system your apps will be deployed

onto. In the QNX Qt development environment, the target is your hardware board running QNX Apps

and Media.

To configure a QNX device in Qt Creator:

1. In the IDE, select the Tools menu, then click Options to open the Options dialog.

2. Choose Devices in the left-side menu and click the Add... button on the right side.

Initially, Qt Creator shows the default device of Local PC in this dialog, because you haven't

added a device that represents a QNX target:

3. In the Device Configuration Wizard Selection dialog, choose QNX Device and click Start Wizard.

4. In the New QNX Device Configuration Setup dialog, fill in the connection fields:

a) Name the device configuration something meaningful, like OMAP5432.

b) Enter the IP address of the target board.

c) In each of the username and password fields, enter root.

To display this last field, ensure you've selected Password as the authentication type.

d) Click Next.

Copyright © 2015, QNX Software Systems Limited16

Preparing your host system for Qt development

5. On the summary page, click Finish.

Qt Creator creates the new device configuration and runs the device connectivity test, which entails

connecting to the device and checking if the specified ports and certain key services (e.g., grep,

awk) are available. The test results are shown in the Device Test dialog:

Copyright © 2015, QNX Software Systems Limited 17

Preparing your host system for Qt development

6. After examining the test results, click Close to return to the Options dialog (which now displays

the settings of the QNX device).

Copyright © 2015, QNX Software Systems Limited18

Preparing your host system for Qt development

7. If the connectivity test failed, review the new device's connection settings (shown in the Devices
tab) and fix any improper settings.

You can then click Test (on the right side) to retest your device (this action relaunches the Device
Test dialog, as shown in Step 5 (p. 17)).

8. Click the OK button in the bottom right corner to close the Options dialog.

CAUTION: Clicking Apply isn't enough to save the new device configuration. You must

close the Options dialog and return to the main application screen before relaunching the

same dialog and configuring the build and run settings; otherwise, the new device won't

be listed. This is a known issue in Qt Creator.

Qt Creator has added a device profile representing your target system. You can now configure a toolchain.

Copyright © 2015, QNX Software Systems Limited 19

Preparing your host system for Qt development

Configuring a toolchain in Qt Creator

After defining a QNX device to represent your target system, you must set up a toolchain in Qt Creator.

The toolchain defines the build and run environment based on the QNX QDF installation and the

compiler, debugger, and target device configurations.

To configure a toolchain in Qt Creator:

1. In the IDE, select the Tools menu, then click Options to open the Options dialog.

2. Choose Build & Run in the left-side menu, click the Qt Versions tab in the main viewing area, then

click the Add... button on the right side.

3. In the file selector shown, navigate to the host directory containing the qmake version that you're

using, select qmake.exe (on Windows) or qmake (on Linux), then click Open.

The directory containing this utility is QT_BASEDIR \Qt-5.3.1-variant \bin, where variant is x86 or

armle-v7; on Linux, the directory separators would be forward slashes (/).

The Options dialog then displays additional fields for configuring the selected Qt version.

4. At the bottom of the dialog, on the line that reads QNX Software Development Platform,

click Browse....

Copyright © 2015, QNX Software Systems Limited20

Preparing your host system for Qt development

5. In the file selector that the IDE displays, navigate to the SDP installation location (referred to as

DEFAULT_SDP_PATH in this document) and click Select Folder.
The QNX Software Development field now lists the directory containing the QNX SDP 6.6

installation on your host system.

6. Click the Compilers tab, click the Add button on the right side, then select QCC from the dropdown

list.

The Options dialog displays additional fields at the bottom for configuring the newly added compiler.

7. Fill in the compiler fields:

a) In the Name field, enter QNX SDP 6.6 QCC.

b) On the Compiler path line, click Browse... to open the file selector. On Windows, navigate

to DEFAULT_SDP_PATH \host\win32\x86\usr\bin and choose qcc.exe. On Linux, navigate to

DEFAULT_SDP_PATH /host/linux/x86/usr/bin and choose qcc. Click Open to confirm the setting.

c) On the NDK/SDP path line, click Browse... to open the file selector, navigate to

DEFAULT_SDP_PATH , then click Select Folder.

d) In the dropdown list for ABI, select arm-linux-generic-elf-32bit.

Copyright © 2015, QNX Software Systems Limited 21

Preparing your host system for Qt development

8. Click the Apply button in the bottom right corner to save these settings.

9. Click the Debuggers tab, then click the Add button on the right side.

The Options dialog displays additional fields at the bottom for configuring a new debugger.

10. Fill in the debugger fields:

a) In the Name field, enter QNX SDP 6.6 GDB.

b) On the Path line, click Browse... to open the file selector. On Windows, navigate to

DEFAULT_SDP_PATH \host\win32\x86\usr\bin and choose ntoarmv7-gdb.exe. On Linux, navigate to

DEFAULT_SDP_PATH /host/linux/x86/usr/bin and choose ntoarmv7-gdb. Click Open to confirm the

setting.

Copyright © 2015, QNX Software Systems Limited22

Preparing your host system for Qt development

11. Click the Apply button in the bottom right corner to save these settings.

12. Click the Kits tab, then click the Add button on the right side.

The Options dialog displays additional fields at the bottom for configuring a new kit.

13. Fill in the kits fields:

a) Name the kit something meaningful, like QNX SDP 6.6 – OMAP5432.

b) In the Device Type dropdown list, select QNX Device.

c) In the Device dropdown list, select the device configured earlier (e.g., OMAP5432).

d) In the Compiler dropdown list, select QNX SDP 6.6 QCC.

e) In the Debugger dropdown list, select QNX SDP 6.6 GDB.

f) In the Qt version dropdown list, select Qt 5.3.1 (Qt-5.3.1-armle-v-7).

Copyright © 2015, QNX Software Systems Limited 23

Preparing your host system for Qt development

14. Click the OK button in the bottom right corner to save all the Build & Run settings.

After you've configured a QNX device and a toolchain, you can begin developing Qt apps for QNX Apps

and Media systems! When creating Qt apps, you can select your Build & Run Kit in the New Project
wizard to use the build and run settings that you configured earlier.

Copyright © 2015, QNX Software Systems Limited24

Preparing your host system for Qt development

Chapter 3
Creating and running Qt apps

Qt Creator supports the entire Qt app lifecycle, from project creation to source file and resource

definition to app deployment on a target system.

The sections that follow provide a walkthrough of writing the code for a Qt app, packaging the app,

deploying it on a target system, and running it. Here, app refers to a Qt program packaged as a

Blackberry ARchive (BAR) file, which you can unpackage on the target to make the app accessible

from the HMI. To run the app, you simply tap its icon in the Home screen.

To develop Qt apps, you must have installed and configured the necessary Qt tools (including Qt Creator),

as explained in Preparing your host system for Qt development (p. 13).

Copyright © 2015, QNX Software Systems Limited 25

Creating a project for a Qt App

The first task in writing a Qt App is to create a project in Qt Creator and add the necessary components

such as the UI definition file, main source file, and an icon.

To create a Qt project:

1. Launch Qt Creator.

2. In the File menu, choose New File or Project...

3. In the Projects dialog, choose Other Project, then Empty Qt Project, and then click Choose...

4. In the Location page of the Empty Qt Project dialog, name the project QtApp, then click Next.

Copyright © 2015, QNX Software Systems Limited26

Creating and running Qt apps

5. In the Kits page, choose the kit that you configured when setting up Qt Creator (e.g., QNX SDP

6.6 – OMAP5432), then click Next.

To define a kit, you must first define toolchain settings (e.g., compiler, debugger), as explained in

“Configuring a toolchain in Qt Creator (p. 20)”.

6. In the Summary page, click Finish to save your new project's settings.

Defining the UI

You can define the UI by adding a QML file that declares the UI components of your new app.

To define the UI:

1. Click the Edit icon on the left side, right-click the QtApp folder in the Projects view, then choose

Add New... in the popup menu.

2. In the New File dialog, select Qt in the Files and Classes list, then QML File (Qt Quick 2)

in the list of file types (shown in the middle), then click Choose...

3. In the Location page of the New QML File dialog, name the file main, then click Next.

4. In the Summary page, click Finish.

The main.qml file is opened for editing.

5. Delete the default file content and replace it with the following:

import QtQuick 2.0

Rectangle {

width: 360

height: 360

Copyright © 2015, QNX Software Systems Limited 27

Creating and running Qt apps

Text {

text: qsTr("Hello World")

anchors.centerIn: parent

}

}

This QML code defines a simple UI consisting of a box displaying Hello World.

The QNX Apps and Media reference image has a similar HTML5 sample that displays

“Hello World” but here, we're writing an app with a basic UI to demonstrate Qt app

development and deployment. In fact, you can replace the QML code here with whatever

you like to display a different UI.

6. Save the file.

Making a QML file into a project resource

After you've defined the UI in a QML file, you can create a Qt resource file that includes the QML file

and then add this resource file to your project. This makes Qt Creator include the UI definition in the

binary file.

There are several ways to access resources in Qt apps running on a QNX Apps and Media

system. In addition to compiling resources into their binaries, apps can access resources from

within their BAR file package or from a shared location on the target. It's also possible to use

a mix of any of these options. The best solution depends on the nature of the app.

To make the UI-defining QML file into a project resource:

1. Click the Edit icon on the left side, right-click the QtApp folder in the Projects view, then choose

Add New...

2. In the New File dialog, select Qt in the Files and Classes list, then Qt Resource file in the

list of file types (shown in the middle), then click Choose...

Copyright © 2015, QNX Software Systems Limited28

Creating and running Qt apps

3. In the Location page of the New Qt Resource file dialog, name the file resources, then click

Next.

4. In the Summary page, click Finish.

A new file, resources.qrc, has been added to the project. The Qt Resources Editor is open.

5. In the configuration area near the bottom, click Add, then choose Add Prefix.

Copyright © 2015, QNX Software Systems Limited 29

Creating and running Qt apps

6. In the Prefix field, replace the default text with ui.

7. Click Add again, then choose Add Files.

8. In the file selector that Qt Creator opens, navigate to the project directory and select main.qml,

then click Open.

The main.qml file is stored in a Qt resource (.qrc) file, which means Qt Creator will compile the QML

file into the app binary file.

Copyright © 2015, QNX Software Systems Limited30

Creating and running Qt apps

Adding code to load the UI

The QML file defines how the UI looks but to display it when the Qt app starts, your app must contain

C++ code that defines the application entry point and loads the UI.

To add code that loads the UI:

1. In the Project view, right-click the QtApp folder and click Add New...

2. In the New File dialog, select C++ in the Files and Classes list, then C++ Source file in the

list of file types (shown in the middle), then click Choose...

3. In the Location page in the resulting dialog, name the file main, then click Next.

4. In the Summary page, click Finish.

The main.cpp file is opened for editing.

5. Copy and paste the following code into main.cpp:

#include <QtGui/QGuiApplication>

#include <QtQuick/QQuickView>

int main(int argc, char *argv[])

{

QGuiApplication app(argc, argv);

QQuickView view;

view.setSource(QUrl("qrc:/ui/main.qml"));

view.show();

return app.exec();

}

In this code, the view loads the main.qml resource from the Qt resource file, and then displays the

UI. Note the syntax for accessing resources in a .qrc file, which consists of the resource path

prepended with qrc:. So, to access main.qml, the view uses qrc:/ui/main.qml (because

the prefix was defined as ui).

6. Open the project file (QtApp.pro) for editing and add this line at the end:

QT += quick

Because main.cpp includes the QtQuick/QQuickView header file, you must tell Qt Creator to use

the quick package.

The project file can define many variables that affect how qmake builds the project; for

the full list, see the Variables | QMake reference in Digia's online Qt documentation.

Copyright © 2015, QNX Software Systems Limited 31

Creating and running Qt apps

http://qt-project.org/doc/qt-5/qmake-variable-reference.html

Adding an image for the app icon

To provide an icon that lets users identify and launch your app in the target HMI, you can save an

image file in your project folder.

To add an image to use as the app icon:

• Copy the following image and save it as icon.png in the QtApp project folder:

We provide a sample icon here for convenience, but you can use any appropriately sized image as

an icon.

The icon gets packaged into the app's BAR file—it shouldn't be compiled into resources.qrc.

Copyright © 2015, QNX Software Systems Limited32

Creating and running Qt apps

Writing the app descriptor file

After your project is set up, you can package the Qt app in a BAR file so it can be deployed onto a

QNX Apps and Media target. The package must contain an app descriptor file, which is an XML file

specifying various configuration and application settings.

These instructions show how to define an app descriptor file using Qt Creator but you can

manually write this file using whatever editing tool you want.

To write an app descriptor file in Qt Creator:

1. Click the Edit icon on the left side, right-click the QtApp folder in the Projects view, then choose

Add New...

2. In the New File dialog, select General in the Files and Classes list, then Text file in the list

of file types (shown in the middle), then click Choose...

3. In the Location page of the New Text file dialog, name the file bar-descriptor.xml, then click

Next.

4. In the Summary page, click Finish.

The bar-descriptor.xml file is opened for editing.

5. Copy and paste the following content into the new file:

<?xml version='1.0' encoding='UTF-8' standalone='no'?>

<qnx xmlns="http://www.qnx.com/schemas/application/1.0">

<id>com.mycompany.QtApp</id>

<name>Qt App</name>

<versionNumber>1.0.0</versionNumber>

<description>The Hello World Qt demo app.</description>

<category>demo</category>

<icon>



</icon>

<buildId>1</buildId>

<author>My Company Inc.</author>

<permission system="true">run_native</permission>

<env var="QQNX_PHYSICAL_SCREEN_SIZE" value="150,90"/>

<asset type="Qnx/Elf" path="QtApp" entry="true">QtApp</asset>

</qnx>

The app-descriptor file defines the app name, description, icon file, and other fields that contain

authoring information and settings for the initial window. It also sets the

QQNX_PHYSICAL_SCREEN_SIZE environment variable, which defines the height and width of the

app's display area. Finally, the app descriptor file also provides asset information, including the

binary file path and format.

Copyright © 2015, QNX Software Systems Limited 33

Creating and running Qt apps

Environment variables

In the app descriptor file, you can define environment variables that your app can access from its

sandbox environment. In our sample Qt apps, these variable settings define the logging level or the

app's physical display area, but you can set any variable you want.

Environment variables are set using <env> tags, where the var attribute lists the variable's name and

the value attribute lists its value:

<env var="QQNX_PHYSICAL_SCREEN_SIZE" value="150,90"/>

Physical display area

The QQNX_PHYSICAL_SCREEN_SIZE variable defines the height and width of the app's display area

on the screen. The width is listed first, followed by a comma, followed by the height. Note that the

dimensions are specified in millimeters, not pixels. This is because the QNX Apps and Media target

requires a physical unit and not a virtual unit.

We strongly recommend setting this variable to better control how your app is shown in the target HMI.

If you don't define this variable, the display size defaults to 150 mm by 90 mm, which may not be

optimal for viewing your app. Also, you'll receive a stdout warning when starting your app, although it

will still run.

Library paths

The LD_LIBRARY_PATH variable should not be used to define the path of dynamic libraries used by

your app. When defined in your project, this variable setting overrides the system setting on the target.

The target environment must be configured so all essential libraries, including Qt and other commonly

used libraries, are visible to the dynamic linker. For instance, on the target, LD_LIBRARY_PATH may

be set to:

lib:/usr/lib:/usr/qt5-5.3/lib

Suppose you override this variable in the project for a Qt app so that it can access certain libraries in

its sandbox, as follows:

<env var="LD_LIBRARY_PATH" value="app/native/lib"/>

In this case, your app won't start on the target because the dynamic linker won't be able to find the

Qt libraries or any shared libaries outside of the app/native/lib path needed by the app. While you could

expand the project variable setting to include all the paths in the target's LD_LIBRARY_PATH value,

this depends on you knowing the target's setup, which might not be the case if you're developing apps

for a third party. Also, if the target setup changes, you would have to update your project settings.

We recommend that you instead define the RPATH link option in your project to give the app access

to the libraries included in its sandbox environment.

Copyright © 2015, QNX Software Systems Limited34

Creating and running Qt apps

XML elements in app descriptor file

The app descriptor file must specify the app ID, build ID, version number, a Qt binary file for the entry

point, and the physical size of the display area. The file can also define fields such as an icon image

file, author name, app name and description, and more.

ExampleAttributesDescriptionRequiredName

<arg>-b -v</arg>Defines the arguments for

configuring the application when

No<arg>

started. The order of the arguments

is important because they're

presented in the application's

command line in the same order

listed in the app descriptor file.

<asset type="Qnx/Elf"

path="QtApp"

entry="true">QtApp

</asset>

defaultexcludes

When yes, apply

the exclusion

patterns to the

Specifies an asset to package in the

BAR file. For Qt apps, you must

include an <asset> tag that names

the Qt binary that's the app entry

point.

Yes<asset>

directory tree. For
Any assets listed on the command

line override those specified with this
the list of exclusion

patterns, see the
tag. The text of the tag is a path <asset> element
relative to the BAR package root in the application

descriptor file DTD.directory. You can also use the dest

attribute to specify the asset—this dest
is recommended when using nested

The asset's

destination path.
<exclude> and <include>

elements.
Typically, the value

Unless otherwise noted, the

attributes are optional.
is the last part of

path (i.e., the

filename).

entry

When true, use the

asset to start the

application. The

default setting is

false.

path (Required)

The location of the

asset relative to the

working directory of

the packager.

Copyright © 2015, QNX Software Systems Limited 35

Creating and running Qt apps

http://developer.blackberry.com/native/documentation/core/com.qnx.doc.native_sdk.devguide/topic/r_barfile_dtd_ref_asset.html

ExampleAttributesDescriptionRequiredName

public

When true, store

the asset in the

public directory of

the BAR file, so it's

readable to other

applications. Icon

assets should be

public. The default

setting is false.

type

The asset type. For

Qt binaries, use

Qnx/Elf.

<author>

My Company Inc.

</author>

Specifies the author name (typically

the company or developer name).

No<author>

<buildId>1</buildId>Specifies the build identifier, which

is an integer between 0 and 65535.

Yes, if

not using

<buildId

File>

<buildId>

You modify the value when you want

the identifier to change.

<buildIdFile>

buildnum

</buildIdFile>

Names the file that stores the build

identifier. This file is located in your

application root folder and it stores

the build identifier as an integer. The

No<buildId

File>

packager tool increments this value

each time you build the BAR

package.

If you use this element, don't include

the <buildId> element.

The default file created by the

Momentics IDE is buildnum.

<category>

media

</category>

Indicates the category to which the

application belongs.

No<category>

<description>The Hello

World Qt demo app.

</description>

Defines the text to display when the

application is installed. You can use

nested <text> elements to define

text for different languages and

locales.

No<description>

Copyright © 2015, QNX Software Systems Limited36

Creating and running Qt apps

ExampleAttributesDescriptionRequiredName

<entryPointType>

Qnx/WebKit

</entryPointType>

Defines the entry point type, which

can be either Qnx/Elf (for native

applications, including Qt

applications) or Qnx/WebKit (for

Not if the

entry

point is

defined

in an

<entry

PointType>

applications based on HTML5 and

Cordova).<asset>

tag;

otherwise,

yes.

<env var="QQNX_

PHYSICAL_SCREEN_SIZE"

value="150,90"/>

var (Required)

Name of the

environment

variable.

Defines environment variable

settings. For Qt apps, we recommend

defining the

QQNX_PHYSICAL_SCREEN_SIZE

variable, but you can define others

No<env>

value (Required)as well, as explained in

“Environment variables (p. 34)”. Value of the

environment

variable.

See the 
is the path to the image asset (PNG

</icon>or JPG file) from the application root

path. The recommended image size

is 86 x 86 or 90 x 90 pixels.

This element is nested within the

<icon> element.

<name>Qt App</name>Defines the string value to display

when the app is installed. This

Yes<name>

UTF-8 value can be at most 25

characters.

Copyright © 2015, QNX Software Systems Limited 37

Creating and running Qt apps

ExampleAttributesDescriptionRequiredName

<permission

system="true">

access_internet

</permission>

system (Required)

Specifies whether

the action is a

system (not a user)

Specifies the privileges (also known

as capabilities, user actions, or

actions) that the application requests

from the OS.

The permission settings relevant to

Qt apps are listed in “App

permissions (p. 40)”.

No<permission>

action. For Qt apps,

this attribute must

be set to true.

<platformArchitecture>

x86

</platformArchitecture>

Specifies the processor type that the

application is compiled for. If you

don't specify a value, the Momentics

IDE inspects the binary to determine

the value.

No<platform

Architecture>

You can use the following values:

• x86—compile your application

to run on a simulator

• armle-v7—build the

application to run on a device

<platformVersion>

10.2.0.155

</platformVersion>

Lists the locales supported by the

application. The values given must

be defined in the IETF Best Current

Practice (BCP) 47 specification. You

No<platform

Version>

can use a comma-delimited list of

locales to list more than one.

See the example of the app

descriptor file in “Writing the

app descriptor file (p. 33)”.

xmlns (Optional)

URL referencing

the XML

namespace.

Defines the top-level element of the

schema used for the app descriptor

file.

Yes<qnx>

<description>The Hello

World Qt demo app.

xml:lang

(Required)

Specifies text for the parent <name>

and <description> elements, to

support different languages and

No<text>

<text

xml:lang="de-DE">

The German description

for the Hello World Qt

demo app.</text>

The language or

locale code. These

hyphenated strings

are based on the

IETF Best Current

Practice (BCP) 47

locales. You can also use this

element to specify multiple image

files for the <image> and

<splashscreen> elements.

</description>specification (e.g.,

en-US for U.S.

English, de-DE for

German, or fr-CA

for Canadian

French).

Copyright © 2015, QNX Software Systems Limited38

Creating and running Qt apps

ExampleAttributesDescriptionRequiredName

<versionNumber>

1.0.0

</versionNumber>

Specifies the app version as a string

in the format <0-999>.

<0-999>.<0-999>. The version is

useful for determining whether an

Yes<version

Number>

upgrade is required. The value can

be a one-, two-, or three-part value,

such as 1, 1.0, or 1.0.0.

Copyright © 2015, QNX Software Systems Limited 39

Creating and running Qt apps

App permissions

Using the <permission> element in the app descriptor file, you can list the permissions you want

the OS to grant your app.

The permissions listed here are those that apply to Qt apps. Other app types (e.g., Android)

may have different permissions.

For Qt app decriptor files, each <permission> element can define of the following one permissions:

DescriptionPermission element value

Allows the app to use an Internet connection from a Wi-Fi, wired, or other connection.

This permission is required to access a nonlocal destination.

access_internet

Grants the app access to the system's current location and any saved access locations.

You must set this permission to access geolocation data, information for geofencing,

cell tower information, and Wi-Fi data.

access_location_services

Allows the app to read and write files shared between all apps. When this permission

is set, the app can access pictures, music, documents, and other files stored on the

local system, at a remote storage provider, on a media card, or in the cloud.

access_shared

Enables the app to modify system settings, including Bluetooth, Wi-Fi, network

connection, and software update settings.

configure_system

Grants the app access to browser certificates. This is needed to browse content using

HTTPS and to save certificates locally.

manage_cert

Allows the app to post notifications. This permission doesn't require the user to grant

your app access and is granted by the OS when requested.

post_notification

Grants the app access to unique system identifiers such as the PIN and serial number.

By setting this permission, you can also access SIM card information.

read_device_

identifying_information

Grants the app access to the audio stream from a microphone attached to the system.record_audio

Allows the app to control the audio volume.set_audio_volume

Allows the app to access data from cameras attached to the system. This permission

is required to take pictures, record video, and use the camera flash.

use_camera

Enables the app to access the appinst-mgr native service, which provides access

to the install and uninstall mechanism.

use_installer

Copyright © 2015, QNX Software Systems Limited40

Creating and running Qt apps

Building the app

After creating the Qt project and defining the resources for the app, you can build its binary to verify

the correctness of the code and the project configuration.

Qt Creator has many features to make compilation and debugging easier, as explained in “Tips

for compiling programs in Qt Creator (p. 42)”.

To compile the app:

• In the Build menu, choose Build Project "QtApp".

Qt Creator starts building the application and displays the QCC output in the Compile Output
window.

Copyright © 2015, QNX Software Systems Limited 41

Creating and running Qt apps

If the application builds successfully, the binary will be in the build directory specified in the General
section of the Build Settings page, which is accessed by clicking the Projects icon on the left side and

then selecting the QtApp project.

If the build fails, you can review the messages shown in the Compile Output window (which is accessed

by clicking the button with the same name at the bottom) to determine the cause of the failure and

then take corrective action to fix the project.

Tips for compiling programs in Qt Creator

The following actions can help you compile and debug programs efficiently:

• To see the compilation output when your project gets built, click the Compile Output button on

the bottom of the screen. This displays the output of the QCC compiler. While the Issues view

provides a summary of any problems encountered during compilation, the Compile Output view

shows more information that helps explain the cause of an error listed in Issues.

• To speed up compilation, you can inform Qt Creator of the number of CPU cores on your host

machine. To do this, select the Projects tab, go to the Build Settings page, and locate the Build
Steps section. You can then expand the Make instruction and in the arguments field, add -jn ,

where n is the number of cores on the machine:

Copyright © 2015, QNX Software Systems Limited42

Creating and running Qt apps

This action instructs make to use multiple threads during compilation, which can significantly

reduce build times for large projects. (It won't make any difference for our small sample project

but does help when building large applications.)

In some Windows versions of make, the -j option isn't implemented and so it has no

effect.

• If you encounter compilation problems related to moc or vtables, clean your project (by selecting

Build ➝ Clean All), rerun qmake (by selecting Build ➝ Run qmake), and then rebuild your project.

Qt Creator uses qmake to generate makefiles containing instructions on how to compile the project.

Sometimes the makefiles become out-of-date and must be manually regenerated by doing those

previous actions.

Copyright © 2015, QNX Software Systems Limited 43

Creating and running Qt apps

Packaging the app into a BAR file from Qt Creator

After defining the app descriptor file, you can generate a BAR file that contains the app's binary and

icon file. The BAR package will be used by the target system to install the app.

These instructions show how to produce a BAR file as a custom build step in Qt Creator, but you can

also generate a BAR file from the command line (p. 47). BAR files are created by the

blackberry-nativepackager tool, which is part of the QNX SDK for Apps and Media installation on your

host system.

To package the app into a BAR file from Qt Creator:

1. Click the Projects icon on the left side, select the Build & Run tab, click Add Build Step, then

select Custom Process Step:

2. On the line that reads Command, click Browse....

3. In the file selector dialog, navigate to DEFAULT_SDP_PATH \host\win32\x86\usr\bin and choose

blackberry-nativepackager.bat (on Windows) or navigate to DEFAULT_SDP_PATH /host/linux/x86/usr/bin/
and choose blackberry-nativepackager (on Linux).

Copyright © 2015, QNX Software Systems Limited44

Creating and running Qt apps

4. On the line that reads Arguments, enter:

QtApp.bar %{sourceDir}\bar-descriptor.xml QtApp -C %{sourceDir}

%{sourceDir}\icon.png

While the above command may appear across multiple lines in your viewer, you must enter

it on one line in Qt Creator. Also, the directory separators in this example are backslashes

(\), which are used for Windows, but you must use the appropriate separator for your OS

(i.e., "/" if you're running Linux).

These arguments tell the packaging utility to create a file named QtApp.bar using the information

in bar-descriptor.xml and to include QtApp (the binary) and icon.png in the root folder of the BAR

file. For the list of all command options applicable to Qt apps, see “Qt command-line options for

blackberry-nativepackager (p. 48)”.

This step makes Qt Creator run the blackberry-nativepackager command as a build step.

Every time you recompile the application, the binary is repackaged into a BAR file.

5. Scroll down to the Build Environment section, locate the Use System Environment entry, then click

Details (on the right side).

6. In the list of environment variables, locate PATH and if necessary, add the path to the host system's

java.exe location to the variable's value.

Copyright © 2015, QNX Software Systems Limited 45

Creating and running Qt apps

You can modify the variable's value by clicking the variable name in the display area, clicking Edit
in the upper right area, and then entering the new value.

The Qt Creator build environment must be configured to find java.exe because

blackberry-nativepackager runs a batch file that calls a Java program.

7. Click the Edit icon on the left side to return to the editing view, select the Build menu, then choose

Build Project "QtApp".

Qt Creator builds the QtApp project by compiling the UI-defining QML file into the binary, then

generates the BAR file by running the configured packaging command. The IDE displays

timestamped messages detailing the outcomes of the build steps in the Compile Output window.

The QtApp app is packaged in a BAR file and can then be deployed on your target system.

Copyright © 2015, QNX Software Systems Limited46

Creating and running Qt apps

Packaging the BAR file from the command line

You can run the blackberry-nativepackager tool from the command line.

Before running the packaging command, ensure that you have:

• The app descriptor file. This XML file must be written manually, whether in Qt Creator or another

editor.

• The binary generated by building your Qt app.

• Any resources (statically linked libraries, QML files, icons, etc...) used by the binary. You can

compile some resources into the binary or a library linked to the binary. If you choose to do this,

you don't need to list those resources on the packaging command line.

The command-line process for packaging a Qt app is similar to the process of “Packaging a native

C/C++ app for installation” described in the Application and Window Management guide. The key

differences are the QNX Qt environment variables (p. 34) you can define in the app descriptor file for

a Qt app.

To package a Qt app into a BAR file from the command line:

• In a BlackBerry 10 OS terminal, navigate to the location where your Qt app is stored, then enter

the command line to package the app, in this format:

blackberry-nativepackager [<commands>] [<options>] bar-package app-descriptor

binary-file [resource-file]*

You must list the BAR file first, followed by the app descriptor file, and then the app files (which

must include the binary) to store in the package. The order for other command-line arguments is

flexible; you can list the app files in any order and place commands and options at any location in

the command line.

The exact name and location of the packaging tool and its command syntax is platform-dependent.

On Linux, the tool is called blackberry-nativepackager and is stored in

DEFAULT_SDP_PATH /host/linux/x86/usr/bin/. Any filepaths in the command line must use POSIX

notation, using a forward slash (/) to indicate directories. On Windows, it's called

blackberry-nativepackager.bat and is stored in DEFAULT_SDP_PATH \host\win32\x86\usr\bin. The

command-line filepaths must follow the Windows convention, using a backslash (\) to indicate

folders.

Consider the following packaging command line for a Windows host:

blackberry-nativepackager.bat -package AngryBirds.bar

-devMode birds_bar-descriptor.xml bin/angrybirds a_birds1.png

This command generates a BAR file named AngryBirds.bar based on the birds_bar-descriptor.xml
file. The BAR file contains the app's binary file (whose path is bin/angrybirds) and its icon file

(a_birds1.png). For details on the -package and -devMode options and all other command

options applicable to packaging Qt apps, see “Qt command-line options for

blackberry-nativepackager (p. 48)”.

After your app is packaged, you can deploy it on the target, as explained in “Deploying the BAR file

on the target (p. 51)”.

Copyright © 2015, QNX Software Systems Limited 47

Creating and running Qt apps

Qt command-line options for
blackberry-nativepackager

The blackberry-nativepackager command line must name the BAR file, app descriptor file, and Qt

binary. The packaging tool allows you to list other files to include in the package and supports many

command-line options for Qt apps.

Syntax:

blackberry-nativepackager [<commands>] [<options>] bar-package

app-descriptor binary-file [resource-file]*

Commands:

-package

Package the assets into an unsigned BAR file (this is the default behavior).

-list

List all the files in the resulting package. This is useful for debugging packaging issues.

-listManifest

Print the BAR manifest. This is useful for debugging.

Packaging options:

-buildId ID

Set the build ID (which is the fourth segment of the version). Must be a number from 0 to

65535.

-buildIdFile file

Set the build ID from an existing file and save a new, incremented version to the same file.

-devMode

Package the BAR file in development mode. This is required to run unsigned applications

and to access application data remotely.

Path options:

-C dir

Use dir as a root directory. All files listed after this option will be used with tail paths in

the output package.

-e file path

Save a file to the specified path in the package.

Copyright © 2015, QNX Software Systems Limited48

Creating and running Qt apps

Other options:

-version

Print the packaging tool version.

help-advanced

Print the advanced options.

-help

Print the usage information. This will include other command-line options and commands

that aren't listed here but don't apply to Qt apps.

Variables:

bar-package

Path of the output BAR package file.

app-descriptor

Path of the app descriptor file.

binary-file

Path of the Qt binary file.

resource-file

Path of a resource file used by the Qt app. This could be an icon, a font definition file, an

image, and so on. You can name as many resource files as you want.

These paths can be absolute or relative to the current directory. The resulting location in the

package is a tail path of the file, unless overridden by the -C or -e options.

Example:

The command line shown below packages the Settings app. The app binary, icon file, and several

images from installed UI themes are included in the BAR file (QtSettingsApp.bar), which is generated

based on the app descriptor file (settings-descriptor.xml):

blackberry-nativepackager.bat -package QtSettingsApp.bar -devMode settings-descriptor.xml

-e %1\bin\settingsapp bin/settingsapp settings_icon.png

-C %1\ %1\lib\ %1\share\qnxcar2\palettes\

%1\share\qnxcar2\fonts\

%1\share\qnxcar2\qml\main.qml

%1\share\settingsapp\

%1\share\qnxcar2\images\themes\720p\default\Settings\

%1\share\qnxcar2\images\themes\720p\midnightblue\Settings\

%1\share\qnxcar2\images\themes\800x480\default\Settings\

%1\share\qnxcar2\images\themes\800x480\midnightblue\Settings\

Copyright © 2015, QNX Software Systems Limited 49

Creating and running Qt apps

%1\share\qnxcar2\images\themes\800x480\titanium\Settings\

%1\share\qnxcar2\images\themes\720p\default\CommonResources\

%1\share\qnxcar2\images\themes\720p\midnightblue\CommonResources\

%1\share\qnxcar2\images\themes\800x480\default\CommonResources\

%1\share\qnxcar2\images\themes\800x480\midnightblue\CommonResources\

%1\share\qnxcar2\images\themes\800x480\titanium\CommonResources\

In the actual command line, %1 is replaced with the path of the source directory containing the

compiled Qt code. The -e and -C options take arguments, so the command-line tokens following these

options refer to the files affected by them. Here, the -e option tells the packaging tool to store the

app binary (which is located at %1\bin\settingsapp on the host system) at bin/settingsapp in the output

package. The -C option removes the %1 folder from the paths of the subsequently named files. For

example, the files in %1\lib on the host system get placed in /lib in the package.

Copyright © 2015, QNX Software Systems Limited50

Creating and running Qt apps

Deploying the BAR file on the target

Before you can run an app on the target system, you must copy the app's BAR file to a temporary

location on the target and then run the installation script to set up the app. You can configure Qt Creator

to automate deploying the BAR file and installing the app.

The steps shown here define commands for Qt Creator to issue to the target as part of the deployment

process, automating part of the app development process for convenience. You could also issue these

commands manually through a BlackBerry 10 OS terminal connected to the target and the result would

be the same.

To deploy an app on the target from Qt Creator:

1. Open the project file (QtApp.pro) for editing and add the following lines to the end:

barfile.path = /var/tmp

barfile.files = $$OUT_PWD/QtApp.bar

INSTALLS += barfile

This addition to the INSTALLS command instructs Qt Creator to copy QtApp.bar to /var/tmp on

the target. The target is represented in Qt Creator as a QNX device, as explained in “Configuring

a QNX device in Qt Creator (p. 16)”.

2. Click the Projects icon on the left side, select the Build & Run tab, then click the Run button to

switch to the Run Settings page.

3. Click the Add Deploy Step button, then choose Run custom remote command.

Copyright © 2015, QNX Software Systems Limited 51

Creating and running Qt apps

4. In the newly displayed box that reads Run custom remote command, click the “Move up”

button (which has an arrowhead pointing upwards), to ensure that this step is done before the

Upload files via SFTP step.

Copyright © 2015, QNX Software Systems Limited52

Creating and running Qt apps

5. In the Command Line text field under Run custom remote command, enter the line:

mount –uw /base

By default, a QNX Apps and Media image has a read-only filesystem. This command makes the

filesystem writable, which is necessary to successfully upload files.

6. Click Add Deploy Step again, choose Run custom remote command, and enter the following

command in the newly displayed Command Line field:

/base/scripts/bar-install /var/tmp/QtApp.bar

This command runs the installer on the target, installing the BAR package in a location accessible

to the Home screen.

You should have the following deployment steps (where the first and third were predefined):

a. Check for a configured device (default)

b. Run custom remote command: "mount -uw /base"

c. Upload files via SFTP (default)

Copyright © 2015, QNX Software Systems Limited 53

Creating and running Qt apps

d. Run custom remote command: "/base/scripts/bar-install /var/tmp/QtApp.bar"

7. Click the Edit icon on the left side, select the Build menu, then choose Deploy Project "QtApp".

Qt Creator performs the configured deployment steps, first copying the BAR file to the specified

target location, and then running the installer script to unpackage the app so it's visible to the

Home screen app. The IDE displays timestamped messages detailing the outcomes of the deployment

steps in the Compile Output window.

Copyright © 2015, QNX Software Systems Limited54

Creating and running Qt apps

Running the app

After you've unpackaged the app's BAR file on the target, you can run the app from the target HMI.

To run the app on the target:

1. Access the Home screen in the HMI.

You should see a new icon, labelled Qt App displayed with the other icons:

2. Tap the Qt App icon to launch the app.

QtApp launches. You should see the app's basic UI, consisting of the “Hello World” message:

If you specify a splashscreen image with the <splashscreen> tag in the app descriptor file, the

splashscreen is displayed while the app loads. After it loads, the app displays its initial window

based on any properties specified in the <initialWindow> tag, within the physical area defined

by the QQNX_PHYSICAL_SCREEN_SIZE environment variable (also set in the app descriptor file).

Copyright © 2015, QNX Software Systems Limited 55

Creating and running Qt apps

Cleaning the target before redeploying a BAR file

After an app's BAR file has been deployed on the target, we recommend uninstalling the app before

redeploying and reinstalling it. You can do this in Qt Creator by creating a second deployment

configuration to clean the app's installation on the target.

You can also issue these commands manually through a BlackBerry 10 OS terminal connected to the

target and the result will be the same.

To clean an app's installation on the target:

1. Click the Projects icon on the left side, select the Build & Run tab, click the Add button in the line

that reads Method, then choose Deploy to QNX Device.

2. Click the Rename... button on the same line, change the name to Clean QNX Device, then click

OK.

3. Remove the Upload files via SFTP step by hovering over the item and clicking the removal

button, which is marked with an X.

Copyright © 2015, QNX Software Systems Limited56

Creating and running Qt apps

4. Click the Add Deploy Step button, then choose Run custom remote command.

5. In the new Command Line text field, enter the line:

/base/scripts/bar-uninstall com.mycompany.QtApp

To uninstall an app, you must provide its ID, which is found in the app descriptor file. For the

QtApp project, the ID (com.mycompany.QtApp) is specified in the fourth element listed inside

the root <qnx> element in bar-descriptor.xml.

There are now two deployment methods. You must choose either Deploy to QNX Device or Clean

QNX Device from the Method dropdown menu before running Deploy Project "QtApp" in the

Build menu. To deploy the BAR file and install the app, switch to Deploy to QNX Device before

running the deployment step. To clean the app's installation on the target, choose Clean QNX Device

before redeploying the app.

Copyright © 2015, QNX Software Systems Limited 57

Creating and running Qt apps

Chapter 4
Building libraries for Qt apps

When writing applications, it's often necessary to use libraries to store specific functionality (e.g.,

graphics functions, filesystem access). On QNX targets, apps run in sandbox environments with limited

access to system facilities, meaning that their required functionality must be contained in libraries

accessible in the sandbox.

In the QNX Qt environment, an app can either statically or dynamically link in its required libraries.

With static linking, the app links the static object-code library (.a) files into its executable. This strategy

ensures that the required library functionality is always accessible to the app. With dynamic linking,

the libraries are stored in “shared library” (.so) files that are included in the app package. At runtime,

the app binary must load these files.

Each app must package all the .so files it needs because the separate sandboxes for separate apps

mean that apps can't actually share dynamic libraries. Therefore, when a given library is included in

an app, the package size increases by the same amount whether the library is statically or dynamically

linked. Also, when one of its libaries is upgraded, the app must be repackaged and redeployed.

While static linking is the recommended option, it may not always be possible due to licensing

restrictions or other issues. When dynamic linking is the only option, special considerations apply for

the sandbox environment. The tutorial that follows demonstrates how to dynamically link a library into

an app and then deploy the library as part of the BAR package.

In our example, we will create a “third-party” library for use by our QtApp sample. Typically,

a third-party library comes from an outside source such as a public project or a vendor.

Copyright © 2015, QNX Software Systems Limited 59

Creating a project for the library

The first stage in generating a library for use by Qt apps is to create a project in Qt Creator and define

library functions.

This example builds a Qt project that compiles into a dynamic library (.so) file. The library exports a

public function that can be called by application code.

To create a Qt project and configure its project file:

1. Launch Qt Creator.

2. In the File menu, choose New File or Project...

3. In the resulting dialog, choose Other Project from the list on the left, then Empty Qt Project from

the list in the middle, and then click Choose...

4. In the Location page of the Empty Qt Project dialog, name the project QtLibrary, then click

Next.

Copyright © 2015, QNX Software Systems Limited60

Building libraries for Qt apps

5. In the Kits page, choose the kit that you configured when setting up Qt Creator (e.g., QNX SDP

6.6 – OMAP5432), then click Next.

To define a kit, you must first define toolchain settings (e.g., compiler, debugger), as explained in

“Configuring a toolchain in Qt Creator (p. 20)”.

6. In the Summary page, click Finish to save your new project's settings.

Qt Creator creates the new project and displays the empty QtLibrary.pro file in the editing area.

7. Add these lines to this file:

We're building a library

TEMPLATE = lib

VERSION = 1.0

This instructs Qt Creator to build a dynamic library file with the indicated version number. The

resulting file will be called libQtLibrary.so.1.0.

The project file can define many variables that affect how qmake builds the project; for

the full list, see the Variables | QMake reference in Digia's online Qt documentation.

Copyright © 2015, QNX Software Systems Limited 61

Building libraries for Qt apps

http://qt-project.org/doc/qt-5/qmake-variable-reference.html

Adding a function

After the library project is created, you can add functions to export services to applications.

To add a function:

1. Click the Edit icon on the left side, right-click the QtLibrary folder in the Projects view, then

choose Add New... in the popup menu.

2. In the New File dialog, select C++ in the Files and Classes list, then C++ Class in the list of file

types (shown in the middle), then click Choose...

3. In the Details page of the C++ Class Wizard dialog, name the class Foo, then click Next.

4. In the Summary page, click Finish.

Qt Creator creates two new files, foo.h and foo.cpp, and adds them to the project.

5. Open foo.h for editing (by double-clicking its entry in the Project view), and add this content to

the file:

#ifndef FOO_H

#define FOO_H

#include <QString>

class Foo

{

public:

Foo();

QString message() const;

};

#endif // FOO_H

The message() function is declared in the public part of the class so it's visible to application

code outside of the library.

6. After saving the header file, edit foo.cpp to add this content:

#include "foo.h"

Foo::Foo()

{

}

QString Foo::message() const

{

return QStringLiteral("QtLibrary says hello world");

}

Copyright © 2015, QNX Software Systems Limited62

Building libraries for Qt apps

We define the most basic function that simply returns a string to its caller, just to illustrate

the mechanism for implementing library functionality. You'll write functions that do more

useful actions but the method of defining them in library projects is always the same.

You can now build the library into an .so file containing the defined functionality.

Copyright © 2015, QNX Software Systems Limited 63

Building libraries for Qt apps

Building the library

After defining functions for the library, you can build its shared library (.so) file so that applications

can dynamically link in the library functionality.

Qt Creator has many features to make compilation and debugging easier, as explained in “Tips

for compiling programs in Qt Creator (p. 42)”.

To compile the library:

• Select Build ➝ Build Project "QtLibrary".

Qt Creator starts building the library and displays the QCC output in the Compile Output window.

Copyright © 2015, QNX Software Systems Limited64

Building libraries for Qt apps

If the build succeeds, the library file will be in the directory specified in the General section of the

Build Settings page, which is accessed by clicking the Projects icon on the left side and then selecting

the QtLibrary project.

If the build fails, you can review the messages shown in the Compile Output window (which is accessed

by clicking the button with the same name at the bottom) to determine the cause of the failure and

then take corrective action to fix the project.

Copyright © 2015, QNX Software Systems Limited 65

Building libraries for Qt apps

Adding the library to Qt app projects

After generating the dynamic library file for QtLibrary, you can add the library to the projects of Qt

apps to make the library functionality available to those apps.

In this tutorial, we modify the project for QtApp (which we created in Creating and running Qt

apps (p. 25)) to include our new library.

To add the library to QtApp:

1. Click the Edit icon on the left side, right-click the QtApp folder in the Projects view, then choose

Set "QtApp" as Active Project in the popup menu.

2. Right-click the QtApp folder again, then choose Add Library...

3. In the Type page of the resulting dialog, select External Library, then click Next.

4. On the Library file line in the Details page, click the Browse button (shown on the right) to open

the file selector.

5. Navigate to the build directory of QtLibrary, select libQtLibrary.so, then click Open.

6. On the Include path line, click Browse to open the file selector.

7. Navigate to and select the source directory of QtLibrary, then click Open.

8. Under the Platform heading, uncheck the boxes for Mac and Windows, then click Next.

This last step is necessary because QNX is a POSIX-compliant OS so it uses the Linux linking

convention.

9. On the Summary page, click Finish.

The QtLibrary library is now part of QtApp, meaning the library's functions can be called from QtApp

code.

Copyright © 2015, QNX Software Systems Limited66

Building libraries for Qt apps

Calling library functions in Qt apps

With QtLibrary integrated with QtApp, you can now write code that uses the library's message() function.

To call a library method in QtApp code:

1. Open main.cpp for editing (by double-clicking its entry under QtApp in the Project view), and

replace its contents with this code:

#include <QtGui/QGuiApplication>

#include <QtQuick/QQuickView>

#include <QScreen>

#include <QQmlContext>

#include "foo.h"

int main(int argc, char *argv[])

{

QGuiApplication app(argc, argv);

// Get the screens so we can dynamically size our display

QScreen* screen = QGuiApplication::primaryScreen();

// Quit if there's no screen connected

if (screen == NULL) {

return 1;

}

// Get the width and height of the display

int w = screen->size().width();

int h = screen->size().height();

QQuickView view;

Foo foo;

QString msg = foo.message();

view.rootContext()->setContextProperty("_message", msg);

// Set up the view to have the proper size

view.setResizeMode(QQuickView::SizeRootObjectToView);

view.resize(w, h);

view.setSource(QUrl("qrc:/ui/main.qml"));

view.show();

return app.exec();

}

Copyright © 2015, QNX Software Systems Limited 67

Building libraries for Qt apps

The code in main.cpp uses the library by creating a Foo object, calling the object's message()

function, and then making the returned string available to QML so it can be displayed.

2. Open main.qml for editing and replace its contents with this code:

import QtQuick 2.0

Rectangle {

Text {

text: _message

anchors.centerIn: parent

}

}

3. Build the app by selecting Build ➝ Build Project "QtApp".

The app is built with integrated QtLibrary functionality and can run on the target, so long as the library

file is packaged with it.

Copyright © 2015, QNX Software Systems Limited68

Building libraries for Qt apps

Packaging Qt apps with the library

After the library has been added to the project of a Qt app, the packaging process for the app remains

mostly the same, except for two extra steps.

To package QtApp so it can use QtLibrary, you must:

1. Edit the project file (QtApp.pro) to add this line:

QMAKE_LFLAGS += "-Wl,-rpath,app/native/lib"

This instruction embeds the path of the library file (libQtLibrary.so) into the QtApp binary. When

the launcher service runs QtApp in its sandbox environment, the service uses a root path of

app/native. All files within the Blackberry ARchive (BAR) package are relative to this location. For

instance, from the perspective of QtApp, its icon file is found at app/native/icon.png.

To package libQtLibrary.so into the lib subdirectory in the BAR file, we set rpath to the root path

appended with this subdirectory (i.e., app/native/lib).

2. Update the arguments for the packaging command as follows:

QtApp.bar %{sourceDir}\bar-descriptor.xml QtApp

-C %{sourceDir} %{sourceDir}\icon.png

-e ProjectBuildDir\libQtLibrary.so.1.0 lib/libQtLibrary.so.1

The newly added –e option is followed by two paths. The first is the library file's build location on

the host system (in this case, replace ProjectBuildDir with the path containing the output library

file) and the second is the relative location of the library file within the BAR package. Note that

the file is purposely renamed from libQtLibrary.so.1.0 to libQtLibrary.so.1.

The directory separators in this example are backslashes (\), which are used for Windows,

but you must use the appropriate separator for your OS (i.e., "/" if you're running Linux).

The exception is the second path for -e; this must use the Linux separator because it

specifies a relative location on the QNX target, which follows the POSIX directory convention.

If you're using Qt Creator to package the app, you must access the Build & Run tab and edit the

build step for the packaging command to add these arguments, as explained in “Packaging the

app into a BAR file from Qt Creator (p. 44)”. In the above example, ProjectBuildDir is the build

directory specified in the General section of the Build Settings page.

You can also package the app from the command line, by passing these arguments to

blackberry-nativepackager in a BlackBerry 10 OS terminal, as described in “Packaging the BAR

file from the command line (p. 47)”.

Copyright © 2015, QNX Software Systems Limited 69

Building libraries for Qt apps

Chapter 5
Writing an HMI

You can develop your own HMI for QNX Apps and Media targets using Qt Creator. The process for

writing an HMI is similar to that of writing Qt apps except for the packaging (because the HMI is a

standalone application and not packaged as a BAR file).

The sections that follow provide a walkthrough of writing an HMI. The major steps include:

1. Defining the project components (e.g., resource file, main UI file, C++ entry point file).

2. Compiling, running, and debugging the HMI application on a target system.

3. Adding controls for various subsystems (e.g., volume) to expand the HMI capabilities as needed.

To develop a Qt-based HMI, you must have the necessary Qt tools installed and configured on your

host system, as explained in Preparing your host system for Qt development (p. 13).

Copyright © 2015, QNX Software Systems Limited 71

Creating a project for a Qt HMI

The first stage in writing a Qt HMI is to create a project in Qt Creator and add the files that define the

UI, application entry point, and how to package the project components.

In particular, the project will contain:

• A Qt Project file (QtHmi.pro) to store the project configuration settings

• A QML file (main.qml) to define the main UI elements for the application

• A QRC file (resources.qrc) to package the project resources into the binary

• A CPP file (main.cpp) to contain the entry-point function for starting the application

To create a Qt project and start defining its project file:

1. Launch Qt Creator.

2. In the File menu, choose New File or Project...

3. In the Projects dialog, choose Other Project, then Empty Qt Project, and then click Choose...

4. In the Location page of the Empty Qt Project dialog, name the project QtHmi, then click Next.

Copyright © 2015, QNX Software Systems Limited72

Writing an HMI

All files related to the project—C++ and QML source code, resource files, and the project

configuration file—will be stored in the folder specified on the Create in line in this dialog.

5. In the Kits page, choose the kit that you configured when setting up Qt Creator (e.g., QNX SDP

6.6 – OMAP5432), then click Next.

To define a kit, you must first define toolchain settings (e.g., compiler, debugger), as explained in

“Configuring a toolchain in Qt Creator (p. 20)”.

6. In the Summary page, click Finish to save your new project's settings.

Qt Creator creates the new project and displays the empty QtHmi.pro file in the editing area.

7. Add the following lines to this file:

We're building an app

TEMPLATE = app

This is the name to give the compiled application

TARGET = QtHmi

This action configures the project to build an application binary (as opposed to a dynamic or static

library).

The project file can define many variables that affect how qmake builds the project; for

the full list, see the Variables | QMake reference in Digia's online Qt documentation.

Copyright © 2015, QNX Software Systems Limited 73

Writing an HMI

http://qt-project.org/doc/qt-5/qmake-variable-reference.html

Adding the main QML file

Next, you can add a QML file to define the UI for the application.

To define the main QML file for your HMI:

1. Click the Edit icon on the left side, right-click the QtHmi folder in the Projects view, then choose

Add New... in the popup menu.

2. In the New File dialog, select Qt in the Files and Classes list, then QML File (Qt Quick 2)

in the list of file types (shown in the middle), then click Choose...

3. In the Location page of the New QML file dialog, name the file main, then click Next.

4. In the Summary page, click Finish.

Qt Creator adds main.qml to the project and opens this file in the editing area.

5. Replace the contents of this file with the following:

import QtQuick 2.0

Rectangle {

color: "black"

Text {

color: "white"

text: qsTr("Awesome HMI goes here")

anchors.centerIn: parent

}

}

6. After saving the QML file, edit the QtHmi.pro file to add the following lines:

The Qt modules needed for this project

QT += quick

This informs Qt Creator that the project uses the quickmodule, which is needed to build QML-based

UIs.

Adding the QRC file

To make it easier to deploy and run the application on the target, you can include the main QML file

in a Qt resource (QRC) file. A resource file packages many components including QML files, images,

and fonts into the binary so you don't have to deploy them alongside the binary on the target.

In addition to compiling resources into their binaries, applications can access resources directly

from the target's filesystem. Deciding whether to use a resource file is a design decision. More

information about resource files and how to package Qt binaries can be found on Digia's Qt

website: http://qt-project.org/doc/qt-5/resources.html.

Copyright © 2015, QNX Software Systems Limited74

Writing an HMI

http://qt-project.org/doc/qt-5/resources.html

To add a QRC file and include the main QML file in it:

1. In the Project view, right-click the QtHmi folder and click Add New...

2. In the New File dialog, select Qt in the Files and Classes list, then Qt Resource file in the

list of file types (shown in the middle), then click Choose...

3. In the Location page of the resulting dialog, name the file resources, then click Next.

4. In the Summary page, click Finish.

A new file, resources.qrc, has been added to the project and opened in Qt Creator for editing.

5. In the configuration area near the bottom, click Add, then choose Add Prefix.

Copyright © 2015, QNX Software Systems Limited 75

Writing an HMI

6. In the Prefix field, enter qml.

Prefixes add structure to the resource file. Any prefix scheme can be used, as long as you organize

your resources in a way that makes sense for the developers working on the project.

7. Click the Add button again, then choose Add Files.

8. In the file selector that the IDE opens, navigate to and select main.qml, then click Open.

This QML file is found in the folder specified on the Create in line in the Empty Qt Project dialog,

which was opened when the project was created.

The QML file is now part of the Qt resource file that will be compiled into the binary.

Adding the CPP file

The last step in creating a project for an HMI is to add the C++ code that runs the application and

loads the QML file.

To add a CPP file that starts the application:

1. In the Project view, right-click the QtHmi folder and click Add New...

2. In the New File dialog, select C++ in the Files and Classes list, then C++ Source file in the

list of file types (shown in the middle), then click Choose...

3. In the Location page of the New C++ Source File dialog, name the file main, then click Next.

4. In the Summary page, click Finish.

A new file, main.cpp, has been added to the project and opened for editing.

5. Add the following code to this file:

#include <QtGui/QGuiApplication>

#include <QtQuick/QQuickView>

#include <QScreen>

int main(int argc, char *argv[])

{

QGuiApplication app(argc, argv);

// Get the screens so we can dynamically size our display

QList<QScreen*> screens = QGuiApplication::screens();

// Quit if no screen is connected

if (screens.empty()) {

return 1;

}

// Get the width and height of the display

int w = screens[0]->size().width();

int h = screens[0]->size().height();

Copyright © 2015, QNX Software Systems Limited76

Writing an HMI

QQuickView view;

// Set the main QML user interface file to this view

view.setSource(QUrl("qrc:/qml/main.qml"));

// Set up the view to have the proper size

view.setResizeMode(QQuickView::SizeRootObjectToView);

view.resize(w, h);

// Show our user interface

view.show();

return app.exec();

}

Note that the view.setSource() call uses the qrc: prefix for the QUrl object. This is how the

application accesses resources in the resources.qrc file.

You now have a shell Qt application ready to go!

Copyright © 2015, QNX Software Systems Limited 77

Writing an HMI

Building the HMI application for a QNX target

After creating a Qt project and defining the necessary resources for the HMI, you can build the

application binary and then deploy and run it on the target.

To build and run HMI applications written for QNX Apps and Media 1.0, follow these same steps.

To compile the HMI application:

• In the Build menu, choose Build Project "QtHmi".

If you're rebuilding a legacy application, your project will likely be named something other

than "QtHmi".

Qt Creator starts building the application and displays the QCC output in the Compile Output
window.

Copyright © 2015, QNX Software Systems Limited78

Writing an HMI

If the application builds successfully, the binary will be in the build directory specified in the General
section of the Build Settings page, which is accessed by clicking the Projects icon on the left side and

then selecting the project for the HMI that you want to run.

If the build fails, you can review the messages shown in the Compile Output window (which is accessed

by clicking the button with the same name at the bottom) to determine the cause of the failure, and

then fix the project as necessary.

Qt Creator has many features to make compilation and debugging easier, as explained in “Tips

for compiling programs in Qt Creator (p. 42)”.

Configuring the runtime environment

Before running the HMI on the target, we recommend setting the QQNX_PHYSICAL_SCREEN_SIZE

environment variable. This variable defines the application display dimensions, to ensure that the HMI

fits the target's display.

CAUTION: If this variable isn't set, the application will still run but you'll receive an stdout
warning and the application might not display correctly; see “Environment Variables (p. 34)”

for more information.

To configure the runtime environment:

1. Click the Project icon on the left side to access the Build & Run settings.

2. Click the Run tab to switch to the Run Settings page.

Copyright © 2015, QNX Software Systems Limited 79

Writing an HMI

3. Scroll down to find the Run Environment heading, then expand the Use System Environment entry.

4. Click the Add button on the right side to add an environment variable.

5. Set the variable name to QQNX_PHYSICAL_SCREEN_SIZE and the value to the display dimensions,

in millimeters, of your target.

The value you specify must contain the display width and height, separated by a comma. For

example, when using a 150 mm by 90 mm display, enter 150,90.

The target runtime environment is now configured to display the HMI.

Uploading the binary to the target

You can specify the target path for installing the HMI binary and upload the binary from Qt Creator.

To define the target path and upload the binary:

1. Edit the QtHmi.pro file to add the following lines:

The installation location of files on the target

target.path = /tmp/QtHmi

INSTALLS += target

These lines tell Qt Creator where to upload files on the target.

At this point, the project file should look like this:

Copyright © 2015, QNX Software Systems Limited80

Writing an HMI

2. Verify the upload location by:

a) Switching to the Project tab by clicking its icon on the left side.

b) Selecting the Run Settings page by clicking its tab towards the top of the Build & Run display.

c) Under the Deployment section, the Files to deploy box should have an entry that lists the correct

build path on the host and /tmp/QtHmi as the remote directory.

Copyright © 2015, QNX Software Systems Limited 81

Writing an HMI

3. Switch back to the Edit tab. From the menu bar, choose Build ➝ Deploy Project "QtHmi".
This uploads the binary to the target.

Running the application from Qt Creator will automatically deploy the binary if it has changed

since the last deployment.

Running the HMI application

You can now run your HMI on the target using Qt Creator.

To run the HMI application:

1. If a QNX Apps and Media image is running on the target, establish an SSH connection with the

target and enter the following command to stop the default HMI:

slay -12 homescreen

Root permission is required to slay the homescreen process.

You have to stop the default HMI to ensure that your new HMI appears on the screen. The default

HMI runs in the foreground and any application that you launch will have a z-order less than that

of the default HMI and hence, won't be visible (and no error message will be displayed).

You must slay the homescreen also when you want to run an application developed with QNX SDK

for Apps and Media 1.0 on a target running QNX Apps and Media 1.1. This is because when Qt

Copyright © 2015, QNX Software Systems Limited82

Writing an HMI

Creator runs an application, it simply copies it to the target and executes it (without considering

z-order).

Slaying the homescreen makes the new HMI visible but you may encounter other problems

due to the Application and Window Management components that are still running. If you

don't intend to run packaged apps on your target, a better long-term solution is to disable

these components and the homescreen by reconfiguring /var/etc/services-enabled.

Instructions on doing this are given in the “Full Screen HMI” section of the User's Guide.

2. To run the application, click the green Run button in the bottom left corner.

The HMI application runs and you should see it on the screen of the target:

3. To stop the application, click the red Stop button along the top of the Application Output window

at the bottom.

Copyright © 2015, QNX Software Systems Limited 83

Writing an HMI

Qt Creator stops the application and displays a message saying the application was user-terminated

and containing the exit code, in the Application Output window.

Copyright © 2015, QNX Software Systems Limited84

Writing an HMI

Adding a control to the HMI

Getting the HMI application to run on the target and appear as expected on the screen is an essential

step in HMI development. You can then extend the HMI by adding controls to specific services in your

embedded system.

We will write a control for setting the audio volume. Specifically, we will define a UI component (using

QML) to provide volume adjustment controls and also write the QPPS library calls (using C++) to

publish the latest volume level to the audio status PPS object.

Like the Home screen app included with the reference image, our sample control updates the

audio status to reflect the latest volume setting but it doesn't actually change the volume of

the audio output. This last task involves sending commands to the Audio Manager service

through PPS and is beyond the scope of this HMI-writing tutorial.

Summary of steps

In this section of the tutorial, we will:

1. Add the source code for the QPPS library to the HMI project, to build our own copy of the library.

2. Define a new C++ class (VolumeModule) to act as the interface between the QML code and the

QPPS classes.

3. Add image resources for the HMI volume control.

4. Define new QML components (VolumeUI and VolumeSlider) to create the UI for the audio volume

control.

Compiling the QPPS library code with the application

To use QPPS classes to access PPS objects, we copy the QPPS source code into the QtHmi folder and

then build the QPPS library functionality into the application.

The QPPS library provides a Qt5 API for reading from and writing to PPS objects, effectively replacing

the POSIX system calls required to access and parse those objects. The source code for this library is

included in the Qt source code package that's part of the platform installers.

To compile the QPPS library code into QtHmi:

If you have already unpackaged the Qt source code and remember the location where you

stored the QPPS library files, you can skip to Step 3 (p. 86).

1. Access the Qt source code package and locate the QPPS library code.

By default, the installers copy the package to

DEFAULT_SDP_PATH /source/appsmedia_1_1_qt_source.zip. Within the package, the QPPS library

code is found at this path: /qt/src/Homescreen/qpps/. This last directory contains another directory

named qpps, which stores the actual source code.

2. Unzip the contents of the /qt/src/Homescreen/qpps/ directory (including the nested qpps directory)

to your project directory (e.g., C:\users\username \QtHmi\).

Copyright © 2015, QNX Software Systems Limited 85

Writing an HMI

The qpps subdirectory is added to your project directory and contains the header and class definition

files needed to use QPPS classes in the QtHmi code.

3. In Qt Creator, click the Edit icon on the left side, right-click the QtHmi folder in the Projects view,

then choose Add Existing Directory...

4. In the resulting dialog, on the Source directory line, click Browse to open the file selector.

5. Navigate to the directory containing the QPPS library code, then click Select Folder.
The newly selected directory is listed on the Source directory line.

6. Click OK to close the dialog.

The QPPS header and class definition files have been added to the QtHmi project, giving you access

to the QPPS classes. When you build the HMI application, the library functionality will be built into

the binary, ensuring that the application runs whether or not the target contains the QPPS library file.

In addition, Qt Creator has added this content to the project file (QtHmi.pro):

SOURCES += \

main.cpp \

qpps/dirwatcher.cpp \

qpps/object.cpp \

qpps/variant.cpp

HEADERS += \

qpps/changeset.h \

qpps/dirwatcher.h \

qpps/dirwatcher_p.h \

qpps/object.h \

qpps/object_p.h \

qpps/qpps_export.h \

qpps/variant.h

Adding the VolumeModule C++ class

The VolumeModule class acts as the interface between the QML-based UI and the QPPS library. This

C++ class exposes the volume level, which is read through PPS, as a Q_PROPERTY consumable by

QML.

To add the VolumeModule class:

1. In the Projects view, right-click the QtHmi folder, then choose Add New....

2. In the New File dialog, select C++ in the Files and Classes list, then C++ Class in the list of file

types (shown in the middle), then click Choose...

3. In the Location page of the resulting dialog, name the file VolumeModule, then click Next.

4. In the Summary page, click Finish.

Two new files are added to the project (volumemodule.h and volumemodule.cpp).

Copyright © 2015, QNX Software Systems Limited86

Writing an HMI

5. Edit volumemodule.h and replace the contents with the following code:

#ifndef VOLUMEMODULE_H

#define VOLUMEMODULE_H

#include <QObject>

#include "qpps/object.h"

class VolumeModule : public QObject

{

Q_OBJECT

// Volume setting, accessible by QML

Q_PROPERTY(double volume READ volume WRITE setVolume

NOTIFY volumeChanged)

public:

// Constructor

explicit VolumeModule(QObject *parent = NULL);

Q_INVOKABLE double volume() const;

Q_INVOKABLE void setVolume(const double value) const;

public Q_SLOTS:

// Updates volume level when volume change is reported by PPS

void audioStatusChanged(const QString &name,

const QPps::Variant &attribute);

Q_SIGNALS:

// Emitted when the volume level changes

void volumeChanged();

private:

// Reference to PPS object containing audio volume level

QPps::Object *m_ppsAudioStatus;

// Volume setting

double m_volume;

};

#endif // VOLUMEMODULE_H

In this code excerpt, the include path for the header file that defines the QObject class is

a relative path (qpps/object.h). This is because in our example, we copied the QPPS header

files to the qpps subdirectory within the project directory. If you unpackaged the QPPS

library code to a different location, you must adjust the include path accordingly.

Copyright © 2015, QNX Software Systems Limited 87

Writing an HMI

6. Edit volumemodule.cpp and replace the contents with the following code:

#include "volumemodule.h"

VolumeModule::VolumeModule(QObject *parent)

: QObject(parent)

{

// Access PPS object that stores audio device status

m_ppsAudioStatus = new QPps::Object(

QStringLiteral("/pps/services/audio/status"),

QPps::Object::PublishAndSubscribeMode, false, this);

if (!m_ppsAudioStatus->isValid()) {

// Print error message if unable to read audio device

// status through PPS

qCritical("%s Could not open %s: %s", Q_FUNC_INFO,

qPrintable(m_ppsAudioStatus->path()),

qPrintable(m_ppsAudioStatus->errorString()));

}

else {

// Connect signal for changed attribute in PPS object

// to handler for audio status changes

connect(m_ppsAudioStatus,

SIGNAL(attributeChanged(QString,QPps::Variant)),

this,

SLOT(audioStatusChanged(QString,QPps::Variant)));

}

}

double VolumeModule::volume() const {

return m_volume;

}

void VolumeModule::setVolume(const double value) const {

if (value == m_volume) {

//Don't set the volume if it's already set to that

return;

}

if (!m_ppsAudioStatus->isValid()) {

qCritical("%s Could not write %s: %s", Q_FUNC_INFO,

qPrintable(m_ppsAudioStatus->path()),

qPrintable(m_ppsAudioStatus->errorString()));

return;

}

if (!m_ppsAudioStatus->setAttribute(

"output.speaker.volume", value)) {

qWarning("%s SetAttribute failed %s: %s", Q_FUNC_INFO,

Copyright © 2015, QNX Software Systems Limited88

Writing an HMI

qPrintable(m_ppsAudioStatus->path()),

qPrintable(m_ppsAudioStatus->errorString()));

}

}

void VolumeModule::audioStatusChanged(

const QString &name,

const QPps::Variant &attribute)

{

if (name == QStringLiteral("output.speaker.volume")) {

m_volume = attribute.toDouble();

emit volumeChanged();

}

}

7. Edit main.cpp to contain the following code:

In the excerpt below, the sections of new code are indicated by comments containing the

words NEW CODE.

#include <QtGui/QGuiApplication>

#include <QtQuick/QQuickView>

#include <QScreen>

#include <QQmlContext>

#include <qqml.h>

// BEGIN NEW CODE

#include "volumemodule.h"

void setupVolumeModule(QQuickView* view)

{

// Register with the Qt Metatype system

qmlRegisterUncreatableType<VolumeModule>(

"com.mycompany.hmi",

1, 0, "VolumeModule",

QStringLiteral("Access to object"));

// By passing in the view as a parent object, the

// VolumeModule will be deleted when its parent is deleted

VolumeModule* volumeModule = new VolumeModule(view);

// Give the view access to the VolumeModule

view->rootContext()->setContextProperty(

QStringLiteral("_volumeModule"),

volumeModule);

}

Copyright © 2015, QNX Software Systems Limited 89

Writing an HMI

// END NEW CODE

int main(int argc, char *argv[])

{

QGuiApplication app(argc, argv);

// Get the screens so we can dynamically size our display

QList<QScreen*> screens = QGuiApplication::screens();

// Quit if no screen is connected

if (screens.empty()) {

return 1;

}

// Get the width and height of the display

int w = screens[0]->size().width();

int h = screens[0]->size().height();

QQuickView view;

// BEGIN NEW CODE

// Set up the volume control

setupVolumeModule(&view);

// END NEW CODE

// Set the main QML UI file to this view

view.setSource(QUrl("qrc:/qml/main.qml"));

// Set up the view to have the proper size

view.setResizeMode(QQuickView::SizeRootObjectToView);

view.resize(w, h);

// Show our user interface

view.show();

return app.exec();

}

This code gives the application access (through the view) to the VolumeModule class. Although

this class isn't coded as a singleton at the Qt level, from the QML layer, the class is accessed by

a singleton object called _volumeModule.

The C++ code needed for the volume control is complete. Next, you can define the UI components

that allow the user to adjust the volume.

Copyright © 2015, QNX Software Systems Limited90

Writing an HMI

Adding images for volume control

You can copy the images related to volume control shown here to your host system and then add them

as project resources so your HMI can display them.

To add images for volume control to your HMI project:

1. Copy these images to your project folder:

In this example, the images shown left to right are named ic_vol_none.png, ic_vol_full.png,
bg_volumebar.png, and fill_volumebar.png.

2. In the Projects view, right-click the QtHmi folder, then choose Add Existing Files.

3. In the file selector, select the files of the four images and click Open.

A new folder, Other files, appears in the project view. This folder contains the four new image

files.

4. Open the resources.qrc file for editing, by right-clicking its entry in the Projects view, then selecting

Open in Editor.

5. In the configuration area near the bottom, click Add, then choose Add Prefix.

Copyright © 2015, QNX Software Systems Limited 91

Writing an HMI

6. In the Prefix field, enter img.

7. Click Add again, then choose Add Files.

8. In the file selector dialog, select the files of the four images, then click Open.

In the main editing area, the list of project resources now includes a prefix entry labelled /img

and four file listings under the prefix.

Copyright © 2015, QNX Software Systems Limited92

Writing an HMI

The volume indicator and adjustment images are now part of your HMI project. Qt Creator will compile

the images into the binary and your HMI can display them.

Adding the QML components

The VolumeUI and VolumeSlider components use QML to define the UI for the audio volume control.

This UI consists of a slider indicating the current volume level and two buttons on the sides that

increase and decrease the volume. You can tap the slider in a certain spot to set the volume to that

exact level.

To add the QML components:

1. In the Project view, right-click the QtHmi folder and click Add New...

2. In the New File dialog, select Qt in the Files and Classes list, then QML File (Qt Quick 2)

in the list of file types (shown in the middle), then click Choose...

3. In the Location page of the resulting dialog, name the file VolumeUI, then click Next.

4. In the Summary page, ensure the Add to project field is set to project file (QtHmi.pro), then click

Finish.

Qt Creator adds VolumeUI.qml to the project (under the QML folder) and opens this file for editing.

Copyright © 2015, QNX Software Systems Limited 93

Writing an HMI

5. Replace the contents of this file with the following:

import QtQuick 2.0

Rectangle {

id: root

color: "#404040"

width: parent.width

height: parent.height / 8

Row {

id: volumeRow

anchors.right: root.right

anchors.rightMargin: root.width / 16

anchors.verticalCenter: root.verticalCenter

Item {

id: volumeNone

height: root.height

width: height

Image {

id: volumeNoneImage

anchors.centerIn: parent

source: "qrc:/img/ic_vol_none.png"

}

Timer {

id: volumeNoneTimer

interval: 100

repeat: true

running: false

onTriggered: {

// Decrease volume by 1%

volumeRow.updateVolumeSlider(

volumeSlider.value - 1)

}

}

MouseArea {

anchors.fill: parent

onClicked: {

// Decrease volume by 1%

volumeRow.updateVolumeSlider(

volumeSlider.value - 1)

}

onPressAndHold: {

volumeNoneTimer.start();

// Decrease volume by 1%

Copyright © 2015, QNX Software Systems Limited94

Writing an HMI

volumeRow.updateVolumeSlider(

volumeSlider.value - 1)

}

onReleased: {

volumeNoneTimer.stop();

}

}

}

VolumeSlider {

id: volumeSlider

width: root.width / 4

height: volumeNoneImage.height

anchors.verticalCenter: parent.verticalCenter

sourceBackground: "qrc:/img/bg_volumebar.png"

sourceOverlay: "qrc:/img/fill_volumebar.png"

value: 50

maxValue: 100

}

Item {

id: volumeFull

height: root.height

width: height

Image {

id: volumeFullImage

anchors.centerIn: parent

source: "qrc:/img/ic_vol_full.png"

}

Timer {

id: volumeFullTimer

interval: 100

repeat: true

running: false

onTriggered: {

// Increase volume by 1%

volumeRow.updateVolumeSlider(

volumeSlider.value + 1)

}

}

MouseArea {

anchors.fill: parent

onClicked: {

// Increase volume by 1%

volumeRow.updateVolumeSlider(

volumeSlider.value + 1)

Copyright © 2015, QNX Software Systems Limited 95

Writing an HMI

}

onPressAndHold: {

volumeFullTimer.start()

// Increase volume by 1%

volumeRow.updateVolumeSlider(

volumeSlider.value + 1)

}

onReleased: {

volumeFullTimer.stop();

}

}

}

function updateVolumeSlider(value) {

if (value > 100) {

value = 100

}

if (value < 0) {

value = 0

}

volumeSlider.value = value;

}

}

}

6. Repeat Steps 1 through 4 to add another QML file but this time, name the file VolumeSlider.

7. Replace the contents of this file with the following:

import QtQuick 2.0

// You need to specify the background image and the overlay

Item {

id: root

property string sourceBackground: ""

property string sourceOverlay: ""

// Max value

property double maxValue: 0

// Current value

property double value: 0

// Whether this item is user interactive

property bool interactive: true

Column {

Copyright © 2015, QNX Software Systems Limited96

Writing an HMI

spacing: 1

anchors.verticalCenter: parent.verticalCenter

Item {

id: graphicBar

width: root.width

height: root.height;

Image {

id: sourceImage

anchors.fill: graphicBar

fillMode: Image.Tile

smooth: true

source: sourceBackground

}

Image {

id: overlayImage

height: graphicBar.height

width: handle.x

fillMode: Image.Tile

smooth: true

source: sourceOverlay

}

Item {

// Invisible handle for dragging

// The item doesn't need a width or height

// because its x value is all that matters

id: handle

x: (maxValue ?

(Math.min(value, maxValue) / maxValue)

* graphicBar.width : 0)

width: 0

height: 0

}

MouseArea {

anchors.centerIn: parent

height: parent.height * 3

width: parent.width

Copyright © 2015, QNX Software Systems Limited 97

Writing an HMI

enabled: root.interactive

drag.target: handle

drag.minimumX: 0

drag.maximumX: graphicBar.width

function moveToPosition(position)

{

if (!maxValue)

return;

// retrieve the position where the user

// dragged to

value = (position / graphicBar.width)

* maxValue

}

// Touch without drag

onReleased: {

moveToPosition(mouseX);

}

property bool dragActive: drag.active

onPositionChanged: {

moveToPosition(handle.x);

}

}

}

}

}

8. Open main.qml and update its contents with the following:

import QtQuick 2.0

Rectangle {

color: "black"

Text {

color: "white"

text: qsTr("Awesome HMI goes here")

anchors.centerIn: parent

}

VolumeUI {

id: volumeui

Copyright © 2015, QNX Software Systems Limited98

Writing an HMI

anchors.left: parent.left

anchors.right: parent.right

anchors.bottom: parent.bottom

}

}

This adds the volume control to the bottom of the HMI.

9. Build and run the HMI application, by following the steps in “Building the HMI application for a

QNX target (p. 78)”.

The HMI shown on the target screen prints the original message but also displays the volume slider

and two control buttons along the bottom. Clicking the left button decreases the volume by 1%

and moves the slider to the left. Clicking the right button increases the volume by 1% and moves

the slider to the right. Tapping the slider sets the volume to the exact level based on the location.

For instance, tapping it in the middle sets the volume to 50%.

You can also drag the volume slider to the left to decrease the volume or to the right to increase

it. Whenever your tap or drag the slider, the volume level is redrawn immediately and the audio

status PPS object is updated to store this new level.

You've now added an HMI control for setting the audio volume!

The control defined here lets the user interact with the volume display and keeps the PPS

volume setting in sync with the HMI, but it doesn't tell the Audio Manager service to change

the output volume. To do this, your application has to write a command to the PPS control

object used by the Audio Manager service (for more information, see the

/pps/services/audio/status entry in the PPS Objects Reference).

Copyright © 2015, QNX Software Systems Limited 99

Writing an HMI

Index

A

app descriptor file 33–35, 40

app permissions 40

elements 35

Environment variables 34

writing 33

applications written for QNX Apps and Media 1.0 78

building and running in Qt Creator 78

B

BAR files 44, 47, 51

deploying on the target 51

generating from Qt Creator 44

generating from the command line 47

packaging tool, See blackberry-nativepackager

blackberry-nativepackager 47–49

command line example 47

command-line commands 48

command-line other options 49

command-line packaging options 48

command-line path options 48

command-line syntax 48

command-line variables 49

packaging a Qt app 47

sample command line 49

tool name and location 47

Building libraries for apps, See Library generation

C

Creating and running Qt apps, See Qt app lifecycle

overview

D

DEFAULT_SDP_PATH 13

H

HMI development 71–72, 74, 76, 78–80, 82–83, 85–

86, 91, 93

adding a Qt resource file 74

adding a UI control 85

adding a UI definition file 74

adding C++ code to start the HMI application 76

HMI development (continued)

adding the VolumeModule C++ class 86

adding the VolumeUI and VolumeSlider QML

components 93

adding volume control images 91

building the HMI 78

compiling the QPPS library code with the application

85

configuring runtime environment 79

creating a project 72

disabling application management components to run

your own HMI 83

overview 71

running HMI binary 82

uploading HMI binary to target 80

host system 13

definition 13

prerequisites for Qt development 13

L

Library generation 59–60, 62, 64, 66–67, 69

adding a function 62

adding the library to Qt app projects 66

building the library 64

calling library functions in Qt apps 67

creating a project 60

overview 59

packaging Qt apps with the library 69

Q

QNX Browser 11

invoking from Qt 11

QNX Qt 5.3.1 Development Framework (QNX QDF) 14

installing 14

QNX Qt development tools 9

Qt app lifecycle 25–28, 31–33, 41, 44, 51, 56

adding an image for the app icon 32

adding code to load the UI 31

building the app 41

cleaning the target before redeploying a BAR file 56

creating a project 26

creating a Qt app 26

defining the UI 27

deploying the BAR file on the target 51

Copyright © 2015, QNX Software Systems Limited 101

Index

Qt app lifecycle (continued)

generating the BAR file 44

making a QML file into a resource 28

overview 25

writing the app descriptor file 33

Qt Creator 14, 16, 20, 78

building and running applications written for QNX

Apps and Media 1.0 78

configuring a QNX device 16

configuring a toolchain 20

configuring the build and run environment 20

installing 14

Qt HMI development 42

compiling tips for Qt Creator 42

Qt sample apps 10

S

slaying the homescreen to see application HMIs on the

target 82

Source code samples 10

T

target system 13

definition 13

Technical support 8

Typographical conventions 6

W

Writing a Qt-based HMI, See HMI development

Copyright © 2015, QNX Software Systems Limited102

Index

	Contents
	About This Guide
	Typographical conventions
	Technical support

	QNX Qt Development Tools
	Source code for sample Qt apps
	QNX Browser Invocation from Qt

	Preparing your host system for Qt development
	Installing QNX QDF and Qt Creator
	Configuring a QNX device in Qt Creator
	Configuring a toolchain in Qt Creator

	Creating and running Qt apps
	Creating a project for a Qt App
	Defining the UI
	Making a QML file into a project resource
	Adding code to load the UI
	Adding an image for the app icon

	Writing the app descriptor file
	Environment variables
	XML elements in app descriptor file
	App permissions

	Building the app
	Tips for compiling programs in Qt Creator

	Packaging the app into a BAR file from Qt Creator
	Packaging the BAR file from the command line
	Qt command-line options for blackberry-nativepackager

	Deploying the BAR file on the target
	Running the app
	Cleaning the target before redeploying a BAR file

	Building libraries for Qt apps
	Creating a project for the library
	Adding a function
	Building the library
	Adding the library to Qt app projects
	Calling library functions in Qt apps
	Packaging Qt apps with the library

	Writing an HMI
	Creating a project for a Qt HMI
	Adding the main QML file
	Adding the QRC file
	Adding the CPP file

	Building the HMI application for a QNX target
	Configuring the runtime environment
	Uploading the binary to the target
	Running the HMI application

	Adding a control to the HMI
	Compiling the QPPS library code with the application
	Adding the VolumeModule C++ class
	Adding images for volume control
	Adding the QML components

	Index

