
Multimedia Architecture
Guide

QNX® SDK for Apps and Media 1.1

©2014–2015, QNX Software Systems Limited, a subsidiary of BlackBerry
Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: March 31, 2015

Contents
About This Guide..5

Typographical conventions..6

Technical support...8

Chapter 1: Multimedia Architecture..9

Chapter 2: Device detection and information retrieval...13

Chapter 3: Metadata synchronization and retrieval...15

Chapter 4: Media playback..17

Index...19

Multimedia Architecture Guide

Contents

About This Guide

TheMultimedia Architecture Guide provides an overview of the multimedia components in the QNX SDK

for Apps and Media and describes how they work together.

This table may help you find what you need in this guide:

Go to:To find out about:

Multimedia Architecture (p. 9)The layers in the multimedia architecture and the

communication between components

Device detection and information

retrieval (p. 13)

The components used to detect media devices

Metadata synchronization and

retrieval (p. 15)

The components used to upload media metadata

Media playback (p. 17)The components used to play media

Copyright © 2015, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In

general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have unwanted or
undesirable side effects.

WARNING: Warnings tell you about commands or procedures that could be dangerous to your
files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited6

About This Guide

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those

pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited 7

About This Guide

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qnx.com).

You'll find a wide range of support options, including community forums.

Copyright © 2015, QNX Software Systems Limited8

About This Guide

http://www.qnx.com

Chapter 1
Multimedia Architecture

The QNX SDK for Apps and Media uses several resource managers, services, and libraries to perform

the multimedia tasks of detecting mediastores, synchronizing media metadata with databases, and

playing audio and video files.

These components form part of a robust and versatile platform that supports all types of media

applications. The organization of these components looks like this:

QNX Neutrino RTOS

Device publishers

Output

PPS

QDB
databases

io-audio

screenmm-renderermm-sync

libmmplaylistlibmd

Playlist
information

File and media
metadata

Synchronization
control

Media file
queries

Device
information

retrieval

Playback
control

Playback
configuration

(runs drivers for iPod, MTP)
io-fs-media

Devices C APIs

Media applications

OS services

Multimedia
components

Applications

Figure 1: Multimedia Architecture

Communication

As Figure 1 (p. 9) shows, communication between media applications, multimedia components, and

OS services is done with C APIs, QDB databases, and Persistent Publish/Subscribe (PPS) objects.

The multimedia synchronizer service, mm-sync, and the multimedia rendering component,

mm-renderer, expose C APIs to client applications for starting and monitoring media operations.

The QDB databases store metadata describing the media content found on devices. Querying these

embedded databases to retrieve metadata is much faster than reading it from files on physically separate

Copyright © 2015, QNX Software Systems Limited 9

devices. Also, this design means that the metadata is kept in persistent storage, so applications can

read the metadata of files stored on devices no longer attached to the system.

The PPS objects store information describing mediastores (devices) currently attached to the system.

This information is published by device publishers and it includes hardware connectivity details,

filesystem mountpoints, and state information. Because of this last type of information, the contents

of some of these objects are dynamic.

For MTP devices, additional PPS objects are published by the MTP driver. These objects contain details

about the device's software and vendor, and the last modification time of its media content. The PPS

Objects Reference describes the MTP-related PPS objects. The MTP driver runs in the io-fs-media

process and provides a POSIX filesystem interface for accessing the device.

For iPod devices, the iPod driver publishes several PPS objects. These objects store information on

playback status, Bluetooth profiles, and more, and are explained in detail in the iPod documentation

included with the QNX Apps and Media Interface for Apple iPod. Depending on the protocol in use,

the iPod driver may run in io-fs-media or another process.

Devices with POSIX filesystems (e.g., USB sticks) don't need a driver running in io-fs-media; this

service is used only for non-POSIX devices to provide a common mechanism to access media content.

This means that for any device type, your applications can use POSIX system calls to read information

from PPS, which is necessary for discovering media content and reacting to content updates (e.g., new

media files after pictures are taken by the device operator).

Applications

Your media applications can read device information from PPS objects and interact with mm-sync,

mm-renderer, and QDB at any time and in any order because these services are independent of one

another. For instance, an application could synchronize some or all of a device's metadata with

mm-sync, query the device's QDB database for specific track information to make it visible to users,

and then, in response to user requests, begin playing certain tracks with mm-renderer. Or, it could

skip the synchronization and begin playing the first audio track found on a newly attached device by

invoking mm-renderer.

It's up to developers to implement the application front-end, whether it's an interactive HMI component

or a command interface, and the logic that invokes the multimedia services to carry out media tasks.

The platform ships with several sample utilities that allow you to test various multimedia services from

the command line, without having to learn their APIs:

mmcli

Tests the APIs of multimedia components by forwarding commands to a loaded library or

service.

mmrplay

Plays or records media through mm-renderer, based on command-line options.

mmsyncclient

Forwards media synchronization commands to mm-sync and reports synchronization status.

The source code for mmrplay and mmsyncclient is included in the platform's source code samples

package, which is separate from the installers that set up the host system but is available at the same

download location. The package also includes the source code of the multimedia plug-and-play utility,

Copyright © 2015, QNX Software Systems Limited10

Multimedia Architecture

mm-pnp, which is a demo program that provides a walkthrough of the API call sequences that detect

when the user attaches a mediastore and then access, extract, and play its content.

The Multimedia Test Utilities Guide explains the purpose of mmcli, mmrplay, and mm-pnp, how to

start these utilities with command lines, and how to configure and use them. The Multimedia

Synchronizer Developer's Guide provides usage instructions for mmsyncclient.

Multimedia components

The multimedia components work together to perform three main tasks:

• Detecting devices and retrieving their information

• Synchronizing metadata to QDB databases

• Playing audio and video files

The other sections in this guide explain the order of interaction and the information flow between the

components to carry out each of these tasks.

The QNX Apps and Media reference images come with these multimedia components:

Path(s)DescriptionName

/pps/qnx/device/*,
/pps/qnx/driver/*,
/pps/qnx/mount/*

Store attributes describing device connectivity, driver processes, and

mountpoints of device filesystems.

Device information

objects in PPS

/base/usr/sbin/mm-syncSynchronizes metadata from tracks and playlists on media devices

into QDB databases. Metadata includes creation and runtime

information for files and playlists.

mm-sync

/base/usr/sbin/qdbManages embedded databases that store metadata read from media

devices.

QDB

/base/usr/lib/libmd.soReads metadata fields from files on media devices. This component

library is used by mm-sync but can be linked into and called from

an application.

libmd

/base/usr/lib/libmmplaylist.soRetrieves playlist entries, which are track URLs referenced in playlist

files. This component library is used by mm-sync but can be linked

into and called from an application.

libmmplaylist

/base/usr/sbin/mm-rendererPlays audio and video tracks, and reports playback state. You can

play multiple items concurrently but independently.

mm-renderer

/base/usr/lib/libscreen.soRenders video output to the display. This service is used by

mm-renderer but it can be used directly by applications to

manipulate the video output window.

screen

/proc/boot/io-audioStarts audio drivers to enable outputting of audio streams through

hardware. This service is used by mm-renderer and shouldn't be

used directly by media applications.

io-audio

/base/usr/sbin/io-fs-mediaRuns drivers that provide a POSIX filesystem interface to media

devices. For some device types, other multimedia components use

this service to read file information and media streams.

io-fs-media

Copyright © 2015, QNX Software Systems Limited 11

Multimedia Architecture

OS services

The OS layer includes device publishers. When users attach devices, device publishers create PPS

objects and write device information into them. The publishers remove the objects that store information

about specific devices when users remove those devices. Your media applications can monitor the

entries of the PPS directories that store these objects and then read the object contents to discover

new media sources and to learn the mediastore mountpoints, which they can explore for playable

content.

The Device Publishers Developer's Guide explains the types of PPS objects that store device information,

the directories in which these objects are published, and the included publisher services and the device

types that they support.

Copyright © 2015, QNX Software Systems Limited12

Multimedia Architecture

Chapter 2
Device detection and information retrieval

The device publishers update device information in PPS objects when users attach or detach devices.

Your applications can read this information and use it to access media content and decide what to

synchronize and play.

The interaction between these components proceeds as shown here:

QNX Neutrino RTOS

Device publishers

Output

PPS

QDB
databases

io-audio

screenmm-renderermm-sync

libmmplaylistlibmd

Playlist
information

File and media
metadata

Synchronization
control

Media file
queries

Device
information

retrieval

Playback
control

Playback
configuration

(runs drivers for iPod, MTP)
io-fs-media

Devices C APIs

Media applications

OS services

Multimedia
components

Applications

1

2

3

4

5

Figure 2: Device Monitoring and Information Retrieval

1. Detecting device attachments

Device publishers don't physically detect when users attach or detach devices. Other OS-layer

processes—device drivers and protocol stacks—monitor I/O hardware for physical state changes

that indicate device attachments or detachments (e.g., SD card insertions or USB device

connections). Because they interface with hardware, the drivers and stacks contain up-to-date

details on the physical connectivity and filesystem mountpoints of attached devices. The publishers

must communicate with these system processes to learn of device attachments and detachments.

2. Obtaining device information

Different publishers use different methods for obtaining the latest device information. The

usblauncher publisher queries the USB stack (io-usb) process for device information (for

Copyright © 2015, QNX Software Systems Limited 13

details, see “The usblauncher Service” in the Device Publishers Programmer's Guide). The

mmcsdpub publisher monitors specific /dev paths and when it notices new or updated entries, it
communicates with the drivers to obtain device information (for details, see “Role of device drivers

and mcd”).

3. Publishing device, driver, and filesystem information to PPS

After retrieving information about newly attached devices from other OS processes, the publishers

output this information in text format to PPS objects. Each object stores information that describes

a single device. Also, the publishers use different object types for storing device connectivity, driver

process, and filesystem information. For more details, see “PPS object types”.

When publishers learn from a driver or protocol stack process that a device has been detached,

they delete the PPS objects related to that device.

4. Publishing additional device information to PPS

For MTP and iPod devices, additional PPS objects are published by the driver. The MTP driver

publishes the software version, manufacturer name, vendor name, and the last time that media

content was modified on the device (for details, see the MTP-related PPS objects in the PPS Objects

Reference). The modification time field is dynamic because the driver updates it whenever media

content is added, modified, or deleted.

With iPods, the extra information written in PPS depends on which Apple protocol the device runs;

for details, refer to the iPod documentation included with the QNX Apps and Media Interface for

Apple iPod.

5. Detecting devices in media applications

Before your applications can synchronize or play any media, they must learn which devices

(mediastores) are attached to your system. Your applications must monitor the device-related PPS

objects to readily receive information about newly attached devices. This information includes the

mountpoints, which your applications can use to explore the relevant filesystem locations to identify

and access media tracks.

For example, when a USB device is inserted, its default mountpoint is /fs/usb0. The publisher that
monitors USB device attachments and removals (usblauncher) writes this mountpoint information

to a PPS object in /pps/qnx/mount/.

Other information fields can help you enforce media policies. For instance, suppose that you want

to filter playback based on the mediastore type. By examining the media_type attribute, your

application can choose to play tracks on some device types (say, audio CDs) but to ignore tracks

on other device types (say, DVDs).

For more details on detecting mediastores from an application, see the first two steps of the process

described in the “Synchronizing media content from applications” section in the Multimedia

Synchronizer Developer's Guide.

Copyright © 2015, QNX Software Systems Limited14

Device detection and information retrieval

Chapter 3
Metadata synchronization and retrieval

Media applications invoke mm-sync to synchronize metadata on mediastores with QDB databases.

The mm-sync service uses dedicated libraries to extract track and playlist metadata from mediastores

and then stores this information in databases. Applications can later query these databases to retrieve

the metadata.

The interaction between these components proceeds as shown here:

QNX Neutrino RTOS

Device publishers

Output

PPS

QDB
databases

io-audio

screenmm-renderermm-sync

libmmplaylistlibmd

Playlist
information

File and media
metadata

Synchronization
control

Media file
queries

Device
information

retrieval

Playback
control

Playback
configuration

(runs drivers for iPod, MTP)
io-fs-media

Devices C APIs

Media applications

OS services

Multimedia
components

Applications

1

2 4

3
5

6

Figure 3: Metadata Synchronization and Retrieval

1. Starting a synchronization

After learning through PPS about which devices (mediastores) are attached to the system and then

exploring their contents, applications can invoke mm-sync to upload metadata from those

mediastores into QDB databases. Metadata includes creation and playback information such as

the album name, artist name, track title, and track duration. The command to start a synchronization

must contain the mediastore path of the files to synchronize (e.g, /tunes/queen/) as well as the
device entry for the QDB database (e.g, /dev/qdb/cd0_db) that will store the metadata.

An application must create and load the appropriate QDB database before it starts a synchronization.

We recommend using the device's unique ID in the database name; for information on how to do

Copyright © 2015, QNX Software Systems Limited 15

this, refer to the “Maintaining database persistence” section in the Multimedia Synchronizer

Developer's Guide.

2. Extracting file and media metadata

The mm-sync service uses the libmd library to read metadata fields (types) from mediastore files.

The files named in the metadata requests sent to libmd are always located within the mediastore

path given to mm-sync. For information on libmd, see the Metadata Provider Library Reference.

3. Storing file and media metadata

The mm-sync service must store the extracted metadata in the database tables and fields (columns)

specified in the configuration. The mm-sync configuration file defines the mapping of metadata

fields to database fields for audio, video, and photo files. You can modify this mapping to change

which metadata fields get uploaded to QDB databases and which database tables and fields the

various metadata fields get stored in. For information on how to do this, see the

<Configuration>/<Database>/<Synchronization>/<ConfigurableMetadata> element in the mm-sync
configuration description.

4. Extracting playlist entries

After the media metadata has been uploaded, mm-sync extracts the entries for all playlists found

within the path specified at the start of synchronization. Playlist entries, which are track URLs

referenced in playlist files, are retrieved by using the libmmplaylist library. For information on

libmmplaylist, see the Multimedia Playlist Library Reference.

5. Storing playlist entries

The mm-sync service then uploads the playlist entries to the device's database. This action fills

in empty fields in the tables that store playlist information. In the mm-sync configuration file, you

can define filename pattern matches and even an alternative configuration for libmmplaylist

for greater control over what playlist entries get synchronized. For information on how to do this,

refer to the <Configuration>/<Database>/<Synchronization>/<PLSS> element in the mm-sync
configuration description.

6. Retrieving synchronized metadata

Media applications can issue SQL queries to a database through the QDB API to retrieve up-to-date

track and playlist information. This information lets you show details of the currently playing track

and the tracks in the playlist window, support browsing of mediastore files and directories, and

display album artwork. To know when the synchronization of a mediastore has completed, meaning

the tables in the device's database are as accurate as possible, your applications must monitor

mm-sync events and wait for the MMSYNC_EVENT_MS_SYNCCOMPLETE event.

Copyright © 2015, QNX Software Systems Limited16

Metadata synchronization and retrieval

Chapter 4
Media playback

Media applications use mm-renderer to play audio and video tracks. The applications attach media

files or playlists as the mm-renderer input and attach one or more hardware devices as the outputs.

During playback, mm-renderer manages the media flow between the input and the outputs.

The interaction between these components proceeds as shown here:

QNX Neutrino RTOS

Device publishers

Output

PPS

QDB
databases

io-audio

screenmm-renderermm-sync

libmmplaylistlibmd

Playlist
information

File and media
metadata

Synchronization
control

Media file
queries

Device
information

retrieval

Playback
control

Playback
configuration

(runs drivers for iPod, MTP)
io-fs-media

Devices C APIs

Media applications

OS services

Multimedia
components

Applications

1

2

22

3

3

2

Figure 4: Media Playback

1. Configuring the rendering service

To play media content, an application must configure the mm-renderer service by defining a

context and then attaching an input and one or more outputs to that context. For the input, the

application must provide the URL of a track or playlist stored on an accessible mediastore. For the

output, it must provide a URL that names an output device and lists the device configuration

options. For an overview of the API calls required to set up playback, see the “Playing media”

section in the Multimedia Renderer Developer's Guide.

2. Controlling playback

When an application issues the command to start playback, mm-renderer initiates the media

flow between the input and the outputs. Note that the rendering service doesn't parse the media

Copyright © 2015, QNX Software Systems Limited 17

files itself but instead uses lower-level mechanisms (e.g., HTTP streamers, file readers) to read

and forward their contents, which it then directs to other utilities that send the audio and video

components to the appropriate drivers. The main purpose of mm-renderer during playback is to

process playback commands. These commands allow applications to change the playback speed,

skip to a new track position, and stop playback.

3. Outputting audio and video

Plugins within mm-renderer communicate (through intermediate libraries, which aren't shown)

with the Screen Graphics Subsystem for outputting video and with the io-audio utility for

outputting audio. Screen is the windowing system that mm-renderer uses to render video to the

display. The io-audio utility is a resource manager that dynamically loads and configures audio

drivers; mm-renderer uses it to deliver audio to the appropriate output devices (e.g., speakers).

Copyright © 2015, QNX Software Systems Limited18

Media playback

Index

D

device monitoring and information retrieval process 13

devices 13

monitoring 13

retrieving information on 13

M

media 17

playing 17

media playback process 17

metadata 15

retrieving 15

synchronizing 15

metadata synchronization and retrieval process 15

multimedia 9–12

application requirements 10

architecture 9

communication between components 9

components 11

OS services for detecting media devices 12

sample utilities 10

T

Technical support 8

Typographical conventions 6

U

USB 14

default mountpoint 14

Copyright © 2015, QNX Software Systems Limited 19

Index

Copyright © 2015, QNX Software Systems Limited20

Index

	Contents
	About This Guide
	Typographical conventions
	Technical support

	Multimedia Architecture
	Device detection and information retrieval
	Metadata synchronization and retrieval
	Media playback
	Index

