
Metadata Provider Library
Reference

QNX® SDK for Apps and Media 1.1

©2013–2015, QNX Software Systems Limited, a subsidiary of BlackBerry
Limited. All rights reserved.

QNX Software Systems Limited
1001 Farrar Road
Ottawa, Ontario
K2K 0B3
Canada

Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

QNX, QNX CAR, Momentics, Neutrino, and Aviage are trademarks of
BlackBerry Limited, which are registered and/or used in certain
jurisdictions, and used under license by QNX Software Systems Limited.
All other trademarks belong to their respective owners.

Electronic edition published: March 31, 2015

Contents
About This Reference..5

Typographical conventions..6

Technical support...8

Chapter 1: Metadata Provider Overview...9
Architecture of libmd..10

Metadata providers...12

MDP ratings...12

Metadata extraction...12

Included MDPs...12

Metadata-extraction sessions...14

Extracting artwork..15

Chapter 2: Configuring Metadata Providers..17
Configuration file...18

Chapter 3: Metadata Provider API...21
Metadata provider constants..22

mmmd_errcode_t...23

mmmd_error_info()..25

mmmd_error_info_t..26

mmmd_error_str()..27

mmmd_flags_set()..28

mmmd_flags_t...29

mmmd_get()..30

mmmd_hdl_t...33

mmmd_init()...34

mmmd_mdps_list()..35

mmmd_session_close()...36

mmmd_session_open()...37

mmmd_session_params_set()..38

mmmd_terminate()..39

Index...41

Metadata Provider Library Reference

Contents

About This Reference

The Metadata Provider Library Reference is aimed at developers who want to write applications that

use the libmd library to extract metadata from media files on attached devices. This metadata lets

applications display track information and artwork so users can quickly browse device filesystems and

search media libraries.

This table may help you find what you need in this reference:

Go to:To find out about:

Metadata Provider Overview (p. 9)The purpose and capabilities of libmd

Included MDPs (p. 12)The list of included Metadata Providers (MDPs)

Configuration file (p. 18)The libmd configuration file, which lists the plugins and their

preferential order

Metadata Provider API (p. 21)Using the Metadata Provider Library API to manage

metadata-extraction sessions and retrieve metadata from media

files

Copyright © 2015, QNX Software Systems Limited 5

Typographical conventions

Throughout this manual, we use certain typographical conventions to distinguish technical terms. In

general, the conventions we use conform to those found in IEEE POSIX publications.

The following table summarizes our conventions:

ExampleReference

if(stream == NULL)Code examples

-lRCommand options

makeCommands

NULLConstants

unsigned shortData types

PATHEnvironment variables

/dev/nullFile and pathnames

exit()Function names

Ctrl–Alt–DeleteKeyboard chords

UsernameKeyboard input

EnterKeyboard keys

login:Program output

stdinVariable names

parm1Parameters

NavigatorUser-interface components

OptionsWindow title

We use an arrow in directions for accessing menu items, like this:

You'll find the Other... menu item under Perspective Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have unwanted or

undesirable side effects.

WARNING: Warnings tell you about commands or procedures that could be dangerous to your

files, your hardware, or even yourself.

Copyright © 2015, QNX Software Systems Limited6

About This Reference

Note to Windows users

In our documentation, we typically use a forward slash (/) as a delimiter in pathnames, including those

pointing to Windows files. We also generally follow POSIX/UNIX filesystem conventions.

Copyright © 2015, QNX Software Systems Limited 7

About This Reference

Technical support

Technical assistance is available for all supported products.

To obtain technical support for any QNX product, visit the Support area on our website (www.qnx.com).

You'll find a wide range of support options, including community forums.

Copyright © 2015, QNX Software Systems Limited8

About This Reference

http://www.qnx.com

Chapter 1
Metadata Provider Overview

The metadata provider library, libmd, extracts metadata from media files on attached devices to provide

client applications with up-to-date information on the media content available for browsing or playback.

Metadata is information that describes media files. This information can include details such as the

artist name, album title, or year of creation (for a track), as well as playback details such as track

runtime or picture dimensions. Clients use metadata to:

• display details of the currently playing track to users

• provide the names and other file information of selected tracks to media browsers

• display album artwork to users to enhance their media experience

• generate cover flows so users can visually browse albums and tracks

Clients make requests of libmd to extract specific sets of metadata fields from individual media files.

With this design, clients can retrieve the exact metadata they need at precise times so they can optimize

performance and the user experience. For example, suppose the user selects a track in their media

browser. The application that provides media information to the browser can extract the track's creation

information fields (which are small and fast to retrieve) but not its embedded artwork images (which

can be large and slow to process). This strategy increases the browser's responsiveness.

Consider a cover flow application that allows users to visually browse their song collection and begin

playback by selecting an album image. The application can extract the cover art when generating the

flow of albums and then extract the artist name, year of release, and other album information when

the user selects an album image. This “load-on-demand” philosophy supports a good user experience

by ensuring the exact information—whether images or text—becomes available as soon as the user

needs it.

The multimedia synchronizer service, mm-sync, uses libmd to extract media metadata so it

can upload that metadata to QDB databases. But updating databases requires indexing most

or all files on a mediastore, so you might not want to rely on mm-sync for obtaining metadata

and instead use libmd. Retrieving metadata through libmd lets you prioritize metadata extraction

by reading metadata from one file or a select group of files.

Copyright © 2015, QNX Software Systems Limited 9

Architecture of libmd

The libmd library uses a plugin architecture in which independent plugins support different sets of

metadata fields. When a client requests metadata, the library extracts it using one or more plugins

and then returns the set of filled-in metadata fields to the client.

The library is implemented in three layers:

Data processing

This layer:

• stores and updates the plugin ratings for metadata fields from specific media file types

• collates (i.e., combines and orders) the metadata field values returned from plugins

Plugin management

This layer:

• parses the configuration file to learn which library files implement the plugins and to

read the preference order for various file types

• loads, initializes, and unloads plugins

Plugins

This layer consists of many Metadata Provider (MDP) plugins, each of which:

• manages communication sessions for responding to metadata requests and for reporting

errors

• rates itself on its ability to retrieve the requested metadata fields

• retrieves metadata by extracting media information from the named item (media file)

This design lets libmd offer a common, high-level interface for extracting metadata from many file

types on many device types. Clients need to name only a media file and the metadata fields they want

and libmd then invokes the necessary MDP plugins to read the metadata and returns the extracted

metadata fields to the client.

Each MDP fills in as many fields as it can. The order that libmd uses to invoke the MDPs depends on

the plugin preferences stated in the configuration file (p. 18). The preferential order for plugins can

vary from one file type to another.

Supported file types

The file types and their associated URL prefixes supported by libmd are:

URL prefixFile type

cdda:CDDA track

file:POSIX file

ipod:iPod media file

http:HTTP stream

Copyright © 2015, QNX Software Systems Limited10

Metadata Provider Overview

URL prefixFile type

rtsp:RTSP stream

mtp:File on an MTP device

If no URL prefix is given, the POSIX file type is assumed (e.g., a URL of /fs/usb0/one.mp3 is

equivalent to file:/fs/usb0/one.mp3).

Supported device types

MDPs hide the details of the media interface used for reading metadata so clients can extract it through

different network protocols from a variety of hardware. Clients can read metadata from the following

device types:

• USB sticks, SD cards, or any storage devices with block filesystems

• iPods

• audio CDs

• MTP devices

• media streams from external sources (e.g., HTTP servers)

The plugin-based architecture makes it possible for future releases of libmd to support additional

file and device types. The libmd library could add new MDPs to provide more sources of

metadata while clients continue to use the same commands to extract it.

Copyright © 2015, QNX Software Systems Limited 11

Metadata Provider Overview

Metadata providers

Metdata providers (MDPs) are libmd plugins that do the actual metadata extraction from media files.

MDPs tell the data-processing layer of libmd which metadata fields (types) they can extract. When

requested, MDPs read as many of the metadata fields listed by the client as possible from the specified

media item.

MDP ratings

To handle a client request for metadata, libmd queries all loaded MDPs for their ratings on the metadata

fields listed in the request. Each MDP keeps an internal map of the fields it can extract from media

files. This map contains the field names (i.e., metadata types) and other information such as which

collation method to use for handling multiple values for a given field. MDPs consult this map to generate

lists of field-specific Boolean ratings (1 means the plugin can extract the field, 0 means it can't) and

then return these ratings to the data-processing layer.

When selecting an MDP plugin as the metadata source, libmd considers only MDPs that gave a rating

of 1 for at least one metadata field, which means they can extract some or all of the requested

information. To pick an MDP within the set of MDPs rated 1 for some field, libmd examines the plugin

order for the file type of the media item named in the request. This plugin order is read from the

configuration file during initialization (see Configuration file (p. 18)).

Metadata extraction

When libmd asks an MDP to retrieve metadata, the selected MDP parses the request data to obtain

either a fully qualified path to the item (media file) or some other information referencing the item

(e.g., a track's unique ID (UID) on iPods). Next, the MDP uses POSIX system calls or system libraries

to browse the device's directories and files and to read its file information to generate metadata. For

instance, the CDDA plugin calls devctl() to issue device commands to CDs mounted in the local

filesystem. These commands include reading the CD-Text data, which contains album metadata.

The MDP stores the information read from the device in metadata strings and returns these strings

along with the number of metadata types (fields) for which metadata was found to the data-processing

layer of libmd. If the number of types found is less than the number requested by the client, libmd
picks another MDP to get metadata for the remaining fields. The libmd library continues invoking MDPs

until all requested metadata fields have been filled in or until it exhausts all MDPs.

Included MDPs

Different MDPs support different file types and metadata fields. When requesting metadata fields, you

must state the metadata categories and the individual attributes that you want to retrieve; see

mmmd_get() (p. 30) for more details.

The libmd library combines a category (the prefix) with each of the listed attributes (the suffixes) to

form the full names of the metadata fields. You can state as many categories and attributes as you

need but you should be aware of which fields are supported by which MDPs.

The MDPs shipped with libmd and the file types and metadata that they support are as follows:

Copyright © 2015, QNX Software Systems Limited12

Metadata Provider Overview

AttributesMetadata
categories

FilesMDP

album, artist, genre, name, composer, track,

bitrate, samplerate, duration, format

md_titleCD audio tracksCDDA

width, height, date_time_original,

shutter_speed, fnumber, iso_speed_ratings,

md_titlePOSIX files on mass storage

devices (e.g., USB sticks)

Exif

focal_length, orientation, description,

latitude, longitude, keywords

art (see 1)md_titleExternal artwork such as cover

images for albums and thumbnail

graphics for tracks

Extart

image (see 2), count, size, urlsmd_artwork

width, height, color_depthmd_titleImage filesIMG

art (see 1)md_titleiPod media filesiPod

image (see 2), mimetype, width, height, size,

count

md_artwork

name, artist, album, composer, genre, year,

duration, comment, protected, track, art

(see 1)

md_titleFiles on MTP devicesMediaFS

image (see 2), width, height, size, mimetype,

count

md_artwork

name, artist, album, albumartist, composer,

genre, comment, duration, track, disc, year,

md_titleMMF files accessible from either a

network source (e.g., an HTTP

server) or a POSIX device

MMF

seekable, pausable, samplerate, bitrate,

protected, mediatype (see 3), width, height,

art (see 1), compilation, rating

width, height, pixel_width, pixel_height,

frame, fourcc

md_video

fourccmd_audio

image (see 2), description, type, mimetype,

count, size

md_artwork

1 This field is an alias for md_artwork::image, which is the preferred way of requesting image data.
2 The image field must include a file option that names the path to write the image data. This can be a POSIX

path in the local filesystem or a special value to request an image file reference instead of the image data (for
more information, see “Metadata provider constants (p. 22)”). The field can also specify an index to select one
image from many within the given path (for details, see “Extracting artwork (p. 15)”).

3 The value returned for the md_title::mediatype field is in decimal but should be converted to hexadecimal
for readability. For the mapping of hexadecimal values to media types, see the MediaFormat_t data structure in
the Addon Interface Library Reference.

Copyright © 2015, QNX Software Systems Limited 13

Metadata Provider Overview

Metadata-extraction sessions

To extract metadata with libmd, a client must establish a communication session with the library before

it can issue commands to read metadata from media files stored on an attached device.

To establish a communication session (or metadata-extraction session) with libmd, the client must

name a mediastore (device) to extract the metadata from. If desired, the client can then set session

parameters to influence the behavior of MDPs. These parameters can be set only once, so the client

should set them just after opening a session but before extracting any metadata.

The client can use any open session to send requests to libmd to extract metadata from individual

items (media files). In each metadata request, the client must supply the item's path or some

device-specific information identifying the item (e.g., a UID on iPods) and must list the desired metadata

fields. The client can also request a maximum number of “matches” (i.e., responses returned by

different plugins) for metadata fields. Retrieving multiple values for metadata fields lets a client pick

the set of values that provide the user with the most complete and accurate media information possible.

Concurrent sessions

Clients can open and extract metadata from as many concurrent libmd sessions as they like. This

design lets applications display media information for multiple devices to users. We recommend a

limit of one session per mediastore to avoid redundant reads of metadata from the same files.

Obtaining error information

While a session is active, the client can obtain information about the last error that occurred for that

session by calling mmmd_error_info() (p. 25). This function returns error information, including the

numeric error code, a string summarizing the error, and an error message. We recommend that your

client code check the return values of all API calls. If any value indicates an error, the client can

retrieve the error information and use it to help recover.

Copyright © 2015, QNX Software Systems Limited14

Metadata Provider Overview

Extracting artwork

Media content often has artwork. For example, audio and video files can have embedded images,

thumbnail graphics, and album artwork residing in their folder as well. The libmd library can read

image metadata, allowing clients to discover artwork on connected mediastores and to retrieve images

so they can display them during playback and enhance the user experience.

To extract artwork, you must:

1. Enable and configure artwork plugins.

The libmd library extracts artwork with these plugins:

Extart

Searches folders on connected mediastores to find artwork associated with media files;

retrieves image data, URLs, and other properties

iPod

Reads image data, file information, and display dimensions from specified artwork files

on Apple devices

MediaFS

Reads image data, file information, and display dimensions from specified artwork files

on MTP devices

MMF

Reads image data, descriptions, and properties of artwork accessed through network

sources and POSIX devices

In the default configuration file, the MMF plugin is the only artwork-supporting plugin enabled. To

enable another plugin, uncomment the [plugin] line that starts its configuration section and

the dll setting on the next line. The Extart plugin has additional settings that you can uncomment

to control some aspects of artwork extraction, such as the maximum number of images to read.

These settings are explained in “MDP Settings (p. 20)”.

2. Add artwork plugins to lists of preferred plugins.

For all file types for which you want to retrieve artwork, you must name at least one

artwork-supporting plugin in their lists of preferred plugins. Suppose you want to read artwork for

media files found in POSIX filesystems and on MTP devices. You can modify the [typeratings]

section in the configuration file (p. 18) as follows:

[typeratings]

file=extart,mmf,img

mtp=extart,mediafs

This tells libmd to use the Extart plugin for reading metadata when given a URL starting with file:
or mtp:, or with no prefix and containing only a POSIX path (which is equivalent to using the file:
prefix). In both cases, libmd tries to read the metadata with Extart. If it can't retrieve some fields

Copyright © 2015, QNX Software Systems Limited 15

Metadata Provider Overview

with this plugin, the library may try the other listed plugins, depending on the parameters passed

in by the client when requesting metadata.

3. Retrieve artwork through the libmd API.

The API call sequence for retrieving artwork is the same as that for reading other metadata. See

the Metadata Provider API (p. 21) chapter for a summary of the commands used to read metadata.

The key point to remember when extracting artwork is that not all information gets copied into the

memory space referenced by the md parameter in the mmmd_get() (p. 30) call. Image details

such as size or URL are stored in this library-allocated memory but the image data (which is much

larger) is copied to the path specified in the md_artwork::image metadata type, which is named

in the types parameter.

Suppose the client configures the Extart plugin to read POSIX files and then makes this API call:

mmmd_get(hdl, "/mediastore/1.mp3",

md_artwork::image?file=/tmp/img1.jpg", NULL,

0, &md);

Although the second argument defines a file path, the Extart plugin looks in the enclosing folder

(/mediastore in this case) for artwork images. Because no image index is given in this example, the

library writes the first image found that matches the search pattern defined by the regex#

configuration settings into /tmp/img1.jpg.

For any artwork-supporting plugin, you can define the index parameter to extract a particular

image. To know if more than one image is present in a given folder, you must first read one of the

following types in an mmmd_get() call:

md_artwork::count

Indicates the number of images in the folder

md_artwork::size

Stores the sizes of all images found, in a comma-separated list of values

md_artwork::urls

(Supported only by Extart)

Stores the URLs of the images, in a comma-separated list of values. Some clients may

not want to copy images and instead read and display them directly from devices. In

this case, they can request the md_artwork::urls field, read the URLs within this

field, and then specify these URLs in POSIX system calls to access images individually.

Suppose you learn of multiple artwork images associated with an audio track and you want to

display these images at specific time offsets (e.g., 0s, 30s, 60s, and so on) during playback. At

the appropriate times, you can request new images by specifying their indexes in calls like this:

mmmd_get(hdl, "/mediastore/1.mp3",

md_artwork::image?file=/tmp/img1.jpg,index=1", NULL,

0, &md);

This command retrieves the image at index 1 (i.e., the second image in the /mediastore folder).

You could retrieve this image if you want to refresh the display after, say, 30 seconds of playback.

Copyright © 2015, QNX Software Systems Limited16

Metadata Provider Overview

Chapter 2
Configuring Metadata Providers

You can configure metadata providers (MDPs) in two ways: in the configuration file to define initial

settings and through the libmd API to define settings for individual metadata-extraction sessions.

During startup, libmd reads its configuration file and loads each listed MDP. After an MDP loads

successfully, libmd initializes it with any settings listed in the configuration file. These settings apply

to the MDP throughout the client application's lifetime.

When libmd has finished its setup, your client can establish metadata-extraction sessions and assign

parameters to those sessions to influence how MDPs retrieve metadata.

To assign parameters to active sessions (dynamic parameters), the client must call

mmmd_session_params_set() (p. 38) while providing the session handle and the list of parameters.

Parameters defined in this manner apply only to the session referred to in the API call. Once set, they

can't be changed or unset.

Currently, only the MMF MDP examines dynamic parameters, which it uses to configure the streamers

for reading files from HTTP servers. Whether this plugin is used in metadata extraction depends on

the type of the media item being read and the plugin preferences stated in the configuration file. When

libmd uses other MDPs to read metadata, dynamic parameters have no effect. You should therefore

set these parameters only when you plan to extract metadata from HTTP servers.

The MDP settings recognized by libmd when parsing the configuration file (static parameters)

differ from those you can assign to an active metadata-extraction session. See the default

configuration file for the supported static parameters. For information on the dynamic

parameters recognized by MMF, see mmmd_session_params_set() (p. 38).

Copyright © 2015, QNX Software Systems Limited 17

Configuration file

The libmd configuration file lists the preferential plugin order, the library files implementing the plugins,

and other configuration settings.

The libmd library is shipped with a default configuration file. You can modify this included file or

create your own. You can also override the default path that the library looks in for the configuration

file, when calling mmmd_init() (p. 34). If you pass in a configuration path of NULL, the library searches

the path given in the MM_MD_CONFIG environment variable or if this variable isn't defined, the default

path of /etc/mm/mm-md.conf.

Redefining MM_MD_CONFIG lets you use a different configuration file as the default. This is

useful when launching applications such as mm-sync that use libmd but don't allow you to

set the configuration path.

In any configuration file, each section that defines settings for an individual plugin (or MDP) must

begin with a line like this:

[plugin]

The settings are listed on the lines that follow, one per line. A setting is specified by stating a field

name, followed by an equal sign (=), followed by the field value. For example, the following line enables

“lazy load filters” for MMF:

lazyloadfilters=1

You can add comments in the file by starting lines with the number sign (#).

A dll setting is required in every plugin section. This setting names the library file implementing the

MDP plugin. To support a good user experience, your configuration file should define at least all the

MDPs needed to extract any metadata field used by your client applications. Most likely, you'll have

to provide more than one plugin section in your configuration because most MDPs don't support every

metadata field.

The section defining the preferential plugin order begins with a line of the form:

[typeratings]

The lines that follow list the MDP preferences for specific file types. Each line contains a URL prefix

that represents a file type, followed by the MDPs to use for metadata extraction, from most to least

preferred. Suppose you want to inform libmd of your plugin preferences for POSIX files, whose URLs

have either a file prefix or no prefix at all. If you want to use the MMF MDP first, then the Exif MDP

if some metadata fields can't be retrieved by this first MDP, and then the Img MDP if some fields still

can't be retrieved, enter the following line:

file=mmf,exif,img

Copyright © 2015, QNX Software Systems Limited18

Configuring Metadata Providers

Default configuration file

The contents of the default configuration file look like this:

libmd config file

[plugin]

dll=mm-mdp-mmf.so

lazyloadfilters=1

[plugin]

dll=mm-mdp-cdda.so

#[plugin]

#dll=mm-mdp-exif.so

#[plugin]

#dll=mm-mdp-img.so

#[plugin]

#dll=mm-mdp-ipod.so

#[plugin]

#dll=mm-mdp-extart.so

#ignore_case=true

#max_search=100

#max_cache_entries=0

All regular expressions following the first instance must have

a unique suffix appended to them (e.g., regex, regex1, regex2).

#regex=album\.jp[e]?g

#regex1=folder\.jp[e]?g

#[plugin]

#dll=mm-mdp-mediafs.so

[typeratings]

file=mmf

#file=mmf,exif,img

http=mmf

cdda=cdda

rtsp=mmf

#ipod=ipod

#mtp=mediafs

Some MDP settings are commented out in the default file; to enable any of these settings,

simply uncomment its line.

Copyright © 2015, QNX Software Systems Limited 19

Configuring Metadata Providers

MDP Settings

You can configure these MDP settings to further control metadata extraction:

DescriptionSettingMDP

Use case-insensitive matching of filenames; this is usually desiredignore_caseExtart

Limit the number of folders cached after searching; this helps limit memory

usage

max_cache_entries

Limit the number of files to check in a folder when looking for external artwork.

Defining this setting lets you keep the search time within a reasonable limit.

max_search

For example, if a folder contains 10 000 files but max_search is 100, only

the first 100 files will be checked for artwork.

Define POSIX regular expression (regex) patterns for matching names of

artwork files. You can define multiple fields; the first can be named regex

but the remaining fields must contain unique suffixes (e.g., regex1, regex2).

regex[#]

Don't initialize MMF until the first request for metadata; this saves on startup

time

lazyloadfiltersMMF

Copyright © 2015, QNX Software Systems Limited20

Configuring Metadata Providers

Chapter 3
Metadata Provider API

The Metadata Provider API exposes the constants, data types (including enumerations), and functions

that client applications can use to initialize the libmd library, create metadata-extraction sessions, and

submit metadata retrieval requests.

The first action any client must perform with libmd is to initialize the library by calling

mmmd_init() (p. 34) while supplying the path of the configuration file, which lists the metadata

providers (MDPs) to load.

Before it can extract any metadata, the client must open a metadata-extraction session by calling

mmmd_session_open() (p. 37) while providing the name of the mediastore (device) to read metadata

from.

The client can then request specific metadata fields from specific items (media files) by calling

mmmd_get() (p. 30). The client can ask for a maximum number of matches (i.e., responses from

different MDPs). Retrieving multiple matches lets the client pick the set of metadata values that provide

the most complete and accurate media information possible.

When it's finished retrieving metadata, the client can close the corresponding session by calling

mmmd_session_close() (p. 36). When it's finished using libmd altogether (e.g., during shutdown), the

client must call mmmd_terminate() (p. 39) to clean up the resources used by the library.

Copyright © 2015, QNX Software Systems Limited 21

Metadata provider constants

Constants for requesting cover art references instead of artwork data

Synopsis:

#include <mm/md.h>

#define MD_COVERART_BYREF "BYREF"

This constant provides a keyword for returning cover art by reference. If requested, MDPs won't write

the artwork data to a file. You can use this constant when specifying the image attribute in the list

of metadata types to retrieve, for example: md_artwork::image?file=BYREF.

Library:
libmd

Copyright © 2015, QNX Software Systems Limited22

Metadata Provider API

mmmd_errcode_t

Error codes

Synopsis:

#include <mm/md_errors.h>

typedef enum mmmd_errcode {

MMMD_ERR_NONE = 0,

MMMD_ERR_OTHER,

MMMD_ERR_NO_MDPS,

MMMD_ERR_NOT_SUPPORTED,

MMMD_ERR_MALFORMED_REQUEST,

MMMD_ERR_NO_PARSERS,

MMMD_ERR_CALLDEPTH_EXCEEDED,

MMMD_ERR_NO_MEMORY,

MMMD_ERR_CANT_OPEN_FILE,

MMMD_ERR_CANT_READ_FILE,

MMMD_ERR_CANT_RECONFIGURE,

} mmmd_errcode_t;

Data:

MMMD_ERR_NONE

No error occurred.

MMMD_ERR_OTHER

An error not listed here occurred.

MMMD_ERR_NO_MDPS

No metadata plugins are loaded.

MMMD_ERR_NOT_SUPPORTED

The request isn't supported.

MMMD_ERR_MALFORMED_REQUEST

The request isn't properly formed.

MMMD_ERR_NO_PARSERS

No parsers were found for the request.

MMMD_ERR_CALLDEPTH_EXCEEDED

The derived metadata call depth was exceeded (presently not applicable).

MMMD_ERR_NO_MEMORY

No memory is available.

Copyright © 2015, QNX Software Systems Limited 23

Metadata Provider API

MMMD_ERR_CANT_OPEN_FILE

The file couldn't be opened.

MMMD_ERR_CANT_READ_FILE

The file couldn't be read.

MMMD_ERR_CANT_RECONFIGURE

The configuration was already set (presently not applicable).

Library:
libmd

Description:

The mmmd_errcode_t enumeration defines the error codes that can be returned by libmd API functions.

Copyright © 2015, QNX Software Systems Limited24

Metadata Provider API

mmmd_error_info()

Get information about the last error in a session

Synopsis:

#include <mm/md.h>

const mmmd_error_info_t* mmmd_error_info(mmmd_hdl_t *hdl)

Arguments:

hdl

The handle of the session whose error information is being retrieved.

Library:
libmd

Returns:

A pointer to an mmmd_error_info_t (p. 26) structure storing the error information.

Copyright © 2015, QNX Software Systems Limited 25

Metadata Provider API

mmmd_error_info_t

Information about the last session error

Synopsis:

#include <mm/md.h>

typedef struct mmmd_error_info {

mmmd_errcode_t code;

int64_t extended_code;

char extended_type[16];

char extended_msg[256];

} mmmd_error_info_t;

Data:

mmmd_errcode_t code

The numeric error code.

int64_t extended_code

The numeric extended error code.

char extended_type

The extended error type, as a string.

char extended_msg

An extended error message.

Library:
libmd

Description:

The mmmd_error_info_t structure describes errors that occurred during a metadata-extraction session.

Copyright © 2015, QNX Software Systems Limited26

Metadata Provider API

mmmd_error_str()

Get a phrase describing the specified error code

Synopsis:

#include <mm/md_errors.h>

const char* mmmd_error_str(mmmd_errcode_t errcode)

Arguments:

errcode

An mmmd_errcode_t (p. 23) constant representing the error that you want a descriptive

phrase for.

Library:
libmd

Returns:

A pointer to a string containing the error phrase (this value is always non-null).

Copyright © 2015, QNX Software Systems Limited 27

Metadata Provider API

mmmd_flags_set()

Set control flags for the library logs

Synopsis:

#include <mm/md.h>

mmmd_flags_t mmmd_flags_set(mmmd_flags_t new_flags)

Arguments:

new_flags

An mmmd_flags_t (p. 29) value with the new flag setting for the library logs.

Library:
libmd

Returns:

The old flag setting, as an mmmd_flags_t value.

Copyright © 2015, QNX Software Systems Limited28

Metadata Provider API

mmmd_flags_t

Flags for controlling library logs

Synopsis:

#include <mm/md.h>

typedef enum {

MMMD_FLAG_EMIT_TIMING_LOGS = 0x01

} mmmd_flags_t;

Data:

MMMD_FLAG_EMIT_TIMING_LOGS

Tells the library to emit timing logs.

Library:
libmd

Description:

The mmmd_flags_t enumeration defines constants for controlling logs for the library.

Copyright © 2015, QNX Software Systems Limited 29

Metadata Provider API

mmmd_get()

Get metadata fields from a media item

Synopsis:

#include <mm/md.h>

int mmmd_get(mmmd_hdl_t *hdl,

const char *item,

const char *types,

const char *source,

uint32_t count,

char **md)

Arguments:

hdl

The handle of the session associated with the mediastore from which metadata is being

read.

item

A URL or an absolute path to the file containing the metadata being read. For URLs, the

prefix depends on the type of file being read (see “Supported file types (p. 10)” for details).

types

A string storing the requested metadata types (fields) as a series of group-attributes listings.

Here, group refers to the metadata category (e.g., title) while attributes refers to the list

of requested attributes (e.g., artist, album).

Each group-attributes listing must be followed by a line-break character (\n). Within a

listing, the group and the attributes must be separated by the :: delimiter, while individual

attributes must be separated by commas, as shown in this example with two listings:

md_title::name,artist,album\nmd_video::width,height

This syntactic grouping of metadata types makes it easy to request multiple related fields.

source

A string specifying the metadata source (i.e., the MDP to use). Currently, this feature isn't

supported so this argument must be NULL to indicate that all sources can be used.

count

The number of desired matches (i.e., responses from MDPs).

If count is 0, all responses are collated to return the highest-rated response (see the

Description (p. 31) for an explanation).

If count is nonzero, the number of responses returned is less than or equal to count , starting

with the highest-rated response. No collation is performed.

Copyright © 2015, QNX Software Systems Limited30

Metadata Provider API

md

A pointer to a string reference to the buffer storing the response. The library allocates the

buffer memory, writes the metadata in this memory, and sets the string reference but the

caller owns the memory and hence, is reponsible for freeing it later.

Examples of the formatting and typical contents of the response buffer are given in the

Description (p. 31).

Library:
libmd

Description:

This function gets the specified metadata fields from the specified item. The types string must state

the requested fields as group-attributes listings, as explained in the Arguments (p. 30).

Because different MDPs support different fields, libmd uses as many MDPs as necessary to extract

metadata for all the fields listed in types . The order that libmd uses to invoke the MDPs is the plugin

preference order for the file type indicated by the URL or path in item . This file type-based preference

order is stated in the configuration file.

For the lists of fields supported by different MDPs, see “Included MDPs (p. 12)”.

The metadata pointer (md) should be deallocated using free() when the metadata is no longer needed.

The libmd library sets this pointer to a valid, non-null value only if the return value is greater than 0,

meaning metadata was found.

Examples:

Retrieving multiple responses

Setting count to a value greater than 0 allows you to retrieve multiple matches (responses) for metadata

fields. Your client code can then choose the set of responses that provides the user with the most

accurate and complete metadata possible. The number of responses returned is less than count if the

number of MDPs supporting any of the requested fields is also less than count . A nonzero value for

this argument simply limits the number of responses that can be returned.

Suppose a client sets count to 3 and requests the md_title_artist and md_title_orientation

fields from a POSIX file while the MDP preference order for POSIX files is mmf, mediafs, exif.

The MMF and MediaFS MDPs support the first field but not the second; the Exif MDP supports the

second field but not the first. The libmd library then stores a pointer in md that references the following

string:

md_src_name::mmf\nmd_src_rating::0\nmd_title_artist::some_artist\n

md_src_name::mediafs\nmd_src_rating::1\nmd_title_artist::some_artist\n

md_src_name::exif\nmd_src_rating::2\nmd_title_orientation::landscape\0

The name and rating of the MDP that produced the metadata are placed in front of every metadata

field. Ratings are offsets in the zero-based list of preferred MDPs, so 0 indicates the first plugin listed,

1 indicates the second listed, and so on. The metadata is represented as a name-value pair and placed

after the MDP name and rating.

Copyright © 2015, QNX Software Systems Limited 31

Metadata Provider API

Retrieving the highest-rated responses

Setting count to 0 makes libmd collate the responses from many MDPs into one result set to produce

the highest-rated response, which is the set of metadata field values obtained from the MDPs listed

earliest in the plugin preference order.

Suppose a client sets count to 0 and requests the md_title_width, md_title_height, and

md_title_orientation fields from a POSIX file while the MDP preference order is the same as

listed in the last example. The MMF and MediaFS MDPs support the first two fields but not the last;

only the Exif MDP supports the last field. The libmd library then sets md to reference the following

string:

md_title_width::response_from_MMF\nmd_title_height::response_from_MMF\n

md_title_orientation::response_from_Exif

Because MMF is rated ahead of MediaFS, this first MDP's values for md_title_width and

md_title_height are returned. Neither MMF nor MediaFS supports md_title_orientation,

so the value from Exif for this last field is returned. Note that the MDP names and ratings aren't shown

for individual fields in this case because the responses come from potentially many MDPs.

Returns:

>0

The number of responses, when successful.

0

No metadata was retrieved but no errors occurred.

-1

An error occurred (call mmmd_error_info() (p. 25) for details).

Copyright © 2015, QNX Software Systems Limited32

Metadata Provider API

mmmd_hdl_t

Session handle type

Synopsis:

#include <mm/md.h>

typedef struct mmmd_hdl mmmd_hdl_t;

Library:
libmd

Description:

The mmmd_hdl_t structure is a private data type representing a session handle.

Copyright © 2015, QNX Software Systems Limited 33

Metadata Provider API

mmmd_init()

Initialize the library

Synopsis:

#include <mm/md.h>

int mmmd_init(const char *config)

Arguments:

config

The path to the configuration of the library. Setting this argument allows you to use a

nondefault configuration file. When given a NULL path, the library searches the path given

in the MM_MD_CONFIG environment variable or if this variable isn't defined, the default

path of /etc/mm/mm-md.conf.

Library:
libmd

Description:

This function initializes the library. You must call this function before any other libmd function to

initialize the library before using it. This function loads any metadata providers (MDPs) listed in the

configuration file into the library. The default path for the configuration file is /etc/mm/mm-md.conf
but this path can be overridden, as explained in the config argument.

The plugin entries in the configuration file must contain dll settings that provide filenames matching

the plugin names. All other plugin settings are ignored by the data processing and plugin management

layers but may be used by the plugins themselves during metadata extraction.

Returns:

0

Success.

>0

An error occurred (errno is set).

Copyright © 2015, QNX Software Systems Limited34

Metadata Provider API

mmmd_mdps_list()

Get a list of all loaded MDPs

Synopsis:

#include <mm/md.h>

ssize_t mmmd_mdps_list(char *buffer, size_t buf_len)

Arguments:

buffer

A pointer to a string for storing the list of MDP names (may be NULL).

buf_len

The buffer length (may be 0).

Library:
libmd

Description:

This function gets a list of the MDPs successfully loaded and initialized. Calling this function helps

diagnose problems with library initialization.

To obtain the buffer length needed to store the list of all loaded MDPs, call this function with buffer

set to NULL. Use the return value of this first function call to allocate sufficient buffer memory, then

call this function a second time, passing in the updated buffer pointer to fill in the list of loaded

MDPs.

Returns:

>=0

When successful, the function returns either the buffer length needed for storing the MDPs

list or the amount of data (in bytes) written to the buffer.

-1

An error occurred (call mmmd_error_info() (p. 25) for details).

Copyright © 2015, QNX Software Systems Limited 35

Metadata Provider API

mmmd_session_close()

Close a metadata-extraction session

Synopsis:

#include <mm/md.h>

int mmmd_session_close(mmmd_hdl_t *hdl)

Arguments:

hdl

The handle of the session to close.

Library:
libmd

Returns:

0

Success.

-1

An error occurred (call mmmd_error_info() (p. 25) for details).

Copyright © 2015, QNX Software Systems Limited36

Metadata Provider API

mmmd_session_open()

Open a metadata-extraction session

Synopsis:

#include <mm/md.h>

mmmd_hdl_t* mmmd_session_open(const char *mediastore,

uint32_t flags)

Arguments:

mediastore

The URL or mountpoint of the mediastore to associate with the session. The syntax of this

argument depends on the mediastore type. For example, to read metadata from a USB stick,

set this parameter to /fs/usb0/ (or something similar). To read metadata from files stored in

the root directory of your local filesystem, set this parameter to /.

flags

Must be 0; reserved for future use.

Library:
libmd

Description:

This function opens a metadata-extraction session with libmd. The session is associated with the media

device named in mediastore , meaning that you can use it to read metadata from items stored on that

device.

Returns:

A valid, non-null session handle

Success.

NULL

Failure (errno is set).

Copyright © 2015, QNX Software Systems Limited 37

Metadata Provider API

mmmd_session_params_set()

Set parameters for a metadata-extraction session

Synopsis:

#include <mm/md.h>

int mmmd_session_params_set(mmmd_hdl_t *hdl,

const strm_dict_t *dict)

Arguments:

hdl

The handle of the session whose parameters are being set.

dict

A dictionary of key-value pairs representing the parameters. For information on creating

dictionaries and storing key-value pairs, see the Dictionary Object API section in the

Multimedia Renderer Developer's Guide.

Library:
libmd

Description:

This function sets parameters for a metadata-extraction session. After these parameters are set, they

can't be unset or changed. Also, they apply only to MDPs that haven't been already used in the current

session, so you should call this function just after calling mmmd_session_open() (p. 37) but before

calling mmmd_get() (p. 30).

Currently, only the MMF MDP uses session parameters, which it passes to the Addon Interfaces Library

(libaoi) when configuring streamers for reading files from HTTP servers. When libmd uses other MDPs

to read metadata, session parameters defined through this API call have no effect. You should therefore

set session parameters only if you want to read metadata from HTTP servers.

The session parameters that you can apply to MMF are the same as the HTTP-related options that you

can define as context, input, or track parameters in the Multimedia Renderer API.

Returns:

0

Success.

-1

An error occurred (call mmmd_error_info() (p. 25) for details).

Copyright © 2015, QNX Software Systems Limited38

Metadata Provider API

mmmd_terminate()

Terminate the library

Synopsis:

#include <mm/md.h>

int mmmd_terminate(void)

Library:
libmd

Description:

This function terminates the library from use by unloading all MDPs. You must call this function once

and it must be the last function you call.

Returns:

0

Success.

-1

An error occurred (errno is set).

Copyright © 2015, QNX Software Systems Limited 39

Metadata Provider API

Index

A

artwork 15

extracting 15

C

configuring MDPs 17

D

default configuration file 19

contents 19

Default configuration path 18

L

libmd 9–12, 14–15, 18, 20–21

API 21

architecture 10

communication sessions, See metadata-extraction

sessions

configuration file 18, 20

contents 18

MDP settings 20

configuring to retrieve artwork 15

included plugins 12

introduction 9

layers 10

libmd (continued)

plugins, See MDPs

supported device types 11

supported file types 10

M

MDPs 12, 17, 20

configuring 17

controllable settings 20

definition 12

included with platform 12

metadata extraction 12

ratings 12

metadata 9

defintion and usage 9

metadata providers, See MDPs

metadata-extraction sessions 14

concurrent sessions 14

establishing 14

metadata matches 14

session error information 14

MM_MD_CONFIG environment variable 18

T

Technical support 8

Typographical conventions 6

Copyright © 2015, QNX Software Systems Limited 41

Index

Copyright © 2015, QNX Software Systems Limited42

Index

	Contents
	About This Reference
	Typographical conventions
	Technical support

	Metadata Provider Overview
	Architecture of libmd
	Metadata providers
	MDP ratings
	Metadata extraction
	Included MDPs

	Metadata-extraction sessions
	Extracting artwork

	Configuring Metadata Providers
	Configuration file

	Metadata Provider API
	Metadata provider constants
	mmmd_errcode_t
	mmmd_error_info()
	mmmd_error_info_t
	mmmd_error_str()
	mmmd_flags_set()
	mmmd_flags_t
	mmmd_get()
	mmmd_hdl_t
	mmmd_init()
	mmmd_mdps_list()
	mmmd_session_close()
	mmmd_session_open()
	mmmd_session_params_set()
	mmmd_terminate()

	Index

