
PPS Objects Reference

QNX® SDK for Apps and Media 1.1

©2015, QNX Software Systems Limited, a subsidiary of BlackBerry Limited.
All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: March 27, 2015

Contents
About This Reference..5

Typographical conventions..7

Technical support...9

Chapter 1: Overview of the PPS Service...11

Chapter 2: Setting Up Your Own Objects...19

Chapter 3: PPS Objects Reference Pages..21
/pps/accounts/...22

/pps/qnx/dbnotify/dbs...23

/pps/qnx/demo...24

/pps/qnx/device/device ...25

/pps/qnx/device/device_ctrl...27

/pps/qnx/driver/pid ...29

/pps/qnx/mount/device ...30

/pps/qnx/qdb/config/dbname ...31

/pps/qnx/qdb/status/dbname ...33

/pps/services/app-launcher..34

/pps/services/audio/audio_router_control...36

/pps/services/audio/audio_router_status..41

/pps/services/audio/control..43

/pps/services/audio/devices/...49

/pps/services/audio/status..53

/pps/services/audio/types/..54

/pps/services/audio/voice_status...56

/pps/services/geolocation/control..58

/pps/services/geolocation/status...60

/pps/services/launcher/control..61

/pps/services/multimedia/mtp/...64

/pps/services/multimedia/mtp/driverdir /devinfo...65

/pps/services/multimedia/mtp/driverdir /storages/...67

/pps/services/multimedia/renderer/component/..68

/pps/services/multimedia/renderer/context/contextname /..70

/pps/services/multimedia/renderer/context/contextname /input..71

/pps/services/multimedia/renderer/context/contextname /metadata..72

/pps/services/multimedia/renderer/context/contextname /output#..73

/pps/services/multimedia/renderer/context/contextname /p#..74

/pps/services/multimedia/renderer/context/contextname /param...75

/pps/services/multimedia/renderer/context/contextname /play-queue..77

/pps/services/multimedia/renderer/context/contextname /q#..78

/pps/services/multimedia/renderer/context/contextname /state...79

/pps/services/multimedia/renderer/context/contextname /status...81

PPS Objects Reference

/pps/services/multimedia/renderer/control...82

/pps/services/networking/all/interfaces/...84

/pps/services/networking/all/proxy...86

/pps/services/networking/all/status_public...87

/pps/services/networking/control...89

/pps/services/networking/interfaces/...92

/pps/services/networking/proxy...93

/pps/services/networking/status_public...94

/pps/system/info...95

/pps/system/keyboard/control...97

/pps/system/keyboard/status..98

/pps/system/navigator/applications/applications...99

/pps/system/navigator/command..101

/pps/system/navigator/windowgroup..102

Chapter 4: List of Objects Used Internally...103

Index...105

Contents

About This Reference

The PPS Objects Reference describes each PPS object supplied with the QNX SDK for Apps and Media

platform. The following table may help you find information quickly:

Go to:To find out about:

Overview of the PPS Service (p. 11)Format of PPS objects

Setting Up Your Own Objects (p. 19)Custom objects

PPS Objects Reference Pages (p. 21)Details of each PPS object

List of Objects Used Internally (p. 103)Objects used internally by system processes

For more information about the PPS service itself, see:

• the PPS chapter in the QNX Neutrino System Architecture guide

• the Persistent Publish/Subscribe Developer's Guide

Using this reference

In this reference, each PPS object in the system has its own page. The title of each page is the object's

filename (e.g., /pps/services/bluetooth/control).

The following groupings may help you locate one or more related PPS objects:

Application Launcher

• /pps/services/app-launcher (p. 34)

• /pps/services/launcher/control (p. 61)

Audio

• /pps/services/audio/audio_router_control (p. 36)

• /pps/services/audio/audio_router_status (p. 41)

• /pps/services/audio/control (p. 43)

• /pps/services/audio/devices/ (p. 49)

• /pps/services/audio/status (p. 53)

• /pps/services/audio/types/ (p. 54)

• /pps/services/audio/voice_status (p. 56)

Authorization

• /pps/accounts/ (p. 22)

Geolocation

• /pps/services/geolocation/control (p. 58)

• /pps/services/geolocation/status (p. 60)

Copyright © 2015, QNX Software Systems Limited 5

Keyboard

• /pps/system/keyboard/control (p. 97)

• /pps/system/keyboard/status (p. 98)

Multimedia

• /pps/services/multimedia/renderer/component (p. 68)

• /pps/services/multimedia/renderer/context/ contextname (p. 70)

• /pps/services/multimedia/renderer/context/ contextname /input (p. 71)

• /pps/services/multimedia/renderer/context/ contextname /metadata (p. 72)

• /pps/services/multimedia/renderer/context/ contextname /output# (p. 73)

• /pps/services/multimedia/renderer/context/ contextname /p# (p. 74)

• /pps/services/multimedia/renderer/context/ contextname /param (p. 75)

• /pps/services/multimedia/renderer/context/ contextname /play-queue (p. 77)

• /pps/services/multimedia/renderer/context/ contextname /q# (p. 78)

• /pps/services/multimedia/renderer/context/ contextname /state (p. 79)

• /pps/services/multimedia/renderer/context/ contextname /status (p. 81)

• /pps/services/multimedia/renderer/control (p. 82)

Navigator (Applications Window Manager)

• /pps/system/navigator/applications/applications (p. 99)

• /pps/system/navigator/command (p. 101)

• /pps/system/navigator/windowgroup (p. 102)

Networking

• /pps/services/networking/all/interfaces/ (p. 84)

• /pps/services/networking/all/proxy (p. 86)

• /pps/services/networking/all/status_public (p. 87)

• /pps/services/networking/control (p. 89)

• /pps/services/networking/proxy (p. 93)

• /pps/services/networking/status

• /pps/services/networking/status_public (p. 94)

System Information

• /pps/system/info (p. 95)

Copyright © 2015, QNX Software Systems Limited6

About This Reference

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In

general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have unwanted or

undesirable side effects.

WARNING: Warnings tell you about commands or procedures that could be dangerous to your

files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited 7

About This Reference

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those

pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited8

About This Reference

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qnx.com).

You'll find a wide range of support options, including community forums.

Copyright © 2015, QNX Software Systems Limited 9

About This Reference

http://www.qnx.com

Chapter 1
Overview of the PPS Service

The services layer of the QNX SDK for Apps and Media is built on the Persistent Publish/Subscribe

(PPS) service, a simple filesystem-based facility that provides information persistence across reboots.

Small and extensible, PPS allows interfacing from almost any higher-level language that supports open,

read, write, and close operations on files.

For a more in-depth description of PPS, see the Persistent Publish/Subscribe Developer's

Guide.

Key concepts

Objects

Objects are implemented as files under the /pps directory. Your apps and HMI use objects

to communicate with each other. There can be many objects in the system but never more

than one instance of the same object.

Apps and HMI services often use a control object for sending commands and a corresponding

status object for publishing responses.

Client apps can read the special .all object to get notifications of changes to all the objects

in a directory. They can use the special .notify object to get changes for a certain set of

objects.

Attributes

Objects contain attributes (or properties) that apps can modify. Each attribute appears on

a single line in the object file.

Publishers

As publishers, apps can modify objects and their attributes so that other interested apps

can receive updates. Publishing is asynchronous—apps don't have to wait for the publisher.

To publish to an object, the publisher calls open() for that object and then write() to modify

it. Multiple publishers can publish to the same object. When a publisher changes an object,

the PPS service informs all subscribers of the change.

Subscribers

As subscribers, apps receive updates for objects and attributes that publishers have modified.

To get updates for an object, a subscriber calls open() for that object and then read() to

query it. Note that reads are nonblocking by default. Multiple subscribers can subscribe to

the same object.

The same app can be a publisher, a subscriber, or both.

Copyright © 2015, QNX Software Systems Limited 11

Full subscription mode

In full mode (the default), the subscriber gets a “snapshot” of the entire object as it exists

when the request is made. Note that if a publisher changes the object many times, the

subscriber may miss some of the changes. Full mode is useful, for instance, for

high-bandwidth objects that have numerous and frequent changes.

Delta subscription mode

In delta mode, the subscriber gets only the changes made to an object. On first read, the

subscriber will get all the object's attributes (because the subscriber knows nothing yet

about the object's state); subsequent reads will return only the changes since the previous

read. Delta mode is useful, for instance, when you want to receive all the warnings or error

messages that might be published to an object.

Persistence

PPS maintains objects in memory while it's running and can save them to persistent storage

(either at shutdown or on demand) on any reliable filesystem, such as flash or hard disk.

Objects can be restored immediately on startup or on first access.

Server objects

PPS supports point-to-point communication between a server and one or more clients. An

app can designate itself as the server when creating a PPS object. When a client writes to

this object, only the server gets the message. PPS appends a unique identifier to the object

name so that the server knows which client app is sending the message.

When the server replies, it must append the same identifier to the object name so that the

response is sent only to the client indicated by that identifier. In this communication mode,

both the server and the clients read from and write to the object. For more details, see

“Server objects” in the Persistent Publish/Subscribe Developer's Guide.

Command-line options for the PPS service

pps [-A file][-b][-C][-d backlog][-l argument][-m mount][-p dir]

[-P prio][-t period][-T tolerance][-U uid:gid][-v]

-A file

Set the path to the ACL configuration file. For details, see “Access Control List configuration

file” in the Persistent Publish/Subscribe Developer's Guide.

-b

Don't run in the background (useful for debugging).

-C

Convert between -U and non-U persistence formats.

-d backlog

Set the default size of the delta backlog, in kilobytes (default is 256 kilobytes).

Copyright © 2015, QNX Software Systems Limited12

Overview of the PPS Service

-l argument

Set the object load behavior:

• 0 — load directory names and objects on demand (default).

• 1 — load directories at startup, but objects on demand.

• 2 — load directories and objects at startup.

-m mount

Specify the mountpoint for PPS (default is /pps).

-p dir

Specify the directory for persistent storage (default is /var/pps).

-P prio

Set the priority of the persistence thread.

-t period

Set the time period (in milliseconds) for writing to persistent storage (default is off).

-T tolerance

Set the tolerance (in milliseconds) for writing to persistent storage (default is off).

-U uid :gid

Downgrade from root to the specified UID and GID.

-v

Run in verbose mode (use multiple v's to increase verbosity).

You can also use SIGUSR1 to increase verbosity.

Pathname options

PPS lets you use various pathname options when opening objects. An option must follow a question

mark (?). Use a comma to separate multiple options. For example, opening the playlist object like this:

/pps/media/playlist?wait,delta

will open the object with the wait and delta options.

You can set these options:

backlog= size

Set the total delta size to keep before flushing this client's buffer of deltas. The size is in

kilobytes, so 4 means 4 KB. The default is 256 KB, unless you specify the -d option, which

overrides the default delta size.

Copyright © 2015, QNX Software Systems Limited 13

Overview of the PPS Service

cred

Add client credentials to this object. This option is effective only when server is used,

because it tells PPS to pass the client's PID, UID, and GID to the server by including these

fields in the object name.

critical

Designate the publisher as critical to the object. For details, see the “Critical option” section

in the PPS Developer's Guide.

delta

Open the object in delta mode, which means only the changes made to the object are

returned by a read operation.

deltadir

Return the names of all objects listed in the .all object in a directory.

f=attrspec{+attrspec}...

Filter notifications based on changes to the names and/or values of specified attributes,

where attrspec can be either an attribute's name or an expression specifying an attribute's

value. A value expression consists of an attribute name, followed by an operator, followed

by a value.

• Operators for integers (which must be in the range of a long long type) are: <, <=, >,

>=, =, ==, and !=

• Operators for strings are: =, ==, and != (you can use + if escaped with \)

flow=backlog_size

Deliver purge notifications for this object (similar to a server object). This flag takes an

optional argument for the number of kilobytes of backlog (i.e., series of deltas) that the

server is permitted. If you don't specify this argument, the backlog size is used; if this

other option isn't defined, the default size of 256 KB is used.

When the server falls behind in reading the object and the backlog exceeds the size specified

in flow, the object will be purged and the server will receive purge notifications of the form

|@objname.

A purge will occur for a client if it doesn't read the reply data at a fast enough rate. In this

case, the server will received purge notifications of the form |@objname.clientid.

The flow flag is effective only when delta is used, and is mutually exclusive with backlog

and server (because it enables the server mode internally).

hiwater=backlog_percentage

Deliver overflow notifications for this object when the client backlog exceeds a certain limit.

This flag takes a mandatory argument in the range of 1 to 99, to indicate the percentage

of client backlog at which the server will begin receiving overflow notifications. We refer to

this limit as the high watermark for overflow.

As long as the backlog remains above this limit, the server will receive a notification of the

form ^@objname.clientid for every write that it performs on the object.

Copyright © 2015, QNX Software Systems Limited14

Overview of the PPS Service

The hiwater flag is valid only with the flow flag and must be explicitly set to enable

overflow notifications. The default hiwater value of 100 means the service waits until the

client backlog is full before purging the object and hence, no overflow notifications are sent.

nopersist

Make the object nonpersistent.

notify= id : value

Associate the object with the notification group specified by id :value , where:

• id is the string returned by the first read from the .notify object

• value is any arbitrary string

opens

Update an _opens::rd,wr attribute when the open count changes.

reflect

Reflect attribute updates made on this object back to the process that wrote them. When

this option is set, if a process writes data to the object and then reads the object using the

same file descriptor, the process will read the data that it wrote. By default, this option isn't

set and a read() operation won't return the data written with the same file descriptor, because

this isn't considered a change.

server

Designate the publisher as a server for the object (see “Server Objects (p. 12)” for details).

verbose

Set the verbosity level for this object.

wait

Clear the O_NONBLOCK flag so that read() calls will wait for any object changes, including

deltas.

Object format

Objects appear as files in the PPS filesystem. For example, to view the contents of an object called

AA:BA:19:B2:AA:70 (in this case, the filename is a device's MAC address) under the

/pps/services/bluetooth/remote_devices/ directory, you can simply use cat at the command line:

cat /pps/services/bluetooth/remote_devices/AA:BA:19:B2:AA:70

The object's contents might look like this:

@AA:BA:19:B2:AA:70

[n]cod::0x007a020c

[n]name::My mobile

[n]paired:b:false

[n]rssi::0x00

Copyright © 2015, QNX Software Systems Limited 15

Overview of the PPS Service

The first line always begins with an AT sign (@), immediately followed by the object's name. Each line

afterwards begins with a qualifier, followed by an attribute name, followed by its encoding, followed

by its value. For example, this line:

[n]paired:b:false

means that the nonpersistence qualifier ([n]) has been set and that the attribute paired has the

Boolean value of false.

For details on encodings and on qualifiers, see these sections in the Persistent

Publish/Subscribe Developer's Guide:

• “Attribute syntax”

• “Object and attribute qualifiers”

Format for messages to server objects

Messages written to server objects must have this format:

msg::command_string\nid:: ID_number\ndat:json:{JSON_data}

where:

command_string

Name of the command being sent to the object.

ID_number

Any ID that identifies this instance of the message. The server always reflects the ID back

in the response.

JSON_data

The dat attribute is usually JSON-encoded, because it may contain more than a simple

string.

Format for responses

Responses always reflect the command_string and ID_number that were sent in the message, along

with any errors:

res::command_string\nid:: ID_number\ndat:json:{JSON_data}\nerr::errno_number\n

errstr::error_description

Changing the directory for persistent storage

The root PPS object tree (/pps by default) may look something like this:

pwd

/pps

ls -1F

accounts/

Copyright © 2015, QNX Software Systems Limited16

Overview of the PPS Service

applications/

qnx/

services/

system/

#

PPS populates its root object tree from the persistence tree (/var/pps by default), where the objects

and attributes that you want to persist are stored.

To specify a different directory for persistent storage:

1. Create your own persistence directory (e.g., mkdir /myobjects).

2. Start the PPS service from a different mountpoint (e.g., /fs/pps) and specify your new persistence

directory:

pps -m /fs/pps -p /myobjects

You may want to run PPS with the -t option, which lets you specify the time period (in

milliseconds) that the service will use to write to persistent storage. Without the -t, you won't

see any changes in your persistence directory until PPS exits.

Copyright © 2015, QNX Software Systems Limited 17

Overview of the PPS Service

Chapter 2
Setting Up Your Own Objects

Creating a PPS object is as easy as calling open() on a file under /pps with the O_CREAT flag, which

will create the PPS object if it doesn't already exist. Opening, closing, reading from, and writing to

PPS objects uses the same mechanisms as performing those operations on other files in the filesystem.

As shown in “Overview of the PPS Service (p. 11)” in this guide, as long as the data you write conforms

to the format that PPS expects, you can write anything to your PPS objects.

We recommend that you use the libpps API for encoding/decoding PPS data. These library

functions make handling data easier, faster, and more reliable than using standard libc
functions. For more information, see “PPS API reference” in the Persistent Publish/Subscribe

Developer's Guide.

Location of PPS objects

When you develop your own apps, any objects that they use must be located at a path under the root

PPS directory (/pps). Also, you must ensure that the filesystem grants write access to all PPS paths

that your apps need to access. Filepath permissions are controlled by the Authorization Manager service,

as described in the System Services Reference.

On Blackberry devices, some apps use objects accessed from a symbolic link at:

/accounts/1000/appdata/application_ID /pps, where application_ID is the app's directory name, found

under /apps on the target. This design is not supported by QNX systems—you must use objects under

/pps.

Guidelines

You could design your program to interact with PPS objects in any variety of ways. Your design will

include decisions such as whether to read objects in delta mode, how frequently to read, what data to

write, whether or not to receive notifications in the form of pulses, and so on. Even more decisions

come into play if you're designing a system that communicates through PPS using server objects.

Here are the basic steps for setting up your own PPS objects, whether you're designing a new program

that interacts with PPS objects or adding that capability to an existing program:

1. Make sure your program includes the fcntl.h and sys/pps.h header files.

2. Open the PPS object as if it were a file. For example, to make an open call on an existing object:

open("/pps/myobject", O_RDWR);

This will open myobject with read and write privileges.

If you're opening a PPS object that doesn't already exist, include the O_CREAT flag:

open("/pps/an-object", O_RDWR | O_CREAT);

Here we're including both O_RDWR and O_CREAT in one field with the bitwise OR operation.

Copyright © 2015, QNX Software Systems Limited 19

3. If you need to make a new directory, you can use the mkdir() function. For example, to create a

directory called myservice under /pps/services/:

mkdir("/pps/services/myservice", S_IWUSR | S_IWGRP | S_IWOTH | S_IRUSR

| S_IRGRP | S_IROTH);

This will create your directory and assign read and write privileges for all users.

4. Now you probably want to perform a read or write. Remember to use the pps_encoder_*() and

pps_decoder_*() functions for handling your data.

5. Eventually you'll need to close the PPS object before your program terminates. You can do this

simply by calling close().

Interacting with your PPS objects

The basic “building blocks” you'll use for interacting with PPS objects are relatively few:

• open()

• read()

• write()

• close()

• pps_encoder_*()

• pps_decoder_*()

• delta mode

• wait mode

But you'll find many possibilities of combining these together, combining them with synchronization

techniques (mutual exclusion locks, condition variables, etc...), and employing various ways to perform

the same tasks. Again, see the Persistent Publish/Subscribe Developer's Guide for guidance.

Mutexes

How you'll use mutexes and other synchronization tools is up to you and depends on the needs of your

program. Mutexes are used to ensure coherency between two parallel threads: one is reading new data

from PPS while the other is using existing data to update the display. In this case, mutexes ensure

that one thread doesn't try to change attributes that the other thread is trying to use. Note that the

synchronization needs of your programs may be different.

Copyright © 2015, QNX Software Systems Limited20

Setting Up Your Own Objects

Chapter 3
PPS Objects Reference Pages

The following pages list the PPS objects found in the QNX Apps and Media image, in alphabetical

order.

Each PPS object has its own reference page. The title of each page is the object's filename

(e.g., /pps/services/audio/status).

Copyright © 2015, QNX Software Systems Limited 21

/pps/accounts/

Directory that third-party applications use as their sandbox

This directory serves as a sandbox for third-party applications. When an app for a specific

vendor is launched for the first time, PPS creates these subdirectories:

• /pps/accounts/1000/ vendor

• /pps/accounts/1000-corp/ vendor

Copyright © 2015, QNX Software Systems Limited22

PPS Objects Reference Pages

/pps/qnx/dbnotify/dbs

Object for media database notifications

Publishers

QDB

Subscribers

Any app

Overview

This object is used for database change notifications. For example, when a new song is selected, an

artwork synchronization program may wake up and fetch the artwork of the selected song.

Here's a sample object:

@dbs

[n]db_mme::1

Copyright © 2015, QNX Software Systems Limited 23

PPS Objects Reference Pages

/pps/qnx/demo

The Cordova PPS Demo app uses this object to demonstrate how to use PPS objects in an HTML5

application

Publishers

Cordova PPS Demo

Subscribers

Any app

Overview

The /pps/qnx/demo Persistent Publish/Subscribe (PPS) object stores value pairs written by the Cordoba

PPS Demo. This app demonstrates how to use the PPS service in an HTML5 application.

For information about how to use the Cordova PPS Demo, see “Cordova PSS Demo” in the QNX SDK

for Apps and Media User's Guide. For information about how to install and start the Cordova PPS

Demo, see “Building and deploying the Cordova PPS Demo” in the HTML5 Developer's Guide.

Here's a sample object:

@demo

abc::123

Copyright © 2015, QNX Software Systems Limited24

PPS Objects Reference Pages

/pps/qnx/device/device

Device publishers write device connectivity details to this object

Publishers

Device publishers (e.g., usblauncher)

For more information about the device publishers and how they interact with PPS,

see the Device Publishers Developer's Guide.

Subscribers

Any app

Overview

When USB sticks are connected to the system, PPS objects appear under the /pps/qnx/device/ directory

to expose hardware connectivity details. For USB devices, object names are of the form:

usb-bus_number .device_number

If usblauncher is called with the -S option, the object name also includes the stack_number

attribute before the bus_number (e.g., usb-0.0.3).

Here's a sample object:

[n]@usb-0.0.3

bus::USB

busno::0x00

configuration::1

configurations::1

device_class::0xff

device_protocol::0x00

device_subclass::0xff

devno::0x03

drivers_matched::1

drivers_running::1

manufacturer::D-Link Corporation

max_packet_size0::64

product::DUB-E100

product_id::0x3c05

serial_number::000001

stackno::0

topology::(1,3),(0,0)

upstream_device_address::1

upstream_host_controller::0

Copyright © 2015, QNX Software Systems Limited 25

PPS Objects Reference Pages

upstream_port::3

upstream_port_speed::High

vendor_id::0x2001

For the full list of attributes that can be present in device objects published by usblauncher, see the

Device Object reference for usblauncher.

Copyright © 2015, QNX Software Systems Limited26

PPS Objects Reference Pages

/pps/qnx/device/device_ctrl

Control object for issuing commands to a device

Publishers

Any app

Subscribers

Device publishers (e.g., usblauncher)

For more information about the device publishers and how they interact with PPS,

see the Device Publishers Developer's Guide.

This object is a server object, designed to process requests from individual clients and deliver

the results to the clients that issued the requests. For more information, see the “Server

objects (p. 12)” subsection.

Overview

When you start usblauncher, the following PPS object is created:

/pps/qnx/device/usb_ctrl

This object allows apps to perform actions on the USB hardware, such as setting the power state of a

USB hub or launching a USB stack version.

The control object's name also includes the stack number if usblauncher is started with the -S option

(which allows for multiple server objects, one for each instance of usblauncher). Suppose you issue

this command:

usblauncher –S 1

The USB service creates an object named /pps/qnx/device/usb_ctrl1.

For details on the commands that apps can send to the control object and on the responses that the

object publishes, see the Device Control Object reference for usblauncher.

USB control examples

After starting the usblauncher process, enter this command from a terminal:

cat /pps/qnx/device/usb_ctrl?wait,delta

Then, from a second terminal, enter these commands:

sloginfo -w &

echo toggle_port_power::x,y,z >> /ramdisk/pps/qnx/device/usb_ctrl

Copyright © 2015, QNX Software Systems Limited 27

PPS Objects Reference Pages

The first terminal shows the command status and the power result of the command for the specified

bus, device, and port:

cat usb_ctrl?wait,delta

@usb_ctrl

port_power::0

@usb_ctrl

port_power::1

@usb_ctrl

cmd_status::0

A value of 0 for cmd_status means no errors. If an error occurs, this attribute contains a nonzero

error code. Details about the possible errors for USB control commands are found in the Device Control

Object reference.

Copyright © 2015, QNX Software Systems Limited28

PPS Objects Reference Pages

/pps/qnx/driver/pid

Device publishers write driver details to this object

Publishers

Device publishers (e.g., usblauncher)

For more information about the device publishers and how they interact with PPS,

see the Device Publishers Developer's Guide.

Subscribers

Any app

Overview

When USB sticks are connected to the system, PPS objects appear under the /pps/qnx/driver/ directory

to report details of the drivers for those connected devices. The objects are named for the IDs of the

driver processes.

Here's a sample object:

[n]@2818054

PPS_DEVICE_ID::/pps/qnx/device/usb-1.4

arguments::cam quiet blk cache=1m,vnode=384,auto=none,delwri=2:2,

rmvto=none,noatime disk name=umass cdrom name=umasscd

dos exe=all umass priority=21,vid=0x0951,did=0x1625,busno=0x01,

devno=0x04,iface=00,ign_remove

interface::0

interface_class::0x08

interface_protocol::0x50

interface_subclass::0x06

name::devb-umass

pid::2818054

For the full list of attributes that can be present in driver objects published by usblauncher, see the

Driver Object reference for usblauncher.

Copyright © 2015, QNX Software Systems Limited 29

PPS Objects Reference Pages

/pps/qnx/mount/device

Device publishers write filesystem and mountpoint information to this object

Publishers

Device publishers (e.g., usblauncher)

For more information about the device publishers and how they interact with PPS,

see the Device Publishers Developer's Guide.

Subscribers

Any app

Overview

The /pps/qnx/mount/ directory contains objects that expose filesystem and mountpoint information for

connected devices. Object names are of the form:

rawdevice [.partition#]

For instance, for a USB stick that's assigned a device path of /dev/umass0 and that has a DOS partition,

these objects are published:

• /pps/qnx/mount/umass0

• /pps/qnx/mount/umass0.0

Here's a sample USB object:

[n]@umass0.0

PPS_DRIVER_ID::/pps/qnx/driver/2052107

PPS_RAWMOUNT_ID::/pps/qnx/mount/umass0

blocks_size::512

blocks_total::7830408

fs_type::dos (fat32)

id::6485a02e-4cd0-4ed6-80a1-a0bce5acde3e

label::KINGSTON

mnt_status::0 (No error)

mount::/fs/usb0

name::KINGSTON

partition::/dev/umass0t11

partition_order::0

plugin_name::generic

raw::/dev/umass0

read_only::0

For the full list of attributes that can be present in mount objects published by usblauncher, see the

Mount Object reference for usblauncher.

Copyright © 2015, QNX Software Systems Limited30

PPS Objects Reference Pages

/pps/qnx/qdb/config/dbname

QDB parses this object to set up a database

Publishers

Any app

Subscribers

QDB

Overview

The /pps/qnx/qdb/config/ directory contains PPS objects that configure databases. When an object is

copied into this directory, QDB parses the object and attempts to load the database with the same

name. For example, when an app writes the /pps/qnx/qdb/config/bluetoothdb object, QDB attempts to

load the bluetoothdb database.

Configuration parameters

Each configuration object specifies the database's storage and schema files and its policy settings

such as backups and auto-attachment of other databases. The required syntax and the meanings of

the supported parameters are given in the “Database configuration objects” section of the QDB

Developer's Guide.

DescriptionParameter

Specifies other databases to attach to the current one (using the SQL

ATTACH DATABASE statement).

AutoAttach

Lists attached databases that are to be backed up whenever the main

database is.

BackupAttached

Specifies the directories for storing database backups. These directories

must exist when the database is loaded.

BackupDir

Specifies an interim directory to copy the database to before backing

it up. QDB locks the database during the backup, so this setting lets

BackupVia

you make an interim copy to reduce the amount of time that the

database is locked.

Names the file (with an absolute path) that contains the SQL commands

to run whenever a client calls qdb_connect().

ClientSchemaFile

Installs user-provided collation (sorting) routines.Collation

Specifies the compression algorithm to apply to backups. Options:Compression

• none (default)

• lzo

• bzip

• diocopy (direct I/O copy uisng DMA)

Copyright © 2015, QNX Software Systems Limited 31

PPS Objects Reference Pages

DescriptionParameter

Used with BackupVia and any Compression setting specified. The

default is false. Set this to true if you want QDB to compress the

database before backing it up.

CompressionVia

Names the file (with an absolute path) that contains the SQL commands

to populate a database when it's created. This setting is processed

only if SchemaFile is set.

DataSchemaFile

Names the database storage (i.e., raw SQLite) file. This must be an

absolute path but it can refer to any location.

Filename

This setting is required.

Installs user scalar/aggregate functions.Function

Names the file (with an absolute path) that contains the SQL commands

to create the initial schema of tables, indexes, and views for the

database.

SchemaFile

Lists attached databases for which size information is to be retrieved

whenever it's requested for the main database.

SizeAttached

Lists attached databases that are to be vacuumed whenever the main

database is.

VacuumAttached

Copyright © 2015, QNX Software Systems Limited32

PPS Objects Reference Pages

/pps/qnx/qdb/status/dbname

QDB publishes the database status to this object

Publishers

QDB

Subscribers

Any app

Overview

For every loaded database, QDB publishes an object in the /pps/qnx/qdb/status/ directory with the same

name as the database. The status object indicates the database state after the loading attempt.

Status values

Each status object contains a Status attribute with one of these values:

AttachWait

QDB is waiting for an attached database (listed in the AutoAttach parameter) to become

available.

Error

The configuration contained an error.

Initializing

QDB has read the configuration object and is now initializing the database.

Valid

The database has been configured and can be accessed.

Copyright © 2015, QNX Software Systems Limited 33

PPS Objects Reference Pages

/pps/services/app-launcher

Control object for launching applications based on name

Publishers

Launcher service; any app

Subscribers

Launcher service; any app

Overview

The launcher service (Application Launcher) provides this control object so clients can issue commands

to start and stop applications based on their names. This object allows third-party applications such

as speech-recognition programs to launch other applications simply by naming them, without having

to read the /apps directory to obtain the app ID string. You can also read this object to learn the names

of the installed applications.

Command format

Commands sent to the /pps/services/app-launcher object are of the form:

req:json:{"id": ID_number,"cmd":"command_string","app":"app_string","dat":""}

The ID_number is a unique identifier that will be reflected in the response to your request. You can

set the ID to any number you wish.

The dat attribute is used for setting parameters that will be sent to the launcher service. Parameters

can be either strings or JSON objects.

Starting and stopping applications

At boot time, Application Launcher publishes the names of all existing applications in the app_list

attribute:

app_list:json:[app_string,app_string,...]

You can launch any application given in app_list by issuing the launch app command. For example,

to launch the application named “MediaPlayer”, issue this command:

echo 'req:json:{"id":1,"cmd":"launch app","app":"MediaPlayer","dat":""}'

>> /pps/services/app-launcher

To stop the MediaPlayer application, send the close app command:

echo 'req:json:{"id":1,"cmd":"close app","app":"MediaPlayer","dat":""}'

>> /pps/services/app-launcher

Responses

Application Launcher responds to each command by writing to the status attribute. This attribute

contains the ID number used in the previously issued command as well as any errors that may have

occurred. For example:

Copyright © 2015, QNX Software Systems Limited34

PPS Objects Reference Pages

status:json:{"error":"OK","id":1}

This response indicates that the command with ID 1 was executed successfully.

Application Launcher creates the /pps/system/navigator/command (p. 101) object for publishing

application tab actions. Applications that subscribe to this object should open it using the

?wait and ?delta options, to receive all relevant changes. For information on these options,

see “Subscribing” in the Persistent Publish/Subscribe Developer's Guide.

Copyright © 2015, QNX Software Systems Limited 35

PPS Objects Reference Pages

/pps/services/audio/audio_router_control

The Audio Manager listens for routing commands on this control object

Publishers

Audio Manager; any app

Subscribers

Audio Manager; any app

This object is a server object, designed to process requests from individual clients and deliver

the results to the clients that issued the requests. For more information, see the “Server

objects (p. 12)” subsection.

Message/response format

Commands sent to the /pps/services/audio/audio_router_control object are of the form:

msg::command_string\nid:: ID_number\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the message, along

with any errors:

res::command_string\nid:: ID_number\ndat:json:{JSON_data}\nerror::error_description

Commands

DescriptionData
type

ParametersCommands

Indicates whether the paired device supports A2DP.BooleansupportedBT_A2DP_capability

Indicates whether the A2DP stream is connected.Booleanconnected

Indicates whether the paired device supports SCO.BooleansupportedBT_SCO_capability

Indicates whether the SCO stream is connected.Booleanconnected

Indicates type of volume control supported by the paired device:Stringvolumecontrol

• unavailable (no volume control)

• simple (supports only increase and decrease)

• percentage (supports full control, including mute, specific

steps, etc...)

Indicates whether the paired device supports audio processing.Booleanaudioprocessing

Releases handle returned by get_handle.Numberaudioman_handlefree_handle

Retrieves a unique handle from the Audio Manager, based on

the target handle. Audio on the new handle will be impacted by

audio ducking whenever the target handle is impacted.

Numbertargetget_alias_handle

Copyright © 2015, QNX Software Systems Limited36

PPS Objects Reference Pages

DescriptionData
type

ParametersCommands

New handle, an alias to the target handle, that the client should

use for all other actions.

Numberaudioman_handle

Audio source type, one of:Stringtypeget_handle

• alert

• default

• inputfeedback

• multimedia

• pushtotalk

• ringtone

• soundeffect

• texttospeech

• videochat

• voice

• voicerecognition

• voicerecording

• voicetones

Process ID of the caller (returned by the getpid() call). Note that

Audio Manager will get this automatically if it's not filled.

Numberpid

Indicates whether the audio handle is activated right away.

Default is true.

Booleansuspended

New handle, returned by Audio Manager, that the client should

use for all other actions.

Numberaudioman_handle

Handle returned by get_handle.Numberaudioman_handleget_handle_

concurrency_status
Indicates whether the given handle's audio type is being

attenuated.

Booleanattenuated

Indicates whether the given handle's audio type is being muted.Booleanmuted

Name of the audio type that is muting the given handle.Stringmuted_by

Process ID of the audio source that is muting the given handle.

There may be multiple sources muting this handle; if so, this

field contains the ID of the first process doing the muting.

Stringmuted_by_pid

Name of the audio type for which the audio concurrency policy

is being returned.

Stringtypeget_type_

concurrency_status

Indicates whether the audio type is being attenuated.Booleanattenuated

Indicates whether the audio type is being muted.Booleanmuted

Name of the audio source that is muting the given audio type.Stringmuted_by

Copyright © 2015, QNX Software Systems Limited 37

PPS Objects Reference Pages

DescriptionData
type

ParametersCommands

Process ID of the audio source that is muting the given audio

type. There may be multiple sources muting this type; if so, this

field contains the ID of the first process doing the muting.

Stringmuted_by_pid

Name of the voice source, one of:Stringsourceget_voice_enhanced_

audio_option
• cellular (default)

• voip

Name of the specific output device for this enhanced audio

option. Default is handset.

Stringoutput

Name of the enhanced audio option, one of:Stringoption

• normal

• boost_bass

• boost_treble

Name of the voice source, one of:Stringsourceget_voice_mode

• cellular (default)

• voip

Voice mode, one of:Stringmode

• ringer

• on

• off

Number of channels (1 or 2).Numbernumbernumchans

Handle returned by get_handle.Numberaudioman_handlepcm_input_closed

This command notifies apps that a PCM channel for input has

been closed/suspended by the libasound library.

Handle returned by get_handle.Numberaudioman_handlepcm_input_opened

This command notifies apps that a PCM channel for input has

been opened through the libasound library. The Audio Manager

uses a default type of generic for the source.

Handle returned by get_handle.Numberaudioman_handlepcm_output_closed

This command notifies apps that a PCM channel for output has

been closed/suspended by the libasound library.

Handle returned by get_handle.Numberaudioman_handlepcm_output_opened

This command notifies apps that a PCM channel for output has

been opened by the libasound library.

Copyright © 2015, QNX Software Systems Limited38

PPS Objects Reference Pages

DescriptionData
type

ParametersCommands

This command causes the Audio Manager to log all the active

audio sources.

n/an/aprint_audio_srcs

Handle returned by get_handle.Numberaudioman_handleset_audio_src

Audio source type, one of:Stringtype

• alert

• generic

• multimedia

• soundeffect

• ringtone

• texttospeech

• videochat

• voice

• voicerecognition

• voicerecording

Name of input device, overridden by the audio source (see

/pps/services/audio/devices/ (p. 49) for the supported devices). The

default device clears the input setting.

Stringinput

Name of output device, overridden by the audio source.Stringoutput

A client should set the input and output parameters only to

override the default routing path. For example, if the user has

a headset during a phone call, the default routing that the Audio

Manager picks is through the headset. However, the user could

force the device to send output through the loudspeaker and

get input from the handset, in which case the phone app would

have to tell phone-pps to override the output to speaker and

the input to handset.

Name of the voice source, one of:Stringsourceset_voice_enhanced_

audio_option
• cellular (default)

• voip

Name of the specific output device for this enhanced audio

option. Default is handset.

Stringoutput

Name of the enhanced audio option, one of:Stringoption

• normal

• boost_bass

• boost_treble

Copyright © 2015, QNX Software Systems Limited 39

PPS Objects Reference Pages

DescriptionData
type

ParametersCommands

Name of the voice source, one of:Stringsourceset_voice_mode

• cellular (default)

• voip

Voice mode, one of:Stringmode

• ringer

• on

• off

Copyright © 2015, QNX Software Systems Limited40

PPS Objects Reference Pages

/pps/services/audio/audio_router_status

The Audio Manager uses this object to reflect the status of voice routing

Publishers

Audio Manager

Subscribers

Any app

The /pps/services/audio/audio_router_status object contains telephony settings (cellular and voip) for

voice enhancement for the supported devices. The object's content looks like this:

@audio_router_status

voiceservices.cellular.a2dp.audio_option::normal

voiceservices.cellular.btsco.audio_option::normal

voiceservices.cellular.hac.audio_option::normal

voiceservices.cellular.handset.audio_option::normal

voiceservices.cellular.hdmi.audio_option::normal

voiceservices.cellular.headphone.audio_option::normal

voiceservices.cellular.headset.audio_option::normal

voiceservices.cellular.lineout.audio_option::normal

voiceservices.cellular.speaker.audio_option::normal

voiceservices.cellular.status::off

voiceservices.cellular.tones.audio_option::normal

voiceservices.cellular.toslink.audio_option::normal

voiceservices.cellular.tty.audio_option::normal

voiceservices.cellular.usb.audio_option::normal

voiceservices.cellular.voice.audio_option::normal

voiceservices.voip.a2dp.audio_option::normal

voiceservices.voip.btsco.audio_option::normal

voiceservices.voip.hac.audio_option::normal

voiceservices.voip.handset.audio_option::normal

voiceservices.voip.hdmi.audio_option::normal

voiceservices.voip.headphone.audio_option::normal

voiceservices.voip.headset.audio_option::normal

voiceservices.voip.lineout.audio_option::normal

voiceservices.voip.speaker.audio_option::normal

voiceservices.voip.status::off

voiceservices.voip.tones.audio_option::normal

voiceservices.voip.toslink.audio_option::normal

voiceservices.voip.tty.audio_option::normal

voiceservices.voip.usb.audio_option::normal

voiceservices.voip.voice.audio_option::normal

The possible values for audio_option are:

Copyright © 2015, QNX Software Systems Limited 41

PPS Objects Reference Pages

• normal

• boost_bass

• boost_treble

The status field gives the current status of the voice call. The possible values are:

• ringer

• on

• off

For more information on the audio devices, see the /pps/services/audio/devices/ (p. 49) entry.

Copyright © 2015, QNX Software Systems Limited42

PPS Objects Reference Pages

/pps/services/audio/control

The Audio Manager listens for commands on this control object

Publishers

Audio Manager; any app

Subscribers

Audio Manager; any app

This object is a server object, designed to process requests from individual clients and deliver

the results to the clients that issued the requests. For more information, see the “Server

objects (p. 12)” subsection.

Audio Manager library

Besides reading from and writing to the PPS audio objects directly, you may also use the Audio Manager

library, which allows your apps to process events from audio devices. This library provides a C/C++

interface to audio devices accessible through the underlying PPS framework. Using this library, you

can get and set audio device properties and can also add and remove device events to notify clients

that are using audio devices. For more information, see the Audio Manager Library Reference.

Message/response format

Commands sent to the /pps/services/audio/control object are of the form:

msg::command_string\nid:: ID_number\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the message, along

with any errors:

res::command_string\nid:: ID_number\ndat:json:{JSON_data}\nerror::error_description

Commands

DescriptionData
type

ParametersCommand

Device name, as listed under /pps/services/audio/devices/ (p. 49).Stringnameadjust_input_level

Percentage representing the adjustment of the input volume

level.

Doublelevel

Device name. The device's volumecontrol must be percentage.Stringnameadjust_output_level

Percentage representing the adjustment of the output volume

level.

Doublelevel

Name of the device to adjust the output volume level when a

voice call is activated.

Stringnameadjust_voice_output_

level

Copyright © 2015, QNX Software Systems Limited 43

PPS Objects Reference Pages

DescriptionData
type

ParametersCommand

Percentage representing the adjustment of the voice output

volume level.

Doublelevel

Device name. The device's volumecontrol can be percentage

or simple.

Stringnamedecrease_output_

level

Indicates whether the paired device supports A2DP.Booleansupportedget_a2dp_status

Indicates whether the A2DP stream is connected.Booleanconnected

Number of channels that the A2DP stream supports (1 or 2).Numbernumchans

Type of volume control that the current device supports for

A2DP:

Stringvolumecontrol

• unavailable (no volume control)

• simple (supports only increase and decrease)

• percentage (supports full control, including mute, specific

steps, etc...)

Default is unavailable.

State of the A2DP stream:Stringstate

• closed

• idle

• open

• streaming

Device name.Stringnameget_device_property

Name of the device's attribute.Stringproperty

Value of the given attribute.Stringvalue

Number of audio channels that the connected HDMI device

supports.

Numbernumchansget_hdmi_info

Audio channel order of the connected HDMI device (e.g.,

FL,FR).

Stringhdmiorder

Configuration of the audio output channels (e.g., "2.0", "5.1").

Note that this is used only by the hdmi device.

Stringaudioconfig

Indicates whether mirror mode is enabled.Booleanmirror

Indicates whether the hdmi driver is to be kept alive when no

audio stream is active.

Booleankeep_alive

Indicates whether the HDMI device is enabled.Booleanenabled

Copyright © 2015, QNX Software Systems Limited44

PPS Objects Reference Pages

DescriptionData
type

ParametersCommand

Type of volume control that the attached HDMI device supports:Stringvolumecontrol

• unavailable (no volume control)

• simple (supports only increase and decrease)

• percentage (supports full control, including mute, specific

steps, etc...)

Device name.Stringnameget_headphone_enable

Indicates whether the paired device supports HFP.Booleansupportedget_hfpg_sco_state

Indicates whether the handsfree connection can be established.Booleanconnected

Type of volume control that the current device supports for

A2DP:

Stringvolumecontrol

• unavailable (no volume control)

• simple (supports only increase and decrease)

• percentage (supports full control, including mute, specific

steps, etc...)

Default is unavailable.

Indicates whether the paired device needs audio processing by

the handset or modem.

Booleanaudioprocessing

State of the handsfree connection:Stringstate

• closed

• idle

• open

• streaming

Indicates whether HFP is suspended as requested by the device.

Default is false.

Booleansuspended

Indicates whether HFP also supports VAD and voice recording.BooleanremoteVAD

Device name.Stringnameget_input_level

If an invalid name is given, the input level of the currently

selected input device is returned. If the given device is output

only, the level of the corresponding input device when the output

device is selected is returned.

Device name.Stringnameget_input_mute

Device name. The device's volumecontrol must be percentage.Stringnameget_output_level

Device name. The device's volumecontrol must be percentage.Stringnameget_output_mute

Copyright © 2015, QNX Software Systems Limited 45

PPS Objects Reference Pages

DescriptionData
type

ParametersCommand

Name of the device to get the output volume level when a voice

call is activated.

Stringnameget_voice_output_

level

Percentage representing the current output volume level.Doublelevel

Device name.Stringnameget_voice_output_

mute
Indicates whether the device output is muted.Booleanmuted

Device name. The device's volumecontrol can be percentage

or simple.

Stringnameincrease_output_

level

Device name.Stringnamekeep_output_alive

Indicates whether the given output device is to be kept alive

when no audio stream is active.

Booleankeep_alive

Tunings to apply to the hardware codec:Stringaudiomodeset_audio_mode

(deprecated)
• audio

• video

• voice

• record

Indicates whether Hearing Aid Compatibility (HAC) is enabled

for voice handset mode.

Booleanenabledset_hac_enabled

Indicates whether an HDMI device is connected.Booleanenabledset_hdmi_enable

The HDMI device is activated only when these conditions are

met:

1. No higher-priority device is active.

2. Mirror mode is set for the device.

3. The numchans , hdmiorder , and audioconfig parameters for

set_hdmi_info are set correctly.

Number of audio channels supported by the connected HDMI

device.

Numbernumchansset_hdmi_info

Audio channel order of the connected HDMI device (e.g.,

FL,FR).

Stringhdmiorder

Configuration of the audio output channels (e.g., "2.0", "5.1").

Note that this is used only by the hdmi device.

Stringaudioconfig

Type of volume control supported by the attached HDMI device:Stringvolumecontrol

• unavailable (no volume control)

• simple (supports only increase and decrease)

• percentage (supports full control, including mute, specific

steps, etc...)

Copyright © 2015, QNX Software Systems Limited46

PPS Objects Reference Pages

DescriptionData
type

ParametersCommand

The hdmi audio driver sends HDMI information to the Audio

Manager before the HDMI handler calls set_hdmi_enable,

to prevent this function from publishing inaccurate information.

Indicates whether mirror mode is enabled.Booleanmirrorset_hdmi_mode

Name of the device to be activated as the default when this

event occurs.

Stringnameset_headphone_enable

(may be deprecated)

Indicates whether the headphone is enabled as the output.Booleanenabled

Indicates whether headphone volume boost is enabled. If

enabled, a volume level greater than 92% is allowed.

Booleanhpoverrideset_headphone_

override

Device name.Stringnameset_input_level

If an invalid name is given, the input level of the currently

selected input device is returned. If the given device is output

only, the level of the corresponding input device when the output

device is selected is returned.

Percentage representing the desired input volume level.Doublelevel

Device name.Stringnameset_input_mute

Indicates whether the given device input is muted.Booleanmuted

Device name. The device's volumecontrol must be percentage.Stringnameset_output_level

Percentage representing the desired output volume level.Doublelevel

Device name. The device's volumecontrol must be percentage.Stringnameset_output_mute

Indicates whether the given device output is muted.Booleanmuted

Indicates whether a TOSLINK connection is used.Booleanenabledset_toslink_enable

Indicates whether TTY mode is selected for voice headset

mode. The Audio Manager automatically picks TTY mode only

Booleanenabledset_tty_enabled

when a headset is connected and if so, TTY is enabled during a

voice call.

Name of the device to set the voice output volume level when a

voice call is activated.

Stringnameset_voice_output_

level

Percentage representing the desired output volume level.Doublelevel

Device to mute/unmute.Stringnameset_voice_output_

mute
Indicates whether the device output is muted.Booleanmuted

Device name.Stringnametoggle_input_mute

If an invalid name is given, the input level of the currently

selected input device is updated. If the given device is output

Copyright © 2015, QNX Software Systems Limited 47

PPS Objects Reference Pages

DescriptionData
type

ParametersCommand

only, the corresponding input device when the output device is

selected is updated.

Device name. The device's volumecontrol must be percentage.Stringnametoggle_output_mute

Name of the device to toggle the mute status when a voice call

is activated.

Stringnametoggle_voice_output_

mute

Examples

To set the volume level of the headset to 75%:

msg::set_output_level\nid::1\ndat:json:{"name":"headset","level":75}

The "level" field is a double-precision floating point value, so its value doesn't have quotes.

To mute the speaker:

msg::set_output_mute\nid::2\ndat:json:{"name":"speaker","muted":"true"}

Copyright © 2015, QNX Software Systems Limited48

PPS Objects Reference Pages

/pps/services/audio/devices/

Directory for listing supported audio devices

Publishers

Audio Manager

Subscribers

Any app

Each audio device is represented by one PPS object, which is named after the device.

Supported devices

DescriptionDevice name

Bluetooth A2DP connection. When selected, the default input (onboard mic) is

selected.

a2dp

Virtual audio device accessible through video share.audioshare

Bluetooth SCO/HFP connection.btsco

HAC telecoil used for hearing aids. When selected, the default input (onboard

mic) is selected.

hac

Handset on the device phone receiver. When selected, the default input (onboard

mic) is selected.

handset

HDMI audio connection. When selected, the default input (onboard mic) is

selected.

hdmi

Headphone with no mic input. When selected, the default input (onboard mic)

is selected.

headphone

Headset with mic input.headset

Output device connected through the headset jack. When selected, the default

input (onboard mic) is selected.

lineout

Audio device available from a Wi-Fi display connection. Miracast is the protocol

used for this connection.

miracast

Audio device available from a MirrorLink connection. MirrorLink is a protocol for

integrating mobile devices with embedded systems.

mirrorlink

Main speaker on the device (handsfree on mobile phones).speaker

Virtual audio device for the system tones.tones

Optical audio device (“Toshiba Link”) used by some receivers.toslink

Copyright © 2015, QNX Software Systems Limited 49

PPS Objects Reference Pages

DescriptionDevice name

Telecommunications device for the deaf (connected through the headphone jack).tty

USB audio device.usb

Virtual audio device for voice content.voice

Wireless connection to TVs for A/V playback.wifidisplay

To find all the connected audio devices on your system, read the /pps/services/audio/devices/.all
object.

The default device

The status of the default audio device is published to the /pps/services/audio/devices/default object.

The default device has the following attributes:

DescriptionAttribute

Name of the default audio device used for playback (e.g., speaker).device

Current default audio device for capture (e.g., handset).input.device

Mountpoint to access the input device (e.g., /dev/snd/pcmPreferredp).input.path

Path to the actual audio interface for input and output (e.g.,

/dev/snd/pcmPreferredp).

path

Device attributes

Each device has the following attributes:

DescriptionData typeAttribute

Configuration of the audio output channels (e.g., "2.0",

"5.1"). Note that this is used only by the hdmi device.

Stringaudioconfig

Indicates whether the device can do some audio processing

that the system won't need to handle (e.g., a headset may

do noise cancellation).

Booleanaudioprocessing

Indicates whether a given device is connected.Booleanconnected

Path of the device's PPS control object. If this object exists,

then the device is controlled by a PPS interface instead of

an audio driver.

Stringcontrolpps

Indicates whether this device depends on another device (if

so, this device has no effect unless the other is also

connected).

Booleandependency

Total number of input channels on the hardware.Numberhwinchans

Copyright © 2015, QNX Software Systems Limited50

PPS Objects Reference Pages

DescriptionData typeAttribute

Default number of channels that the client should use for

multimedia audio capture. For example, for a device with

Numberinchans

four microphones, the client might use two for multimedia,

in which case inchans would be 2 (hwinchans would be 4).

Note that if inchans is 0, then no input is supported for this

device.

Current default audio device for capture (e.g., handset).

This attribute appears only in the default object.

Stringinput.device

Name of the mixer group implemented by the input device

for volume control. Values depend on the particular audio

Stringinput.mixer

drivers and on the Audio Manager configuration. Default

names are:

• BT A2DP In

• BT SCO In

• HDMI In

• Input Gain

• Tones In

• TosLink In

• USB In

• Voice In

• WIFI In

For details about audio drivers, see the io-audio manager

and the deva-* entries in the QNX Neutrino Utilities

Reference.

The mountpoint to access the input device (e.g.,

/dev/snd/pcmPreferredc).
Stringinput.path

Indicates whether the output device is to be kept alive when

no audio stream is active.

Booleankeepalive

Name of the mixer group implemented by the output device

for volume control. As for input.mixer , values depend on

Stringmixer

the particular audio drivers and on the Audio Manager

configuration. Default names are:

• BT A2DP Out

• BT SCO Out

• HDMI Out

• Master

• PCM Mixer

• Tones Out

• TosLink Out

Copyright © 2015, QNX Software Systems Limited 51

PPS Objects Reference Pages

DescriptionData typeAttribute

• USB Out

• Voice Out

Indicates whether the device can be muted. During audio

transitions from one device to another, the Audio Manager

Booleanmutable

may mute both devices until the transition is complete so

as to avoid sound leaks.

Number of audio channels supported by the device.Numbernumchans

Channel order (e.g., FL,FR) for two channels. Note that this

is used only by the hdmi device.

Stringorder

Path to the actual audio interface for input and output (e.g.,

/dev/snd/pcmPreferredp).

Stringpath

Indicates whether the device can be heard publicly (e.g.,

the value for a speaker would be true).

Booleanpublic

Indicates whether the device is physically installed on the

target.

Booleansupported

Indicates whether the device is temporarily disabled by the

system.

Booleansuspended

Type of volume control supported:Stringvolumecontrol

• unavailable (no volume control)

• simple (supports only increase/decrease)

• percentage (supports full control, including mute,

specific steps, etc...)

Copyright © 2015, QNX Software Systems Limited52

PPS Objects Reference Pages

/pps/services/audio/status

The Audio Manager uses this object to reflect the status of audio devices

Publishers

Audio Manager

Subscribers

Any app

Attributes

DescriptionData typeAttribute

Current audio mode:Stringaudio.mode

• audio

• record

• video

• voice

Headphone boost level.Numberhpboostlevel

Indicates whether the headphone output volume is limited by regulations

(e.g., the setting may be made 100% by an app, but the regulation

Booleanhpoutput.regulated

limits the volume to 90%). This field is true when headphone is the

default routing path.

The unregulated volume setting (e.g., 100%), which may differ from

the actual volume (e.g., 90%).

Numberhpoutput.unregulatedlevel

Indicates whether audio-boost is on.Booleanhpoverride

Indicates whether audio-boost override is supported.Booleanhpoverride.supported

Unsafe volume level for headphones.Numberhpunsafelevel

Unsafe volume range for headphones.Booleanhpunsafezone

Indicates whether the unsafe volume range is supported.Booleanhpunsafezone.supported

Hardware codec digital gain (in percent) for this device.Numberinput.device .gain

Indicates whether the input is muted for this device.Booleaninput.device .muted

Input gain (in percent).Numberinput.gain

Indicates whether the input is muted.Booleaninput.muted

Indicates whether a device is selected as the default.Booleanoutput.available

Indicates whether the output is muted for this device.Booleanoutput.device .muted

Output gain (in percent) for this device.Stringoutput.device .volume

Copyright © 2015, QNX Software Systems Limited 53

PPS Objects Reference Pages

/pps/services/audio/types/

Directory for listing supported audio types

Publishers

Audio Manager

Subscribers

Any app

Each audio type is represented by one PPS object, which is named after the type.

Overview

The Audio Manager publishes the status of each audio type for concurrent audio playback to the

/pps/services/audio/types/ directory. By monitoring these objects, an application can take certain actions

when an event occurs. For example, a multimedia application may decide to pause when it's being

muted by a higher-priority audio source.

Supported audio types

DescriptionAudio type

Used for an alarm, such as a clock alarm.alarm

Notifiers, such as calendar events, email, and SMS.alert

Used for Commercial Mobile Alert System (CMAS) emergency broadcast

systems.

cmas

Any unclassified audio stream.default

Used for keyboard clicks.inputfeedback

Used by media player applications.multimedia

Used to denote streams related to push-to-talk use cases.pushtotalk

Placeholder value; unused.reserved_0

Used for playback of ringtones when an incoming phone call occurs.ringtone

Sound effects that can never be attenuated, such as the camera click.soundeffect

Text-to-speech services.texttospeech

Used by the video chat client, this type isn't covered by the voice type

because of a difference in automatic routing policy.

videochat

Voiceband-related streams and certain telephony items (cellular or

VoIP).

voice

Copyright © 2015, QNX Software Systems Limited54

PPS Objects Reference Pages

DescriptionAudio type

Voice-recognition services such as Voice-Activated Dialing (VAD).voicerecognition

Used for voice-recording services.voicerecording

Dual-tone multi-frequency signaling (DTMF) and call-progress tones,

but can also be used to play back non-tone-based audio during phone

calls.

voicetones

Audio type attributes

Each audio type object has the following attributes:

DescriptionData typeAttribute

Process ID of the currently playing application.Stringactive_pid

(deprecated)
Note that this is used only with the multimedia type.

Indicates whether the audio type is being attenuated.Booleanattenuated

Indicates whether the audio type is being muted.Booleanmuted

Process ID of the application that is muting this audio type.Stringmuted_by_pid

Copyright © 2015, QNX Software Systems Limited 55

PPS Objects Reference Pages

/pps/services/audio/voice_status

The Audio Manager uses this object to reflect the status of voice settings

Publishers

Audio Manager

Subscribers

Any app

The /pps/services/audio/voice_status object contains voice settings for the audio devices. The object's

content looks like this:

@voice_status

input.muted:b:false

voice.mode::Off

voice.output.a2dp.muted:b:false

voice.output.a2dp.volume:n:100.000000

voice.output.audioshare.muted:b:false

voice.output.audioshare.volume:n:100.000000

voice.output.btsco.muted:b:false

voice.output.btsco.volume:n:100.000000

voice.output.hac.muted:b:false

voice.output.hac.volume:n:0.000000

voice.output.handset.muted:b:false

voice.output.handset.volume:n:0.000000

voice.output.hdmi.muted:b:false

voice.output.hdmi.volume:n:0.000000

voice.output.headphone.muted:b:false

voice.output.headphone.volume:n:0.000000

voice.output.headset.muted:b:false

voice.output.headset.volume:n:0.000000

voice.output.lineout.muted:b:false

voice.output.lineout.volume:n:0.000000

voice.output.miracast.muted:b:false

voice.output.miracast.volume:n:0.000000

voice.output.mirrorlink.muted:b:false

voice.output.mirrorlink.volume:n:0.000000

voice.output.speaker.muted:b:false

voice.output.speaker.volume:n:0.000000

voice.output.tones.muted:b:false

voice.output.tones.volume:n:100.000000

voice.output.toslink.muted:b:false

voice.output.toslink.volume:n:100.000000

voice.output.tty.muted:b:false

voice.output.tty.volume:n:100.000000

Copyright © 2015, QNX Software Systems Limited56

PPS Objects Reference Pages

voice.output.usb.muted:b:false

voice.output.usb.volume:n:100.000000

voice.output.voice.muted:b:false

voice.output.voice.volume:n:0.000000

For more information on the audio devices, see the /pps/services/audio/devices/ (p. 49) entry.

Copyright © 2015, QNX Software Systems Limited 57

PPS Objects Reference Pages

/pps/services/geolocation/control

The Geolocation service listens for commands on this object

Publishers

Geolocation service; any app

Subscribers

Geolocation service; any app

This object is a server object, designed to process requests from individual clients and deliver

the results to the clients that issued the requests. For more information, see the “Server

objects (p. 12)” subsection.

Message/response format

Commands sent to the /pps/services/geolocation/control object are of the form:

msg::command_string\nid:: ID_number\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the message, along

with any errors:

res::command_string\nid:: ID_number\ndat::json:{JSON_data}\nerr::error_description

Commands

The control object accepts these commands:

DescriptionCommand

Query the current location based on the IP address. The format for the dat field is as follows:

dat:json:{"period":2.0,"provider":"network","fix_type":"wifi"}

location

where:

• period specifies the periodic delay (in seconds) between the update intervals. If this is 0, the

update is provided only once.

• provider names the geolocation source (always network).

• fix_type names the geolocation fix type (e.g., wifi, but the value isn't significant because this

field is for browser compatibility only).

Cancel the currently running periodic request.cancel

As soon as the Geolocation service receives the location message from the client, it queries

http://www.hostip.info to get the current location based on the IP address. The correctness of

the result depends on the contents of the database that the hostip.info site provides. The

Copyright © 2015, QNX Software Systems Limited58

PPS Objects Reference Pages

http://www.hostip.info

absence of an IP address for the requesting client in the database might yield an arbitrary

result (e.g., “wrong location”).

Because the Geolocation service is multithreaded, it can handle requests from multiple clients

at the same time.

Messages sent by the Geolocation service

Besides returning the client's message and ID, the Geolocation service can also send these responses:

DescriptionResponse

A percentage value representing the accuracy of the location (e.g.,

60).

accuracy

The latitude (e.g., 45.3333).latitude

The longitude (e.g., -75.9).longitude

Examples

1. If we want to observe responses from the Geolocation service, we need to force the shell to keep

the file descriptor open (because this is a server object). We also use the ?wait option to ensure

we receive all responses:

exec 3<> /pps/services/geolocation/control?wait &&

2. Now, we'll send the location request:

echo 'msg::location\nid::test_1\ndat:json:{

"period":5.0,"provider":"network","fix_type":"wifi"}' >&3 && cat <&3

The control object might now look like this:

@control

res::location

id::test_1

dat:json:{"accuracy":60,"latitude":45.3333,"longitude":-75.9}

Copyright © 2015, QNX Software Systems Limited 59

PPS Objects Reference Pages

/pps/services/geolocation/status

Status object for the Geolocation service

Publishers

Geolocation service; any app

Subscribers

Any app

Overview

The Geolocation service populates this object at startup to enable the browser to access current

geolocation information. Here's a sample object:

@status

status:json:{"location_manager_location_on":true,

"location_manager_location_gnss_on":true}

Attributes

DescriptionAttribute

Indicates whether the Geolocation service is on for the browser.location_manager_location_on

Indicates whether the Global Navigation Satellite System is on.location_manager_location_gnss_on

Copyright © 2015, QNX Software Systems Limited60

PPS Objects Reference Pages

/pps/services/launcher/control

Control object for launching applications based on ID

Publishers

Launcher service; Homescreen

Subscribers

Launcher service; Homescreen

This object is a server object, designed to process requests from individual clients and deliver

the results to the clients that issued the requests. For more information, see the “Server

objects (p. 12)” subsection.

Overview

The launcher service (Application Launcher) provides this control object so clients can issue commands

to start and stop applications based on their IDs. In the QNX Apps and Media image, the Homescreen

uses this object to launch applications. If you write your own window manager, it can use this object.

Message/response format

Commands sent to the /pps/services/launcher/control object have the following form:

msg::command_string\ndat::application_ID[,display_parameters]\nid:: ID_number

Here, command_string contains the name of the command and application_ID contains the name of

the app when it's loaded. The app names are found in the /apps directory. The display_parameters

string is used only with the start command for launching applications; details on this command and

other supported commands are given in “Commands (p. 62)”. The ID_number can be a number or

any other identifier meaningful to the client.

Responses always reflect the command_string and ID_number that were sent in the command message:

res::command_string\ndat::process_ID,process_name\nid:: ID_number

The launcher service stores the process ID (PID) and name in the dat attribute. The PID must be saved

by the client so it can later refer to the same application. For instance, when the user selects to stop

the app in the HMI, the client must pass the PID in the stop command.

Because this is a server object, to observe its status, you must force the shell to keep the file descriptor

open. In the following example, we use the exec command to do this, then direct the response messages

to stderr. To start apps through PPS in the QNX Apps and Media image, you must slay the HMI and

issue commands to the launcher control object. In this case, we start an application called Peaks And

Valleys. The service writes the PID of the new process into the dat attribute in its response. You can

use this PID to pause or stop the app.

slay -13 homescreen

exec 3<> /pps/services/launcher/control

Copyright © 2015, QNX Software Systems Limited 61

PPS Objects Reference Pages

echo "msg::start\ndat::PeaksAndValleys.testDev_sAndValleys6bb91d91,

ORIENTATION=0,WIDTH=900,HEIGHT=480\nid::1234" >&3

cat <&3

@control

res::start

id::1234

dat::1589296,dev_mode

echo "msg::stop\ndat::1589296\nid::1234" >&3; cat <&3

@control

res::stop

id::1234

Commands

The control object accepts these commands:

start

Launches an application based on the application ID.

stop

Stops an application from running.

freeze

Pauses an application. The application appears frozen on the screen.

thaw

Unpauses an application.

The format for these commands is as follows:

id::dat::msg::

Number (or any other

identifier meaningful to the

clients involved)

ID of the application to launch, followed by a list of display parameters. The

ID string is based on the app's directory name found in /apps. For the display

parameters, you can list the orientation, height, and width of the app display

area. Individual parameters are separated by commas and each one is specified

start

by listing its name, followed by an equal sign (=) and the value. You can set

these parameters:

• ORIENTATION — 0 for landscape mode, 1 for portrait mode

• WIDTH — Width of the app display area, in pixels

• HEIGHT — Height of the app display area, in pixels

We strongly recommend setting the WIDTH and HEIGHT parameters.

Although the launcher service still launches the app (using the full

screen to display it) if these parameters are not provided, the

full-screen display might not be optimal for viewing the app.

Copyright © 2015, QNX Software Systems Limited62

PPS Objects Reference Pages

id::dat::msg::

In the reference Apps and Media images, the Homescreen application

sets these parameters in the start command, which it sends when

the user launches an app in the HMI.

Number (or any other

identifier meaningful to the

clients involved)

PID of the application to close.

This must be the PID returned in the dat attribute of the start response.

stop

Number (or any other

identifier meaningful to the

clients involved)

PID of the application to pause.freeze

Number (or any other

identifier meaningful to the

clients involved)

PID of the paused application to resume running.thaw

Examples

To launch the Settings application, write the following to the /pps/services/launcher/control object:

echo "msg::start\ndat::Settings.testRel_Settings___595d2043,

ORIENTATION=0,WIDTH=900,HEIGHT=480\nid::1"

> /pps/services/launcher/control

The service then writes this type of response (containing the PID) to the object:

res::start\ndat::2015282\nid::1

You must pass the PID in the stop command to close this application:

echo "msg::stop\ndat::2015282\nid::1" > /pps/services/launcher/control

If you don't specify the PID, Application Launcher stops all active applications when you issue the

following stop command:

echo "msg::stop\ndat::\nid::" > /pps/services/launcher/control

In the default QNX Apps and Media image, only one application can be active at a time. If

you modify the HMI to allow for multiple applications to be active at the same time but want

to affect only one application, you must specify the PID when sending the stop, freeze, or

thaw command.

Copyright © 2015, QNX Software Systems Limited 63

PPS Objects Reference Pages

/pps/services/multimedia/mtp/

Directory that MTP driver processes use for publishing objects containing device information

Publishers

MTP driver processes

Subscribers

Any app

Overview

The /pps/services/multimedia/mtp/ directory stores objects containing information about attached MTP

devices. Objects summarizing different devices are stored in different subdirectories. Each subdirectory

has a name in this format:

PID-Busno Devno

The name consists of the PID of the MTP driver started when the device was attached, followed by the

bus number and device number. With each device attachment, the system starts another MTP driver

process; if 5 MTP devices are attached, 5 drivers are launched. Within any of these driver subdirectories,

you can find the devinfo (p. 65) object (which contains device-identifying and system software details)

and a subdirectory with storage objects (p. 67) (which store the last modification time and other details

for the storages on the device).

Copyright © 2015, QNX Software Systems Limited64

PPS Objects Reference Pages

/pps/services/multimedia/mtp/driverdir/devinfo

Object for storing vendor and software information about an MTP device

Publishers

MTP driver process

Subscribers

Any app

Overview

The /pps/services/multimedia/mtp/driverdir /devinfo object stores fields that identify the manufacturer,

vendor, and model name of an attached MTP device and that describe its system software. The driverdir

directory is created by the MTP driver launched when the device is attached. Here's a sample object:

[n]@devinfo

Device::PlaysForSure

FunctionMode::0

Manufacturer::samsung

Name::Galaxy Nexus

SerialNumber::0149BDCB1800E01F

SoftwareVersion::1.0

StandardVersion::100

VendorExtDesc::microsoft.com: 1.0; android.com: 1.0;

VendorExtId::0x6

VendorExtVersion::100

Attributes

DescriptionData typeAttribute

Device type (always PlaysForSure)StringDevice

Function mode supported by the device. Modes express different states

and capabilities. A value of 0 means the device supports only Standard

Hexadecimal

string

FunctionMode

Mode. For details on the meanings of different field values, see section

5.1.1.5 of revision 1.1 of the Media Transfer Protocol specification.

Device manufacturerStringManufacturer

Device modelStringName

Serial number of the MTP function. This number is unique among MTP

functions with the same Name and SoftwareVersion values.

StringSerialNumber

Software or firmware version of the device, in a vendor-specific formatStringSoftwareVersion

Copyright © 2015, QNX Software Systems Limited 65

PPS Objects Reference Pages

DescriptionData typeAttribute

Protocol version supported by the device (always 100, which represents

version 1.00)

NumberStandardVersion

List of vendor extensions supported by the device. Extensions let vendors

define additional capabilities for MTP devices.

StringVendorExtDesc

ID of vendor of extensions supported by the device. This ID is assigned

by I3A.

Hexadecimal

string

VendorExtId

Version of vendor-extension set supported by the deviceNumberVendorExtVersion

Copyright © 2015, QNX Software Systems Limited66

PPS Objects Reference Pages

/pps/services/multimedia/mtp/driverdir/storages/

Directory used by an MTP driver process to publish storage-related objects

Publishers

MTP driver process

Subscribers

Any app

Overview

The /pps/services/multimedia/mtp/driverdir /storages/ directory contains objects that represent the

presistent storage mediums of the device. For example, suppose the user attaches a smartphone that

has an SD card inserted. The MTP driver that manages communication with that smartphone creates

the driverdir /storages directory and publishes two objects in storages—one for the phone's internal

storage and the other for the SD card. The name of each object is the ID of the storage that it describes.

The content of a storage object looks like this:

[n]@00010001

FileSystemType::0x2

LastKnownStorageModificationTime::1136011133

MaxCapacity::12724617216

StorageDesc::Phone

StorageID::00010001

StorageLabel::SECZ9519043CHOHB

StorageType::0x3

Attributes

DescriptionData typeAttribute

Filesystem used by the storage. For details on the meanings of different field

values, see section 5.2.2.2 of revision 1.1 of the Media Transfer Protocol

specification.

Hexadecimal

string

FileSystemType

Timestamp indicating when the storage was last modifiedNumberLastKnownStorage

ModificationTime

Maximum capacity (in bytes) of the storageNumberMaxCapacity

Description of the storage (e.g., 256Mb SD Card)StringStorageDesc

Storage ID, as a string. The first four digits identify the storage's physical location

while the last four identify its logical partition.

StringStorageID

Volume label. This field is present only if the filesystem on the storage is mounted.StringStorageLabel

Type (i.e., physical nature) of the storage. For details on the meanings of different

field values, see section 5.2.2.1 of the Media Transfer Protocol specification.

Hexadecimal

string

StorageType

Copyright © 2015, QNX Software Systems Limited 67

PPS Objects Reference Pages

/pps/services/multimedia/renderer/component/

Directory that the multimedia renderer uses for publishing component (plugin) objects

Publishers

mm-renderer

Subscribers

Any app

The .all object

The .all object lists all dynamically loaded plugins, the library files implementing them, and the file

types supported for playback or recording. Here is a sample object:

[n]@mmr-playlist-engine

dll::mmr-playlist-engine.so

plugin::Playlist engine plugin

[n]@mmr-track-engine

dll::mmr-track-engine.so

plugin::Single-track engine plugin

[n]@mmr-mmf-routing

dll::mmr-mmf-routing.so

mime::video/mp4,video/m4v,audio/m4a,audio/aac,audio/wav,audio/mp1,

audio/mp2,audio/mp3,audio/x-mp3,audio/mpeg,audio/x-mpeg,audio/mpg,

audio/x-mpg,audio/mpeg3,audio/x-mpeg3,audio/x-mpegaudio,video/avi,

audio/avi,audio/wma,video/x-mp4,video/x-m4v,audio/x-m4a,audio/3gpp

,video/3gpp,video/3gpp2,audio/3gpp2

plugin::QNX MMF routing plugin

[n]@mmr-audiomgmt-plugin

dll::mmr-audiomgmt-plugin.so

plugin::QNX Audio Management plugin

Each section begins with a [n]@plugin-name line and describes one loaded plugin. The plugin library

file and a human-readable description are always provided (in the dll and plugin attributes). Other

attributes may list the MIME types playable by the plugin or the filename extensions supported for

audio recording (depending on the plugin). Also, any default settings for a plugin, as defined in the

mm-renderer configuration file, appear in its section of the .all object.

Attributes

The .all object contains at least these attributes:

DescriptionAttribute

Comma-separated list of supported extensions for file outputs

(e.g., m4a,wav).

audioencodeextensions

Library file implementing the plugin.dll

Copyright © 2015, QNX Software Systems Limited68

PPS Objects Reference Pages

DescriptionAttribute

Comma-separated list of allowed combinations of playable

MIME types (e.g., 3gpp,video).

mime

Description of the plugin.plugin

Plugin objects in the component directory

The component directory contains objects that describe the dynamically loaded plugins of mm-renderer
(mm-renderer has defined its own plugin interface for modularization and extensibility). Depending on

your system, you will see some or all of the following objects:

mmr-track-engine

Engine plugin for handling track inputs

mmr-playlist-engine

Engine plugin for handling playlist inputs

mmr-mmf-routing

Routing plugin for playing individual tracks

mmr-mmfrip-routing

Routing plugin for ripping tracks

mmr-audiomgmt-plugin

Plugin for communicating with the audioman service, which controls audio routing

Each of these objects contains at least the dll and plugin attributes and may contain others, as explained

previously.

Copyright © 2015, QNX Software Systems Limited 69

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/contextname/

Directory that the multimedia renderer uses for publishing objects for a context

Publishers

mm-renderer

Subscribers

Any app

Overview

Whenever a client calls mmr_context_create(), the mm-renderer service creates a directory under

/pps/services/multimedia/renderer/context, using the name given in the mmr_context_create() call.

This contextname directory can contain several PPS objects:

• $mmr_ppsdir /contextname /param

• $mmr_ppsdir /contextname /output#

• $mmr_ppsdir /contextname /input

• $mmr_ppsdir /contextname /metadata (created when an input is attached to the context)

• $mmr_ppsdir /contextname /p# (if the input is a playlist, a p# object is created for each playlist entry)

• $mmr_ppsdir /contextname /play-queue (created if the input is a playlist)

• $mmr_ppsdir /contextname /q# (if the input is a playlist, a q# object is created for each playlist entry)

• $mmr_ppsdir /contextname /state

• $mmr_ppsdir /contextname /status

Copyright © 2015, QNX Software Systems Limited70

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/contextname/input

Holds input parameters for the specified context

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Attributes

The contents of this object depend on what the client specified when calling mmr_input_parameters()

for this context. The attributes that the input object may contain are:

DescriptionAttribute

URL of the attached input.url

Values:type

• track (a single track)

• playlist (a track sequence)

• autolist (a single track formatted as a playlist)

How to replay the input (for playlist and autolist input types

only). Possible values:

repeat

• "none" (default)

• "track"

• "all"

Copyright © 2015, QNX Software Systems Limited 71

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/contextname/metadata

Contains metadata for the input attached to the specified context

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Sample object

[n]@metadata

md_title_album::Ballads In White Forest (2008)

md_title_artist::ALONE IN THE CHAOS

md_title_bitrate::188000

md_title_comment::http://www.jamendo.com/

md_title_duration::254066

md_title_mediatype::4

md_title_name::0000025

md_title_samplerate::44100

md_title_seekable::1

md_title_track::1

url::/accounts/1000/shared/music/set006/01 - 0000025.mp3

Attributes

The attributes published to this object depend on the media file type of the input.

Copyright © 2015, QNX Software Systems Limited72

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/contextname/output#

Holds parameters for an output attached to the specified context

The contextname is the name given in mmr_context_create(). The # is the output ID returned

by mmr_output_attach().

Publishers

mm-renderer

Subscribers

Any app

Attributes

DescriptionAttribute

Values:type

• audio (volume in the range of 0 to 100) and audio_type as specified in

audio_manager_get_name_from_type()

• video

• av

• file

Output parameters may vary, depending on how your system is implemented.

See mmr_output_parameters() for more information and examples.

URL of the attached output.url

Copyright © 2015, QNX Software Systems Limited 73

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/contextname/p#

Holds the input URL and parameters for an individual track

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Overview

When the input is a playlist, a p# object is created to hold the URL and parameters for one track in

the playlist. The # is the position of the track in the playlist (starting from 1).

Attributes

The contents of this object depend on what the client specified when calling mmr_track_parameters()

for this track. The attributes that this object may contain are the same as those that can be found in

the input object.

Copyright © 2015, QNX Software Systems Limited74

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/contextname/param

Contains the parameters defined for the specified context

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Attributes

The contents of this object depend on what the client specified when calling mmr_context_parameters()

for this context. The attributes that the param object may contain are:

DescriptionAttribute

Allows an application to request

a particular frequency in status

updates (default is 1000 ms).

updateinterval

Parameters that map to libcurl library options:

• OPT_VERBOSE

• OPT_CONNECTTIMEOUT_MS

• OPT_LOW_SPEED_LIMIT

• OPT_LOW_SPEED_TIME

• OPT_USERAGENT

• OPT_USERNAME

• OPT_PASSWORD

• OPT_PROXYUSERNAME

• OPT_PROXYPASSWORD

• OPT_COOKIE

• OPT_COOKIEFILE

• OPT_COOKIEJAR

• OPT_COOKIESESSION

• OPT_CAINFO

• OPT_CAPATH

• OPT_SSL_VERIFYPEER

• OPT_SSL_VERIFYHOST

• OPT_PROXY

• OPT_NOPROXY

Copyright © 2015, QNX Software Systems Limited 75

PPS Objects Reference Pages

DescriptionAttribute

• OPT_HTTPPROXYTUNNEL

• OPT_PROXYPORT

• OPT_PROXYTYPE

• OPT_PROXYAUTH

• OPT_HTTPAUTH

• OPT_HTTPHEADER

• OPT_DNSCACHETIMEOUT

See getsockopt() in the Neutrino

C Library Reference.

Parameters that map to socket options:

• OPT_SO_RCVBUF

• OPT_SO_SNDBUF

Copyright © 2015, QNX Software Systems Limited76

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/contextname/play-queue

Holds information about the playlist window

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Overview

When the input is a playlist, mm-renderer creates a playlist window for the currently playing item and

the items in front of and behind it, using the following PPS objects in the contextname directory:

• p#—contains the parameters for one track in the playlist

• play-queue—represents the size of the playlist window

• q#—contains the metadata for one track in the playlist

Attributes

DescriptionAttribute

Index of the last p# item in the window.end

Index of the first p# item in the window.start

Total number of items in the playlist. This is set when a track is first played.total

Copyright © 2015, QNX Software Systems Limited 77

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/contextname/q#

Contains metadata for a track within a playlist

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

Overview

When the input is a playlist, a q# object is created to hold the metadata for one track in the playlist.

The # is the position of the track in the playlist (starting from 1).

Attributes

The contents of this object depend on the media file type of the track.

Copyright © 2015, QNX Software Systems Limited78

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/contextname/state

Holds the play state for the specified context

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

We recommend that you read this object in delta mode to ensure that you get all the errors

and warnings that may occur.

For details on delta mode, see “Subscribing” in the Persistent Publish/Subscribe Developer's

Guide.

Attributes

DescriptionAttribute

Most recent error code (deleted when playback is restarted).error

Play position when the error occurred.error_pos

Input URL (deleted when input is detached).input

Current play speed, in units of 1/1000 of normal speed.speed

Can be one of these values:state

• idle

• playing

• stopped

Most recent warning (deleted when playback is stopped).warning

Play position when the warning occurred.warning_pos

How state, errors, and warnings are set

Other attributes changed:The state attribute is set
to:

Condition:

noneidleNo input is attached

input is set to input's URLstopped (from idle)An input is attached

Copyright © 2015, QNX Software Systems Limited 79

PPS Objects Reference Pages

Other attributes changed:The state attribute is set
to:

Condition:

error and error_pos are deletedplaying (from

stopped)

Playback begins

error is set to MMR_ERROR_NONE (note

that no error code is set if playback is

stopped by a function call)

stopped (from

playing)

End of media is reached

warning and warning_pos are setplayingWarning occurs (note that

warnings don't stop playback)

warning and warning_pos are deleted;

error and error_pos are set

stoppedError occurs (note that errors do

stop playback)

For error codes, see mm_error_code_t in the Multimedia Renderer Developer's Guide.

Copyright © 2015, QNX Software Systems Limited80

PPS Objects Reference Pages

/pps/services/multimedia/renderer/context/contextname/status

Status object for the multimedia renderer context

The contextname is the name given in mmr_context_create().

Publishers

mm-renderer

Subscribers

Any app

CAUTION:

Don't read this potentially high-bandwidth object in delta mode.

For details on delta mode, see “Subscribing” in the Persistent Publish/Subscribe Developer's

Guide.

Attributes

DescriptionAttribute

Two decimal numbers (in milliseconds): level/capacitybufferlevel

Play position compatible with mmr_seek() (value is milliseconds for

single tracks; tracknumber:milliseconds for playlists)

position

Copyright © 2015, QNX Software Systems Limited 81

PPS Objects Reference Pages

/pps/services/multimedia/renderer/control

The mm-renderer service listens for commands from the HMI on this control object

Publishers

Any app

Subscribers

mm-renderer

Commands

The commands correspond to functions defined in renderer.h. For example, the contextOpen

command maps to mmr_context_open(). For more information, see “Multimedia Renderer

API” in the Multimedia Renderer Developer's Guide.

ParametersCommand

commandSend • ctxt (the context handle)

• cmd (command string)

ctxt (the context handle)contextClose

contextCreate • name (the context name)

• flags (must be 0)

• mode (file permissions for the context directory)

ctxt (the context handle)contextDestroy

name (the context name)contextOpen

contextParameters • ctxt (the context handle)

• parms (the dictionary object containing the parameters to set)

inputAttach • ctxt (the context handle)

• url (the URL of the new input)

• type ("track", "playlist", or "autolist")

ctxt (the context handle)inputDetach

inputParameters • ctxt (the context handle)

• parms (the dictionary object containing the parameters to set)

listChange • ctxt (the context handle)

• url (the URL of the new playlist)

• delta (difference between position of the current track on the old and new lists)

outputAttach • ctxt (the context handle)

Copyright © 2015, QNX Software Systems Limited82

PPS Objects Reference Pages

ParametersCommand

• url (the URL of the new input)

• type ("audio", "video", or "file")

outputDetach • ctxt (the context handle)

• output_id (the output ID number)

outputParameters • ctxt (the context handle)

• output_id (the output ID number)

• parms (the dictionary object containing the parameters to set)

ctxt (the context handle)play

seek • ctxt (the context handle)

• position (the position to seek to)

speedSet • ctxt (the context handle)

• speed (the new play speed)

ctxt (the context handle)stop

trackParameters • ctxt (the context handle)

• index (an index within the current playlist windoow; 0 for default)

• params (the track parameters for the playlist; NULL to reset to default)

Example

Suppose you want to attach an input to a context and play the track /macqnx/
RCPS_SuckerPunchTH_M2_TestFile.mpg. You would write this command to the control object:

echo 'msg::inputAttach\ndat:json:{"ctxt":0,

"url":"/macqnx/RCPS_SuckerPunchTH_M2_TestFile.mpg","type":"track"}' >>

/pps/services/multimedia/renderer/control

Copyright © 2015, QNX Software Systems Limited 83

PPS Objects Reference Pages

/pps/services/networking/all/interfaces/

Directory for storing status objects for network interfaces

Publishers

Network Manager (net_pps)

Subscribers

Any app

Overview

The /pps/services/networking/all/interfaces/ directory contains status objects for all network interfaces

either listed in the net_pps command line or set up through the configuration files in

/var/etc/system/config/network/. Each object has the same name as the interface as reported by the

ifconfig utility (e.g., en0, fec0).

The objects that can be found in this directory vary with the target hardware. However, the lo0 object,

which represents the loopback interface, may be present on any target.

Attributes

DescriptionData typeAttribute

Indicates whether the interface is currently connected.Booleanconnected

FIB number.Numberfib

IP address of the HTTP proxy server.Stringhttpproxy

Indicates whether the HTTP proxy requires login credentials.Booleanhttpproxyloginrequired

A yes here indicates IPv4 connectivity is available. Otherwise, one of

these error strings appears:

Stringip4_ok

• error_no_ip_addr

• error_no_ip_gateway

• error_no_nameserver

• error_not_configured

• error_not_connected

• error_not_up

Same as for ip4_ok, but for IPv6 connectivity.Stringip6_ok

Array of IP addresses assigned to this interface.JSONip_addresses

Interface's IP broadcast address (if it has one).Stringip_bcastaddr

Interface's IP destination address (if it has one).Stringip_dstaddr

Array of IP gateways.JSONip_gateway

Copyright © 2015, QNX Software Systems Limited84

PPS Objects Reference Pages

DescriptionData typeAttribute

General status attribute for IP connectivity.Stringip_ok

Link layer (MAC) address.Stringlink_address

Indicates whether manual IPv4 settings or DHCP settings will be used.Stringmanual

If manual is yes, these settings apply:

• ip_address

• gateway

• netmask

• nameservers

• searchdomains

If manual is no, these settings apply:

• dhcp=on|off|auto

• dhcp6=on|off|auto

When on, indicates that IPv6 manual settings will be used. When off,

it means that DHCP settings will be used.

Stringmanual6

MTU number for this interface.Numbermtu

Array of nameserver addresses.JSONnameservers

Array of strings to be used for DNS resolution.Stringsearchdomains

Type of interface. Possible values:Stringtype

• bluetooth_dun (any Bluetooth tethering interface)

• cellular (any cellular network interface)

• usb (any direct USB cable to a PC or Mac)

• vpn (any VPN tunnel)

• wifi (any wireless network interface)

• wired (any wired Ethernet interface)

Indicates whether the physical interface is up.Booleanup

Copyright © 2015, QNX Software Systems Limited 85

PPS Objects Reference Pages

/pps/services/networking/all/proxy

Status object for proxy information

Publishers

Network Manager

Subscribers

Any app

Overview

Network Manager publishes the locations of proxy servers to this object.

All of this information (except for httpproxylogin) is also published to the

/pps/services/networking/all/status_public (p. 87) object.

Attributes

DescriptionData typeAttribute

FTP proxy of the connected network.Stringftpproxy

IPv6 FTP proxy of the connected network.Stringftpproxy6

HTTP proxy of the connected network.Stringhttpproxy

IPv6 HTTP proxy of the connected network.Stringhttpproxy6

User name and password (username:password).Stringhttpproxylogin

Indicates whether the HTTP proxy requires login credentials.Booleanhttpproxyloginrequired

HTTPS proxy of the connected network.Stringhttpsproxy

IPv6 HTTPS proxy of the connected network.Stringhttpsproxy6

Copyright © 2015, QNX Software Systems Limited86

PPS Objects Reference Pages

/pps/services/networking/all/status_public

Status object for the currently preferred network interface

Publishers

Network Manager

Subscribers

Any app

Overview

This object contains status information for the currently preferred network interface (i.e., the currently

active interface when running in station mode). You can obtain more information about the interface

by reading its object in the /pps/services/networking/all/interfaces/ (p. 84) directory.

Attributes

DescriptionData typeAttribute

Output from the last executed command (which was written in the msg::

attribute in the networking control object).

Stringcmd_output

Gateway address.JSONdefault_gateway

Network interface name from ifconfig (e.g., en0, fec0).Stringdefault_interface

Name of the network interface currently used to route IPv4 traffic. The

active (or current) interface is the connected interface listed earliest in

the arguments passed to net_pps. For instance, this command:

Stringdefault_interface4

net_pps en0 tiw_sta0

means that when en0 is connected, it will be the default interface because

it has priority over tiw_sta0 based on its earlier listing in the command

line.

Name of the network interface currently used to route IPv6 traffic. The

active (or current) interface is the connected interface listed earliest in

the arguments passed to net_pps, as for default_interface4.

Stringdefault_interface6

FIB number.Numberfib

FTP proxy of the connected network.Stringftpproxy

IPv6 FTP proxy of the connected network.Stringftpproxy6

HTTP proxy of the connected network.Stringhttpproxy

IPv6 HTTP proxy of the connected network.Stringhttpproxy6

Indicates whether the HTTP proxy requires login credentials.Booleanhttpproxyloginrequired

HTTPS proxy of the connected network.Stringhttpsproxy

Copyright © 2015, QNX Software Systems Limited 87

PPS Objects Reference Pages

DescriptionData typeAttribute

IPv6 HTTPS proxy of the connected network.Stringhttpsproxy6

A yes here indicates whether IPv4 connectivity is available. Otherwise,

one of these error strings appears:

Stringip4_ok

• error_no_ip_addr

• error_no_ip_gateway

• error_no_nameserver

• error_not_configured

• error_not_connected

• error_not_up

Same as for ip4_ok, but for IPv6 connectivity.Stringip6_ok

General status attribute for IP connectivity.Stringip_ok

Array of nameserver addresses.JSONnameservers

Name of the currently preferred network interface.JSONpriority

Array of strings to be used for DNS resolution.Stringsearchdomains

Copyright © 2015, QNX Software Systems Limited88

PPS Objects Reference Pages

/pps/services/networking/control

The Network Manager service listens for commands on this control object

Publishers

Network Manager; any app

Subscribers

Network Manager; any app

This object is a server object, designed to process requests from individual clients and deliver

the results to the clients that issued the requests. For more information, see the “Server

objects (p. 12)” subsection.

Message/response format

Commands sent to the /pps/services/networking/control object are of the form:

msg::command_string\nid:: ID_number\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the message, along

with any errors:

res::command_string\nid:: ID_number\ndat:json:{JSON_data}\nerr::error_description

Commands

The control object accepts these commands:

net_connected

Informs Network Manager of a network link becoming available. Contains the connected

interface and specified networking parameters. The interface value is that given by the

ifconfig utility.

net_disconnected

Informs Network Manager that the specified interface was disconnected.

net_disconnecting

Informs Network Manager of an imminent shutdown of the specified interface, allowing

clients to clean up gracefully before the interface is torn down.

Network Manager publishes a notice of the impending shutdown to the appropriate

/pps/services/networking/all/interfaces/ interface (p. 84) object.

net_dyn

Supplies Network Manager with dynamic configuration data. The response will contain the

err attribute on error and will be empty on success.

Copyright © 2015, QNX Software Systems Limited 89

PPS Objects Reference Pages

The following table shows the command format:

dat:json:id::msg::

[" interface"{"parameter":"value", ...}]Numbernet_connected

interfaceNumbernet_disconnected

[" interface"|" interface",{"deadline":milliseconds}]Numbernet_disconnecting

[" interface",{"gateway":"addr","nameservers":

["addr","addr"],"searchdomains":"domain"}]

Numbernet_dyn

Networking parameters

DescriptionParameter

IPv4 FTP proxy.ftpproxy

IPv6 FTP proxy.ftpproxy6

IPv4 HTTP proxy.htpproxy

IPv6 HTTP proxy.htpproxy6

IPv4 HTTPS proxy.httpsroxy

IPv6 HTTPS proxy.httpsproxy6

Possible values:manual

• yes—if set, these settings apply:

• ip_address=

• gateway=

• netmask=

• nameservers=

• searchdomains=

• no—if set, these settings apply:

• dhcp=on|off|auto

• dhcp6=on|off|auto

Possible values:manual6

• yes—if set, these settings apply:

• ip6_address=

• ip6_netmask=

The type of network interface. Possible values:type

• bb (any BlackBerry Bridge BIS-B/BES-B or BBIO HTTP proxy

connection)

Copyright © 2015, QNX Software Systems Limited90

PPS Objects Reference Pages

DescriptionParameter

• bluetooth_dun (any Bluetooth tethering interface)

• cellular (any cellular network interface)

• usb (any direct USB cable to a PC or Mac)

• vpn (any VPN tunnel)

• wifi (any wireless network interface)

• wired (any wired Ethernet interface)

Requesting a ping or traceroute

You can send ping or traceroute networking commands in the dat attribute. The reply will contain

the err attribute on error and will be empty on success.

For example, a client can write:

msg::cmd

id::5

dat::ping -n -c4 10.42.116.1

Copyright © 2015, QNX Software Systems Limited 91

PPS Objects Reference Pages

/pps/services/networking/interfaces/

Directory for storing network interfaces

Publishers

Network Manager (net_pps)

Subscribers

Any app

Overview

The /pps/services/networking/interfaces/ directory contains objects that represent all the available

network interfaces on your target hardware. The objects that are found in this directory vary with the

target hardware, but you should see the lo0 object, which represents the loopback interface that should

be present on every target. You should see the same list of interfaces reported when you run the

ifconfig utility (e.g., en0, fec0).

The objects in the /pps/services/networking/interfaces/ directory differ from the interfaces that are

managed by net_pps, which are tracked in the /pps/services/networking/all/interfaces/ directory. This

directory may have objects for interfaces that aren't managed by net_pps. Changes to the interface

are mirrored in interface objects in both the /pps/services/networking/all/interfaces/ and

/pps/services/networking/interfaces/ directories.

Attributes
This object has the same attributes as the /pps/services/networking/all/interfaces/ object. For more

information about the attributes for this object, see “Attributes” in

/pps/services/networking/all/interfaces/ (p. 84).

Copyright © 2015, QNX Software Systems Limited92

PPS Objects Reference Pages

/pps/services/networking/proxy

Duplicate of /pps/services/networking/all/proxy

This is a duplicate of the /pps/services/networking/all/proxy (p. 86) object.

Copyright © 2015, QNX Software Systems Limited 93

PPS Objects Reference Pages

/pps/services/networking/status_public

Duplicate of /pps/services/networking/all/status_public

This is a duplicate of the /pps/services/networking/all/status_public (p. 87) object.

Copyright © 2015, QNX Software Systems Limited94

PPS Objects Reference Pages

/pps/system/info

The Settings app reads system software information from this object

Publishers

Image generation utilities

Subscribers

Settings app

Overview

When the system image is built, the image generation utilities output the /base/etc/os.version file,

which stores build and version information. The mksysimage.py script writes this information to an

object in the PPS persistence directory (/var/pps/system/info), so that the information is available when

the system boots for the first time.

When PPS is started, it creates the /pps/system/info object and copies the build and version information

from persistent storage into the latter object. The Settings app then reads this object so it can display

the system software details to the user. Here's a sample object:

@info

Branch::anm1.1

Build_Number::101

Build_URL::http://pandapal-lab/job/appsmedia_image_anm11_linux_

omap5/101/

Generation_Date::Thu Oct 2 12:59:29 2014

Image_Script::Unknown

Platform::omap5uevm.ext

Product::AnM

SDP_Revision::5456

Variant::omap5uevmdemo

Attributes

DescriptionAttribute

Branch of the build (based on software release).Branch

Build number.Build_Number

Location of the build package.Build_URL

Timestamp of when the software package was built.Generation_Date

Script used to build the system image.Image_Script

Target platform for the system software.Platform

Short name of the product.Product

Copyright © 2015, QNX Software Systems Limited 95

PPS Objects Reference Pages

DescriptionAttribute

Revision number of the underlying QNX SDP installation.SDP_Revision

Hardware board variant supported by the system software.Variant

Copyright © 2015, QNX Software Systems Limited96

PPS Objects Reference Pages

/pps/system/keyboard/control

The Keyboard service listens for commands from the HMI on this control object

Publishers

Any app

Subscribers

Keyboard service

This object is a server object, designed to process requests from individual clients and deliver

the results to the clients that issued the requests. For more information, see the “Server

objects (p. 12)” subsection.

Message/response format

Commands sent to the /pps/system/keyboard/control object are of the form:

msg::command_string\nid:: ID_number\ndat:json:{JSON_data}

Responses always reflect the command_string and ID_number that were sent in the message, along

with any errors:

res::command_string\nid:: ID_number\ndat:json:{JSON_data}\nerror::error_description

Commands

dat:json:id::msg::

JSON data (payload) related to the message.The message's ID string (usually

a number, but can be anything).

Message to send to the control

object, either show or hide.
The current commands don't require extra data, so

this field should be left empty, as shown in the sample

commands that follow.

Examples

To show the keyboard:

echo "msg::show\nid::1\ndat:json:{}" > /pps/system/keyboard/control

To hide the keyboard:

echo "msg::hide\nid::2\ndat:json:{}" > /pps/system/keyboard/control

Copyright © 2015, QNX Software Systems Limited 97

PPS Objects Reference Pages

/pps/system/keyboard/status

The Keyboard service uses this object to reflect the keyboard's current status

Publishers

Keyboard service

Subscribers

Any app

Attributes

DescriptionData typeAttribute

Specifies height of the keyboard in pixels (range is 1 to screen height; default is 190).Numbersize

Indicates whether the keyboard is visible. The Keyboard service sets this attribute after receiving

a show or hide command from the /pps/system/keyboard/control (p. 97) object.

Booleanvisible

Copyright © 2015, QNX Software Systems Limited98

PPS Objects Reference Pages

/pps/system/navigator/applications/applications

The Applications Window Manager publishes information about installed apps to this object

Publishers

Applications Window Manager

Subscribers

Any app

Overview

Each app installed on the system appears in the /pps/system/navigator/applications/applications object:

@applications

AudioDemo.testDev_AudioDemo__82a252b9::native/icon.png,AudioDemo,media,,auto,,

BrowserLite.testDev_BrowserLite353323d6::native/icon.png,Browser Lite,media,,auto,,

CordovaPPSdemo.testDev_dovaPPSdemod339185a::native/default-icon.png,Cordova PPS Demo,,,auto,,

PeaksAndValleys.testDev_sAndValleys6bb91d91::native/icon.png,PeaksAndValleys,games,,auto,,

Settings.testRel_Settings___595d2043::native/icon.png,Settings,vehicle,,auto,,

Shutdown.testDev_Shutdown___f9c26a76::native/icon.png,Shutdown,vehicle,,auto,,

VideoDemo.testDev_VideoDemo__c6ddf0de::native/icon.png,VideoDemo,media,,auto,,

com.example.ipcamera.testRel_le_ipcamerad35b63dd::native/icon.png,IP Camera,,,auto,,

com.example.mediaplayer.testRel_mediaplayer178ac554::native/icon.png,MediaPlayer,,,auto,,

com.example.photoviewer.testRel_photoviewer775eb853::native/icon.png,PhotoViewer,,,auto,,

com.qnx.com.testDev_com_qnx_com67e92ba1::native/res/icon/blackberry10/icon-80.png,com.qnx.com,,

{768x1280}native/res/screen/blackberry10/splash-1280x768.png:

{720x720}native/res/screen/blackberry10/splash-720x720.png:

{1280x768}native/res/screen/blackberry10/splash-768x1280.png,auto,,

helloworld.testDev_helloworld_a520b600::native/default-icon.png,HelloWorld,,,auto,,

rearview_camera.testDev_view_camerad91629db::native/resources/icon.png,Camera,vehicle,,auto,,

sys.browser.gYABgJYFHAzbeFMPCCpYWBtHAm0::native/app_icon_browser.png,Browser,internet,

{768x1280}native/splash.png:{1280x768}native/splash_portrait.png:

{720x720}native/splash_720x720.png,auto,,

In this example, the information for some apps is shown over several lines but in the actual

PPS object, each app has all its information on one line.

The app information includes:

• the installation directory under /apps

• the location of the app's icon, relative to the installation directory

• the app's name

• the app's category (media, games, etc...)

• the relative paths of the splash screens; multiple entries must be separated by colons (:) with each

screen entry prefaced with its resolution (e.g., {1280x768}native/splash_portrait.png:

Copyright © 2015, QNX Software Systems Limited 99

PPS Objects Reference Pages

{720x720}native/splash_720x720.png)

• the app's orientation (e.g., auto, landscape)

Copyright © 2015, QNX Software Systems Limited100

PPS Objects Reference Pages

/pps/system/navigator/command

Shows application display actions

Publishers

Applications Window Manager

Subscribers

Any app

Overview

The /pps/system/navigator/command object shows the current display actions of HMI apps. Here's a

sample object:

@command

rearview_camera:json:{"action":"pause"}

In the shipped images, the Camera app is the only app for which the display action is published

to this object.

Each line shows an application name, followed by the json data type, followed by the

"action":"value" string pair. The values for the "action" field can be:

• pause—the app is being told it's in the background, so it should stop CPU-intensive display tasks

(e.g., drawing album cover flows)

• reselect—the app is being told of a special request, so it should go to its home screen

• resume—the app is being told it's in the foreground, so it can resume what it was doing before it

was paused (e.g., start drawing cover flows again)

Copyright © 2015, QNX Software Systems Limited 101

PPS Objects Reference Pages

/pps/system/navigator/windowgroup

Stores identifiers of window groups used by HMI apps

Publishers

HMI apps

Subscribers

Applications Window Manager

Overview

The /pps/system/navigator/windowgroup object shows the window groups for HMI apps. Here's a sample

object:

@windowgroup

[n]rearview_camera::{4c1e7a50-e3de-4048-850f-b06bc6bbe965}

In the shipped images, only the Camera app publishes its window group ID to this object.

Copyright © 2015, QNX Software Systems Limited102

PPS Objects Reference Pages

Chapter 4
List of Objects Used Internally

For this release of the QNX SDK for Apps and Media, the objects listed below are used internally

by various system processes. Third-party applications won't need to read from or write to these

objects. Note that this list may change with future releases.

PPS directories and objects used internally

• /pps/applications/appremote

• /pps/applications/weathernetwork/*

• /pps/servicedata/schedule

• /pps/services/apkruntime/

• /pps/services/audio/private/

• /pps/services/audio/stats

• /pps/services/authentication/

• /pps/services/certmgr/

• /pps/services/confstr/

• /pps/services/deviceproperties

• /pps/services/dlna/dmcclient/dmr/networkstate/dmr_uuid

• /pps/services/dlna/dmcclient/dmr/playstate/dmr_uuid

• /pps/services/dlna/dmcclient/dms/networkstate/dms_uuid

• /pps/services/dmc/

• /pps/services/dmr/control

• /pps/services/dmr/rendererCtrl

• /pps/services/dmr/rendererStatus

• /pps/services/dmr/status

• /pps/services/geolocation/settings

• /pps/services/input/context/contextname

• /pps/services/input/control

• /pps/services/mediaserver/settings

• /pps/services/mesa

• /pps/services/mm-player/

• /pps/services/multimedia/mediacontroller/notifications

• /pps/services/multimedia/mediaplayer/*

• /pps/services/multimedia/sound/

• /pps/services/multimedia/sync/

• /pps/services/network-time/status

• /pps/services/networking/all/status

• /pps/services/networking/status

• /pps/services/notification/

• /pps/services/notify/*

Copyright © 2015, QNX Software Systems Limited 103

• /pps/services/power/shutdown/control

• /pps/services/private/deviceproperties

• /pps/services/samba/control

• /pps/services/samba/smb

• /pps/services/slogger2/notify

• /pps/services/slogger2/verbose

• /pps/services/system_info/control

• /pps/services/tztrans/control

• /pps/services/vpn/

• /pps/system/authorization/control

• /pps/system/bookmarks/

• /pps/system/development/control

• /pps/system/development/devmode

• /pps/system/installer/coreos/

• /pps/system/installer/hmi/lastupdate

• /pps/system/installer/registeredapps/

• /pps/system/installer/removedapps/

• /pps/system/installer/stagedapps/

• /pps/system/installer/upd/current

• /pps/system/installer/upd/deferred

• /pps/system/language

• /pps/system/launcher_priority

• /pps/system/navigator/proc/*

• /pps/system/navigator/status/app-timestamps

• /pps/system/nvram/deviceinfo

• /pps/system/power/dev/bus

• /pps/system/power/funcstatus/user_activity

• /pps/system/sapphire/

Copyright © 2015, QNX Software Systems Limited104

List of Objects Used Internally

Index

/accounts/ directory 22

/pps/services/networking/interfaces/ directory

92

/qnx/dbnotify/dbs object 23

/qnx/demo object 24

/qnx/device/device objects 25

/qnx/device/device_ctrl objects 27

/qnx/driver/pid objects 29

/qnx/mount/device objects 30

/qnx/qdb/config/dbname objects 31

/qnx/qdb/status/dbname objects 33

/services/app-launcher object 34

/services/audio/audio_router_control object

36

/services/audio/audio_router_status object

41

/services/audio/control object 43

/services/audio/devices/ directory 49

/services/audio/status object 53

/services/audio/types/ directory 54

/services/audio/voice_status object 56

/services/geolocation/control object 58

/services/geolocation/status object 60

/services/launcher/control object 61

/services/multimedia/mtp/ directory 64

/services/multimedia/mtp/driverdir/devinfo

object 65

/services/multimedia/mtp/driverdir/storages/

directory 67

/services/multimedia/renderer/component/

directory 68

/services/multimedia/renderer/context/

directory 70–75, 77–79, 81

contextname directory 70

contextname/input object 71

contextname/metadata object 72

contextname/output# object 73

contextname/p# object 74

contextname/param object 75

contextname/play-queue object 77

contextname/q# object 78

contextname/state object 79

contextname/status object 81

/services/multimedia/renderer/control object

82

/services/networking/all/interfaces/ directory

84

/services/networking/all/proxy object 86

/services/networking/all/status_public object

87

/services/networking/control object 89

/system/info object 95

/system/keyboard/control object 97

/system/keyboard/status object 98

/system/navigator/applications/applications

object 99

/system/navigator/command object 101

/system/navigator/windowgroup object 102

A

Application Launcher 34, 61

launching apps based on ID 61

launching apps based on name 34

Applications Window Manager 99, 101–102

application display actions 101

information about installed apps 99

window group identifiers 102

attributes of objects 11

Audio Manager 36, 41, 43, 49, 53–54, 56

audio device status 53

audio devices listing 49

audio types listing 54

commands 43

library 43

routing commands 36

voice routing status 41

voice settings status 56

C

control object 11

Cordova 24

PPS Demo 24

D

delta subscription mode 12

demo 24

Cordova PPS 24

HTML5 demo 24

Copyright © 2015, QNX Software Systems Limited 105

Index

demo (continued)

PPS object 24

device publishers 25, 27, 29–30

device control objects 27

device objects 25

driver objects 29

mount objects 30

F

full subscription mode 12

G

Geolocation service 58, 60

commands 58

status 60

H

HTML5 24

demo app 24

K

Keyboard 97–98

commands 97

status 98

L

launcher service 61

libpps 19

M

MTP driver 64

PPS objects 64

multimedia renderer 68, 70–75, 77–79, 81–82

commands 82

component objects 68

context parameters 75

directory for publishing context objects 70

input metadata 72

input parameters 71

output parameters 73

play state 79

playlist window 77

status 81

track metadata 78

multimedia renderer (continued)

track parameters 74

mutexes 20

N

Navigator, See Applications Window Manager

Network Manager 84, 86–87, 89

commands 89

network interface statuses 84

proxy information 86

status of preferred network interface 87

P

pps 12–13, 17

-t option recommended 17

command-line options 12

pathname options 13

PPS 11–12, 15–16, 19, 24, 103

changing the persistence directory 16

command line, See pps

Cordova PPS Demo 24

encoding/decoding data for 19

guidelines for working with 19

HTML5 demo app 24

key concepts 11

location of objects used by apps 19

messages to server objects 16

objects 11–12, 15, 19, 103

.all 11

.notify 11

attributes 11

control 11

creating 19

definition 11

format 15

internally used 103

server 12

status 11

using open() 19

persistence of information 12

responses from server objects 16

pps_decoder_*() 20

pps_encoder_*() 20

publishers 11

Copyright © 2015, QNX Software Systems Limited106

Index

Q

QDB 23, 31, 33

database configuration objects 31

database status objects 33

media database notifications 23

S

server objects 12

Settings app 95

system information 95

status object 11

subscribers 11

T

Technical support 9

third-party applications 22

sandbox directory 22

Typographical conventions 7

U

usblauncher 25, 27, 29–30

Copyright © 2015, QNX Software Systems Limited 107

Index

Copyright © 2015, QNX Software Systems Limited108

Index

	Contents
	About This Reference
	Typographical conventions
	Technical support

	Overview of the PPS Service
	Setting Up Your Own Objects
	PPS Objects Reference Pages
	/pps/accounts/
	/pps/qnx/dbnotify/dbs
	/pps/qnx/demo
	/pps/qnx/device/device
	/pps/qnx/device/device_ctrl
	/pps/qnx/driver/pid
	/pps/qnx/mount/device
	/pps/qnx/qdb/config/dbname
	/pps/qnx/qdb/status/dbname
	/pps/services/app-launcher
	/pps/services/audio/audio_router_control
	/pps/services/audio/audio_router_status
	/pps/services/audio/control
	/pps/services/audio/devices/
	/pps/services/audio/status
	/pps/services/audio/types/
	/pps/services/audio/voice_status
	/pps/services/geolocation/control
	/pps/services/geolocation/status
	/pps/services/launcher/control
	/pps/services/multimedia/mtp/
	/pps/services/multimedia/mtp/driverdir/devinfo
	/pps/services/multimedia/mtp/driverdir/storages/
	/pps/services/multimedia/renderer/component/
	/pps/services/multimedia/renderer/context/contextname/
	/pps/services/multimedia/renderer/context/contextname/input
	/pps/services/multimedia/renderer/context/contextname/metadata
	/pps/services/multimedia/renderer/context/contextname/output#
	/pps/services/multimedia/renderer/context/contextname/p#
	/pps/services/multimedia/renderer/context/contextname/param
	/pps/services/multimedia/renderer/context/contextname/play-queue
	/pps/services/multimedia/renderer/context/contextname/q#
	/pps/services/multimedia/renderer/context/contextname/state
	/pps/services/multimedia/renderer/context/contextname/status
	/pps/services/multimedia/renderer/control
	/pps/services/networking/all/interfaces/
	/pps/services/networking/all/proxy
	/pps/services/networking/all/status_public
	/pps/services/networking/control
	/pps/services/networking/interfaces/
	/pps/services/networking/proxy
	/pps/services/networking/status_public
	/pps/system/info
	/pps/system/keyboard/control
	/pps/system/keyboard/status
	/pps/system/navigator/applications/applications
	/pps/system/navigator/command
	/pps/system/navigator/windowgroup

	List of Objects Used Internally
	Index

